1.2球面和共轴球面系统的理想成像
- 格式:pptx
- 大小:8.01 MB
- 文档页数:31
第二章球面与共轴球面系统§2-1 光线光路计算与共轴光学系统共轴球面系统—光学系统一般由球面和平面组成,各球面球心在一条直线(光轴)上。
物象关系的研究方法—光线的光路计算。
逐面计算物象的大小、虚实、正倒、位置等特性。
子午面—包含物面与光轴的截面。
一、 光线经过单个折射面的折射OEAA ′II ′Cr-LL ′hnn ′-UU ′φ1.基本参量E -折射点 OE OE -折射球面 U U 、U ′- 物象方孔径角O -顶点 h h -入射高度 n n 、n ′-物象方空间折射率C-球心 r-球面曲率半径 I 、I ′-入、折射角A 、A ′-物点、象点 L 、L ′-物距、象距φ -法线与光轴夹角2. 符号法则(便于统一计算)规定光线从左向右传播a)沿轴线段L、L′、r以O为原点,与光线传播方向相同,为“+”与光线传播方向相反,为“-”b)垂轴线段h在光轴之上,为“+”在光轴之下,为“-”c)光线与光轴夹角U、U′以光轴转向光线成的锐角来度量,顺时针为“+”逆时针为“-”d)光线与法线夹角I、I′以光线转向法线成的锐角来度量,顺时针为“+”逆时针为“-”e)光轴与法线的夹角φ以光轴转向法线成的锐角来度量,顺时针为“+”逆时针为“-”f)折射面的间隔d,一般取“+”g)所有参量是含符号的量,但图示标为参量的大小。
二、 远轴光的计算公式(实际光线光路计算) 给定n 、 n ′、r ,已知L 、U ,求解L ′、 U ′ 其中U 、 U ′较大,远轴光线成像(大光路)U I rr L I I U U In nI Ur r L I ′′+=′′−+=′′=′−=sin sin sin sin sin sin OEAA ′II ′Cr-LL ′hnn ′-UU ′φ3)物点位于物方无限远时,入射光线位置由高度h 决定。
rh I =sin 说明:1)L ′=f (U 、L 、n 、n ′、r)2)当L 为定值时,L ′随U 变化而变化,象方光束失去同心性,成不完善象,形成球差。
共轴球面系统成像的原理
共轴球面系统(Spherical Coordinate Imaging,SCI)是一种用于成像的技术,其原理基于球面坐标系的数学模型,将空间中的点用三个参数(径向距离、角度和极角)来描述,即r(径向距离)、θ(角度)和φ(极角)。
共轴球面系统成像的原理如下:
1. 首先,将待成像区域划分为一系列小单元,每个小单元对应一个球面坐标系上的点。
2. 对于每个小单元,通过探测器阵列采集其反射或散射的光线,并将其转化为电信号。
3. 将每个小单元对应的球面坐标转化为直角坐标系中的坐标点,并将其输入到图像处理系统中。
4. 图像处理系统根据每个坐标点的位置和亮度信息,计算出其在图像中的像素值,并将其输出到显示器上,从而得到共轴球面系统的成像结果。
共轴球面系统成像的优点在于能够提供比传统成像技术更为全面和详细的图像信息,特别是在对复杂目标的成像方面具有优势。
此外,
共轴球面系统成像还具有高分辨率、高信噪比和低失真率等优点,因此在医学成像、工业检测、天文观测等领域得到了广泛应用。