3种车桥耦合振动分析模型的比较研究
- 格式:pdf
- 大小:839.41 KB
- 文档页数:4
3种车桥耦合振动分析模型对比研究发表时间:2018-10-01T17:27:10.827Z 来源:《基层建设》2018年第26期作者:宋腾腾[导读] 摘要:本文对比了在2个1/4车模型、2个1/4车模型(改变其弹簧刚度)和1/2车模型3种车辆模型在相同速度时的跨中位移影响情况。
温州市市政工程建设开发公司浙江温州 325002摘要:本文对比了在2个1/4车模型、2个1/4车模型(改变其弹簧刚度)和1/2车模型3种车辆模型在相同速度时的跨中位移影响情况。
对比说明:当车速小于130km/h时,3种模型跨中位移响应曲线都比较吻合,当进行公路桥梁车辆耦合振动分析时可采用两个四分之一模型来模拟。
关键词:振动;车桥耦合振动;车辆模型 1 引言车桥耦合问题,在100多年前就吸引了很多的研究者进行研究.现有的研究[1-3]为了求解简便,将车桥耦合的车辆和桥梁模型简化了。
近几年,很多国内研究者都尝试使用数值方法来求解,比如文献[4]把汽车模拟成三维模型,使车和桥相互作用作为整体来建立振动微分方程组,使用数值方法解得了公路简支梁、连续梁桥的动力响应;文献[5-6]使用达朗伯原理创建了简支梁桥车桥耦合的分析模型,使用数值方法将其求解;文献[7]使用New-mark逐步积分法求解匀变速移动质量和简支梁耦合系统的情况。
为分析车辆模型因素对研究车桥耦合问题的影响,文中对比了3种不同车辆模型———2个1/4车模型、2个1/4车模型(改变其弹簧刚度)和1/2车模型的在不同速度下的位移响应情况,先对其整体规律进行对比分析,再分析各种模型的异同。
2 模型建立2.1 四分之一车模型车辆模型见图1,车辆采用弹簧-阻尼-质量系统来模拟。
图中:为车体质量;为构架加上轮对的质量;为一系垂向刚度;为一系垂向阻尼;为二系垂向刚度;为二系垂向阻尼;为车辆通过桥梁时的速度(为定值)。
车辆和车体的振动方程式如下:,.使用分离变量法,假设.由简支梁的边界条件,令,再根据主振型的正交性,得到桥梁受力作用下的振动微分方程为:,图1 1/4车模型作用下的简支梁本文采用两个四分之一车模型,因为车和桥的振动方程分开考虑,然后进行叠加。
车辆——桥梁耦合系统模态分析实验一、实验目的:1.学习并掌握桥梁结构模态参数的测试与分析方法,能够使用测试分析系统以及相应的软件;2.掌握测力和不测力算法进行模态参数识别的原理和方法。
二、实验内容:分别对车辆激励、随机激励及力锤激励作用下斜拉桥模态进行测试分析。
三、实验仪器及实验框图1.实验仪器:加速度传感器、电荷适调器、力锤、信号采集分析系统(DH5922测试分析系统)、计算机及结构动态分析软件、斜拉桥模型、车辆模型、传感器连接导线等2.实验框图:四、实验步骤:按实验框图所示进行仪器连接。
1.车辆激励作用下斜拉桥模态分析1)测点布置,参考点的选择在斜拉桥模型上选择测点,并分别编号,试验中选择了5个测试点,编号分别为1-5,对应接入测试系统的1-5号通道,并选择5号测点为参考点,位于斜拉桥右边跨跨中位置。
2)打开DH5922测试分析系统开关,待指示灯指示正常后,打开电脑桌面“动态信号集成系统”数据采集软件,进入操作界面。
3)创建一个新项目,分析类型选为频谱分析,并设置运行参数、系统参数、通道参数等。
运行参数设置如图1所示。
系统参数包括采样频率、分析频率、采样方式、采样批次等,如图2所示。
通道参数包括通用参数、触发参数、几何参数、标定信息、通道子参数等,如图3所示。
图1 运行参数选择设置图2 系统参数设置图3 通道参数设置4)通道平衡,清零,开始采样。
进行跑车激励,采样时间一般以大于3分钟为宜,系统提供内部采样时钟计时,可打开,实时观测采样时长,如图4所示。
采到的3通道的时程曲线如图5所示。
采样过程中可在任意窗口随时查看其他的实时谱信号,如图6所示。
该软件具有自动保存数据功能。
图4 采样时钟计时图5 第3通道采样时程曲线图6 信号选择窗口5)数据的处理与分析。
打开桌面的“DHMA模态分析软件”,在弹出的提示窗口中选择“不测力法”,如图7所示。
图7 分析方法选择6)新建工程文件,选择合适的方法建立结构文件,建立好的斜拉桥结构文件及测点号布置如图8所示。
章采用随机振动的虚拟激励法,将轨道不平顺激励转化为虚拟激励,并利用MATLAB软件自编程序,采用数值方法分离迭代求解系统的虚拟响应,进而求得列车与桥梁子系统随机响应的时变功率谱和标准差,据此分析了系统的随机振动特性。
关键词:非平稳随机振动 车桥耦合系统 虚拟激励法1.列车—桥梁耦合系统动力学方程1.1桥梁子系统运动方程采用平面梁单元法对桥梁结构进行离散,桥梁子系统运动方程见式(1)。
(1)式(1)中:平面梁单元节点有3个自由度,,-梁单元节点的轴向位移;-竖向位移;-面内转角;-质量矩阵;-阻尼矩阵;-刚度矩阵;-外力矩阵。
1.2车辆子系统运动方程车辆—桥梁垂向耦合振动系统模型如图1所示。
图1中:k 1、c 1分别为转向架与轮对之间一系悬挂的弹簧刚度和阻尼系数;k 2、c 2分别为车体与转向架之间二系悬挂的弹簧刚度和阻尼系数。
l t 与l c 分别为车辆轴距之半、车辆定距之半。
车辆具有10个自由度,分别为:z t 1、βt 1-前转向架沉浮运动和点头运动;z t 2、βt 2-后转向架的沉浮运动和点头运动;z c 、βc -车体的沉浮运动和点头运动;z w 1~z w 4-4个轮对的沉浮运动。
车辆子系统的运动方程见式(2)。
(2)式(2)中:假定轮对与轨道密贴接触,则车辆有6个独立的自由度,T,-质量矩阵、-阻尼矩阵、-刚度矩阵、-外力矩阵。
1.3车辆-桥梁耦合系统动力学方程假定轮对与轨道密贴接触,由车辆子系统与桥梁子系统的位移协调关系,得到系统的动力学方程如式(3)所示。
(3)其中:式(3)中:、、——桥梁子系统的质量、阻尼和刚度矩阵,均包含列车车轮作用;、-桥梁子系统和车辆子系统相互作用的刚度、阻尼子矩阵;其余参数的含义同前。
与分别为耦合系统所受到的轨道不平顺随机激励和重力作用下的确定性激励,分别表示如式(4)。
(4)式(4)中:-车体质量;-转向架质量;-轮对质量;-将轨道不平顺转化为系统等效节点荷载的矩阵;-将轨道不平顺一阶导数转化为系统等效节点荷载的矩阵;-将轨道不平顺二阶导数转化为系统等效节点荷载的矩阵;-考虑车轮间距引起的轮轨接触点处轨道不平顺随机激励时图1 车辆—桥梁垂向耦合系统模型4/ 珠江水运·2018·05滞性的矩阵;-第i个车轮所受的作用力向桥梁子系统有限元模型平面梁单元节点分解时所用的分解向量。
车辆与桥梁耦合系统振动理论浅析[摘要]随着桥梁结构的轻型化以及车辆载重、车速的提高,车辆加速度的存在,车辆过桥引起的车桥振动问题越来越引起工程界的关注。
【关键词】耦合振动;简支梁;模型;冲击系数1.车桥振动的的特点车辆通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用、相互影响的问题就是车辆和桥梁之间振动耦合的问题。
车桥之间的振动是一种司耦合振动,它具有时变、自激、随机的特点。
2.车桥耦合动力问题的历史与现状车桥振动的研究已有100多年的历史,最先开展研究的是铁路桥梁的车振问题,随着铁道工程建设的发展,移动荷载对桥梁结构的动力作用问题引起人们普遍地关注。
铁路桥梁车激振动的主要特征是列车荷载的轴重大,轴距排列规律性较强,钢轮在钢轨上运行具有蛇行特征,因此,车辆过桥除了激起桥梁竖向振动外,还有较大的横向振动,因此铁路桥梁除了研究竖向振动外,还需研究桥梁横向振动,其主要研究的内容为桥梁的动态响应和车辆过桥的动态响应,如桥梁的冲击系数、横向振幅、以及桥梁的竖横向加速度、桥梁的合理竖向、横向的刚度限值和车辆过桥的加速度以及平稳性等;公路桥梁的车激振动的特征主要表现为过桥车辆的轴重、轴距的多样性和随机性,公路桥梁主要关心的是桥梁的竖向振动,研究的内容主要为桥梁的动态响应如冲击系数等,由于轮胎与路面的作用与钢轮与钢轨作用不同,公路桥梁的车激横向振动不太剧烈,因此,车激桥梁的横向振动基本上不予考虑。
尽管铁路与公路桥梁的车激振动的研究范围有些差别,但是,车桥振动研究的主要原理和基本方法是相同的,都具有时变、自激,随机性的特点。
回顾100多年来车桥振动研究的历程,可以大致的分为两个阶段,即车桥振动研究古典理论阶段和车桥振动研究现代理论阶段。
3.车桥振动的古典理论3.1古典理论的实桥试验研究1907年1910年期间,美国第一次进行了规模比较大的现场实测工作,用各种类型的机车以不同速度通过21根板梁和24座析梁桥,测定桥梁的最大动力响应,第一次提出了冲击系数的关系,通过试验得出了跨度、车速和冲击作用间的关系,制订了冲击系数曲线,并得出了明确的概念:对于蒸汽机车来说,移动荷载的动力作用主要是由动轮偏心块的周期力所引起的。