微粒间的作用力与物质性质
- 格式:ppt
- 大小:1.56 MB
- 文档页数:41
微粒间的相互作用要点:1.了解化学键的定义,了解离子键、共价键的形成。
2.了解离子化合物和共价化合物的结构特征并能初步解释其物理性质一、化学键的含义与类型1.化学键:相邻的两个或多个原子间强烈的相互作用。
注意:(1)化学键定义中的原子是广义上的原子,既包括中性原子,也包括带电原子或原子团(即离子);(2)化学键定义中“相邻”“强烈的相互作用”是指原子间紧密的接触且能产生强烈电子与质子、电子与电子、质子与质子间的电性吸引与排斥平衡作用。
物质内不相邻的原子间产生的弱相互作用不是化学键;(3)化学键的形成是原子间强烈的相互作用的结果。
如果物质内部相邻的两个原子间的作用很弱,如稀有气体原子间的相互作用,就不是化学键。
它们之间的弱相互作用叫做范德华力(或分子间作用力)。
化学键的常见类型:离子键、共价键、金属键。
(一)、共价键1.共价键的概念:原子之间通过共用电子形成的化学键称为共价键。
2.成键元素:通常是非金属元素原子形成的化学键为共价键。
结果是使每个原子都达到8或2个电子的稳定结构,使体系的能量降低,达到稳定状态。
3.形成共价键的条件:同种或不同种的原子相遇时,若原子的最外层电子排布未达到稳定状态,则原子间通过共用电子对形成共价键。
(二)、离子键1.离子键的概念:阴阳离子之间通过静电作用形成的化学键。
2.成键元素:一般存在于金属和非金属之间。
3.形成离子键的条件:成键原子的得、失电子能力差别很大(活泼金属与活泼非金属之间)例如:在氯化钠的形成过程中,由于钠是金属元素很容易失电子,氯是非金属元素很容易得电子,当钠原子和氯原子靠近时,钠原子就失去最外层的一个电子形成钠阳离子,氯原子最外层得到钠的一个电子形成氯阴离子(两者最外层均达到稳定结构),阴、阳离子靠静电作用形成化学键——离子键,构成氯化钠。
由于钠和氯原子之间是完全的得失电子,他们已形成了离子,因此NaCl中的微粒不能再叫原子,而应该叫离子。
【例题1】.下列关于化学键的叙述正确的是()A.化学键既存在于相邻的原子之间,又存在于相邻分子之间B.两个原子之间的相互作用叫做化学键C.化学键通常指的是相邻的两个或多个原子之间的强烈的相互作用D.阴阳离子之间有强烈的吸引作用而没有排斥作用,所以离子键的核间距相当小【例题2】.下列过程中,共价键被破坏的是()A.碘升华B.溴蒸气被木炭吸附C.酒精溶于水D.HCl气体溶于水二、离子化合物与共价化合物1.离子化合物:含有离子键的化合物。
单元素养检测(二)(第2章)(90分钟100分)一、选择题:本题共10小题,每小题2分,共20分。
每小题只有一个选项符合题意。
1.(2021·济南高二检测)下列关于离子键、共价键的各种叙述中错误的是( )A.在离子化合物里,一定存在离子键,可能存在共价键B.非极性键只存在于双原子的单质分子中C.在共价化合物分子内,一定不存在离子键D.由不同元素组成的多原子分子里,可能存在非极性键【解析】选B。
含有离子键的化合物为离子化合物,则离子化合物一定存在离子键,也可能存在共价键,如NaOH为离子化合物,既含有离子键也含有共价键,故A正确;相同非金属元素之间可以形成非极性键,非极性键可以存在于双原子的单质分子中,如氯气,也可以存在于一些化合物中,如过氧化氢,故B错误,D正确;只含有共价键的化合物为共价化合物,含有离子键的化合物为离子化合物,则在共价化合物分子内,一定不存在离子键,故C正确。
2.(2020·无锡高二检测)下列分子中,属于含极性键的非极性分子的是( )A.SO2B.H2O2C.BBr3D.COCl2【解析】选C。
SO2分子中中心原子上的孤电子对数=6-2×22=1,空间构型为角形,属于极性分子;H2O2分子中既有非极性键,又有极性键,是极性分子;COCl2为极性分子。
3.人们从未停止对生命起源的研究和探讨,曾经有研究表明生命起源于火山爆发,是因为火山爆发产生的气体中含有1%的羰基硫(OCS)。
已知羰基硫中所有原子均满足8电子稳定结构。
下列有关羰基硫的说法正确的是( )A.属于非极性分子B.沸点低于CO2C.C原子是sp2杂化D.三个原子位于同一直线上【解析】选D。
羰基硫分子可类比学过的CO2分子,其结构式是O==C==S,由于结构不对称,为极性分子,A错;其相对分子质量大于CO2的相对分子质量,沸点应高于CO2的沸点,B错;碳原子形成两个双键,为sp杂化,C错。
4.(2021·三明高二检测)下列关于苯乙炔的说法错误的是( )A.该分子有8个σ键,5个π键B .该分子中碳原子有sp 和sp 2杂化C .该分子存在非极性键D .该分子中有8个碳原子在同一平面上 【解析】选A 。
微粒间作用力与物质性质考点一晶体的常识和常见四种晶体性质(频数:★★★难度:★★☆)名师课堂导语本考点主要考查晶体类型判断,以及借助晶体类型比较熔沸点高低。
1.晶体(1)晶体与非晶体对固体进行X射线衍射实验①概念:描述晶体结构的基本单元。
②晶体中晶胞的排列——无隙并置a.无隙:相邻晶胞之间没有任何间隙。
b.并置:所有晶胞平行排列、取向相同。
(3)晶格能①定义:气态离子形成1摩尔离子晶体释放的能量,通常取正值,单位:kJ·mol-1。
②影响因素a.离子所带电荷数:离子所带电荷数越多,晶格能越大。
b.离子的半径:离子的半径越小,晶格能越大。
③与离子晶体性质的关系晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度越大。
①具有规则几何外形的固体不一定是晶体,如玻璃。
②晶体与非晶体的本质区别:是否有自范性。
③晶胞是从晶体中“截取”出来具有代表性的“平行六面体”,但不一定是最小的“平行六面体”。
2.四种晶体类型的比较(1)不同类型晶体熔、沸点的比较①不同类型晶体的熔、沸点高低的一般规律:原子晶体>离子晶体>分子晶体。
②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)同种晶体类型熔、沸点的比较 ①原子晶体:如熔点:金刚石>碳化硅>硅。
②离子晶体:a.一般地说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如熔点:MgO >MgCl 2>NaCl >CsCl 。
b.衡量离子晶体稳定性的物理量是晶格能。
晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。
③分子晶体:a.分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常地高。
如H 2O >H 2Te >H 2Se >H 2S 。
b.组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH 4>GeH 4>SiH 4>CH 4。
c.组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高,如CO>N2,CH3OH>CH3CH3。
化学键、范德华力和氢键的判断与应用(建议用时:40分钟)1.在“石蜡―→液体石蜡―→石蜡蒸气―→裂化气”的变化过程中,被破坏的作用力依次是( )A.范德华力、范德华力、范德华力B.范德华力、范德华力、共价键C.范德华力、共价键、共价键D.共价键、共价键、共价键B[“石蜡―→液体石蜡―→石蜡蒸气”属于石蜡的“三态”之间的转化,由于石蜡属于分子晶体,所以转化的过程中需克服分子间作用力;“石蜡蒸气―→裂化气”属于化学变化,要破坏共价键。
]2.下列关于微粒间的作用力说法正确的是( )A.离子化合物中只存在离子键,没有共价键;共价化合物中只存在共价键,没有离子键B.非极性共价键只存在于非金属单质分子(如Cl2)中C.水分子很稳定是因为水分子间易形成氢键D.NaHSO4熔化时离子键被破坏而共价键未被破坏D[离子化合物中一定含有离子键,可能含有共价键,故A错误;非极性共价键可存在于双原子单质分子中,也可存在于化合物中,如过氧化氢、过氧化钠、乙烷中都存在非极性共价键,故B错误;分子的稳定性是化学性质,与氢键无关,故C错误;硫酸氢钠熔化只有离子键被破坏,而共价键未被破坏,故D正确。
]3.(2021·天津二十中检测)下列物质中都存在离子键、极性键和配位键的是( ) A.过氧化钠、硫酸四氨合铜、氢化钠B.硝酸铵、氢氧化二氨合银、氯化铵C.氯化氢、氢氧化钠、氢氧化钡D.氯化铵、过氧化氢、过氧化钙B[本题考查化学键类型的判断。
A项,Na2O2中含离子键和非极性键,[Cu(NH3)4]SO4中含离子键、极性键和配位键,NaH中只含离子键,错误;B项,三种物质中都含离子键、极性键和配位键,正确;C项,HCl中含极性键,NaOH中含离子键和极性键,Ba(OH)2中含离子键和极性键,错误;D项,NH4Cl中含离子键、极性键和配位键,H2O2中含极性键和非极性键,CaO2中含离子键和非极性键,错误。
]4.下列物质发生变化时,所克服的粒子间相互作用属于同种类型的是( )A.液溴和苯分别受热变为气体B.干冰和氯化铵分别受热变为气体C.二氧化硅和铁分别受热熔化D.食盐和葡萄糖分别溶解在水中A[液溴和苯分别受热变为气体都需克服分子间作用力,A符合题意;干冰受热变为气体克服分子间作用力,而氯化铵受热会发生分解反应,破坏的是化学键,B不符合题意;二氧化硅受热熔化破坏共价键,铁受热熔化破坏金属键,C不符合题意;食盐溶解在水中破坏的是离子键,葡萄糖溶解在水中,破坏的是分子间作用力,D不符合题意。
《微粒之间的相互作用力》讲义在我们所处的这个奇妙的物质世界中,微粒(原子、分子、离子等)并非孤立存在,它们之间存在着各种各样的相互作用力。
这些相互作用力决定了物质的性质和状态,从坚硬的固体到流动的液体,再到无处不在的气体,无一不是微粒间相互作用的结果。
首先,让我们来了解一下离子键。
当活泼的金属元素(如钠、钾)与活泼的非金属元素(如氯、氟)相遇时,它们之间容易发生电子的转移。
金属原子失去电子形成阳离子,非金属原子得到电子形成阴离子。
由于正负电荷之间的强烈吸引,阳离子和阴离子紧密结合,形成了离子键。
离子键的强度较大,因此由离子键构成的化合物(如氯化钠)通常具有较高的熔点和沸点,在固态时不导电,而在熔融状态或水溶液中能够导电。
与离子键不同,共价键则是原子之间通过共用电子对形成的相互作用。
例如,氢分子中的两个氢原子,它们各自提供一个电子,形成共用电子对,从而将两个氢原子结合在一起。
共价键又分为极性共价键和非极性共价键。
在极性共价键中,成键原子对共用电子对的吸引力不同,导致电子对有所偏移,使得分子呈现极性;而非极性共价键中,成键原子对共用电子对的吸引力相同,电子对不偏移,分子呈非极性。
金属键是存在于金属单质或合金中的一种特殊的相互作用力。
在金属晶体中,金属原子的部分或全部外层电子会脱离原子,形成“自由电子”,这些自由电子在整个金属晶体中自由运动,将金属原子或离子“胶合”在一起。
金属键没有方向性和饱和性,这使得金属具有良好的延展性、导电性和导热性。
除了上述三种主要的化学键,微粒之间还存在着分子间作用力。
分子间作用力包括范德华力和氢键。
范德华力普遍存在于分子之间,其强度相对较弱。
一般来说,随着分子相对质量的增大,范德华力也会增大,物质的熔沸点也会相应升高。
氢键则是一种特殊的分子间作用力,它比范德华力要强一些。
当氢原子与电负性大、半径小的原子(如氮、氧、氟)结合时,氢原子与另一个电负性大的原子之间会产生一种较强的相互作用,这就是氢键。
《物质结构与性质》(选考)复习讲义2 成键规律及其对物质性质的影响一、成键规律概述二、金属键的形成及其对物质性质的影响 (一)定义(二)金属键的强弱1、从微粒间作用力角度看:,q 是金属原子的价电子数,r 是金属原子半径。
(1)金属原子的价电子数目越多,金属键越强价电子数目:主族元素是最外层电子数,过渡元素一般是(n-1)d a ns b (2)金属原子半径越小,金属键越强2、从能量角度看:原子气化热越大,金属键越强(三)对金属单质物理性质的影响 主要考查熔沸点大小及说明原因。
例:(2017国I )K 和Cr 属于同一周期,且核外最外层电子构型相同,比较金属K 和金属Cr 的熔点、沸点高低并说明原因。
解析:金属K 的熔点、沸点都比金属Cr 低,原因是K 的原子半径较大且价电子数较少,原子气化热较小。
三、离子键的形成及其对物质性质的影响(一)定义:正负离子之间的静电力叫做离子键。
(二)离子键的强弱1、从微粒间作用力角度看:本质是静电引力(库仑力),用表示,其中q +、q -为离子所带电荷,R 为离子核间的距离。
(1)阴、阳离子的电荷数乘积越大,离子键越强 (2)阴阳离子的半径和越小,离子键越强2、从能量角度看:晶格能(U )越大,离子键越强22f rq k=2-f r q q k⋅=+(1)什么是晶格能?定义1:相互远离的气态正、负离子结合成1mol离子晶体时所释放的能量,相当于下式反应的内能改变:m M x+(g)+x X m-(g)→M m X x(s) ΔH=-U定义2:1mol离子晶体解离成自由气态正、负离子时所吸收的能量,相当于下式反应的内能改变:M m X x(s)→m M x+(g)+x X m-(g) ΔH=U注意:①为什么强调气态离子?(因为气态离子可视为相互远离,它们之间无相互作用力)②晶格能U取正值,只有大小(数值),因此反应焓变ΔH取绝对数值即为晶格能。
(2)如何求晶格能?利用热化学循环(玻恩-哈伯循环)计算晶格能练习:画出计算Li2O晶格能(U)的玻恩—哈伯循环图,并列出计算关系式。
有机化合物的物理性质规律有机物的物理性质与化学性质同等重要,且“结构决定性质,性质反映结构”不仅表现在化学性质中,同时也体现在某些物理性质上。
有机物一些物理性质存在着内在规律,如果抓住其中的规律,可以更好地认识有机物。
一、熔沸点有机物微粒间的作用是分子间作用力,分子间的作用力比较小,因此烃的熔沸点比较低。
对于同系物,随着相对分子质量的增加,分子间作用力增大,因此同系物的熔沸点随着相对分子质量的增大而升高。
1. 烃、卤代烃及醛各种烃的同系物、卤代烃及醛的熔沸点随着分子中碳原子数的增加而升高。
如:4CH 、1048362H C H C H C 、、都是烷烃,熔沸点的高低顺序为:10483624H C H C H C CH <<<;846342H C H C H C 、、都是烯烃,熔沸点的高低顺序为:846342H C H C H C <<;再有Cl CH CH Cl CH 233<,CHO CH HCHO 3<等。
同类型的同分异构体之间,主链上碳原子数目越多,烃的熔沸点越高;支链数目越多,空间位置越对称,熔沸点越低。
如4332233323)CH (C CH CHCH )CH (CH )CH (CH >>。
例1:下列物质的沸点按由高到低的顺序排列正确的是( )①3223CH )CH (CH②3323CH )CH (CH ③CH )CH (33④3223CH CHCH )CH ( A. ②④①③B. ④②①③C. ④③②①D. ②④③① 答案:A2. 醇由于分子中含有—OH ,醇分子之间存在氢键,分子间的作用力较一般的分子间作用力强,因此与相对分子质量相近的烃比较,醇的熔沸点高的多,如OH CH CH 23的沸点为78℃,323CH CH CH 的沸点为-42℃,23CH CH CH =的沸点为-48℃。
影响醇的沸点的因素有:(1)分子中—OH 个数的多少:—OH 个数越多,沸点越高。