第2篇共轴球面系统
- 格式:ppt
- 大小:2.85 MB
- 文档页数:39
第二章球面与共轴球面系统§2-1 光线光路计算与共轴光学系统共轴球面系统—光学系统一般由球面和平面组成,各球面球心在一条直线(光轴)上。
物象关系的研究方法—光线的光路计算。
逐面计算物象的大小、虚实、正倒、位置等特性。
子午面—包含物面与光轴的截面。
一、 光线经过单个折射面的折射OEAA ′II ′Cr-LL ′hnn ′-UU ′φ1.基本参量E -折射点 OE OE -折射球面 U U 、U ′- 物象方孔径角O -顶点 h h -入射高度 n n 、n ′-物象方空间折射率C-球心 r-球面曲率半径 I 、I ′-入、折射角A 、A ′-物点、象点 L 、L ′-物距、象距φ -法线与光轴夹角2. 符号法则(便于统一计算)规定光线从左向右传播a)沿轴线段L、L′、r以O为原点,与光线传播方向相同,为“+”与光线传播方向相反,为“-”b)垂轴线段h在光轴之上,为“+”在光轴之下,为“-”c)光线与光轴夹角U、U′以光轴转向光线成的锐角来度量,顺时针为“+”逆时针为“-”d)光线与法线夹角I、I′以光线转向法线成的锐角来度量,顺时针为“+”逆时针为“-”e)光轴与法线的夹角φ以光轴转向法线成的锐角来度量,顺时针为“+”逆时针为“-”f)折射面的间隔d,一般取“+”g)所有参量是含符号的量,但图示标为参量的大小。
二、 远轴光的计算公式(实际光线光路计算) 给定n 、 n ′、r ,已知L 、U ,求解L ′、 U ′ 其中U 、 U ′较大,远轴光线成像(大光路)U I rr L I I U U In nI Ur r L I ′′+=′′−+=′′=′−=sin sin sin sin sin sin OEAA ′II ′Cr-LL ′hnn ′-UU ′φ3)物点位于物方无限远时,入射光线位置由高度h 决定。
rh I =sin 说明:1)L ′=f (U 、L 、n 、n ′、r)2)当L 为定值时,L ′随U 变化而变化,象方光束失去同心性,成不完善象,形成球差。
第二章球面和共轴球面系统2.1某一透镜结构参数如下:r/mm d/mm n100300 1.5∞当l=-∞时,求l',在第二个面(平面)上刻十字线,试问通过球面的共轭像在何处?当入射高度h=10mm时,实际光线和光轴的交点应在何处?在高斯面上的交点高度是多少?这个值说明了什么问题?解:l'=0,在第二面上十字线其共轭像在无限远。
H=10mm,实际光线与广州交点l'=299.33203mm,这说明了该光线经球面折射后不交于锦州光像点,所以一个物点得到的1像是一个弥散斑。
2.2一个玻璃球的直径为400mm,玻璃折射率n=1.5,球中有两个小气泡,一个正在球心,另一个在1/2半径处,沿两气泡的连线方向在球的两边观察两个气泡,它们应在什么位置?如果在水中(n=1.33)观察。
则它们应在什么位置?解:设一个气泡在中心处,另一个在第二面和中心之间。
(1)从右侧观察时,如图a:a b(2)从左侧观察时如图b:(3)在水中时: 中心气泡所成像: ,n '=1.33 n=1.5,r=200mm ,l=200mm 得到:l'=200mm 仍在圆心处1/2半径处气泡所成像:,n '=1.33 ,n=1.5,r=200mm ,l=100mm 时 , l'=94mml=-300mm 时 , l'=-320mm2.3一个玻璃球直径为60mm ,玻璃折射率n=1.5,一束平行光射在玻璃球上,其会聚点应在什么位置?解:首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:由 1n '=1.5 1r =30mm 1n =1 1l =∞得到:1l '=90mm对于第二面,d=60mm ,2l =1l '-d=30mm由 22'222'22'r n n l n l n -=- 2n =1.5 2n '=1 2r =-30mm 1n =1 2l =30mm 得到:2l '=15mm会聚点位于第二面后15mm 处。
第二章共轴球面光学系统第一节符号规则●常见的光学系统有多个光学零件组成,每个光学零件往往由多个球面组成●这些球面的球心在一条直线上即为“共轴球面系统”●这条直线称为“光轴”●折射球面的结构参数:曲率半径r、物方折射率n、像方折射率n'●入射光线的参数:物方截距L、物方孔径角U●像方量在相应的物方量字母旁加“ ’ ”区分●光线的传播方向为自左向右●规定符号规则如下:●1)沿轴线段(如L、L’和r)●以顶点为原点,与光线方向相同为正,相反为负●2)垂轴线段(如h、y和y’)●以光轴为基准,光轴以上为正,以下为负●3)光线与光轴的夹角(如U、U’)●光轴转向光线;角量均以锐角计、顺时针为正、逆时针为负●4)光线与法线的夹角(如I、I’、I”)●光线转向法线●5)光轴与法线的夹角(如φ)●光轴转向法线●6)折射面间隔d●前一面顶点到后一面顶点,与光线方向相同为正,相反为负;在折射系统中,d恒为正●物方截距、像方截距、物方孔径角、像方孔径角等物理量是可以有正负的,但作为几何量AO、OA’、∠EAO、∠EA’O等应为正值;在负值物理量前加负号,以保证相应几何量为正●根据物像的位置判断物像的虚实●负(正)物距对应实(虚)物●正(负)像距对应实(虚)像第二节物体经过单个折射球面的成像1,单球面成像的光路计算已知折射球面的结构参数曲率半径r ,物方折射率n ,像方折射率n ’已知入射光线AE 的参数物方截距L ,物方孔径角U (轴上物点)求出射光线参数像方截距L ’,像方孔径角U ’(轴上像点)光路计算2在ΔAEC 中用正弦定律,有 sin sin()I U r L r -=-导出求入射角I 的公式sin sin L r I U r -=(2-1)由折射定律可以求得折射角I ’sin sin n I I n '=='(2-2)由角度关系,可以求得像方孔径角U ’U U I I ''=+-(2-3) 在ΔA ’EC 中应用正弦定律,得像方截距L ’ sin sin I L r r U ''=+' (2-4)式(2-1)至(2-4)就是子午面内实际光线的光路计算公式,利用这组公式可以由已知的L 和U 求L ’和U ’ sin sin L r I U r -= sin sin n I I n '=='U U I I ''=+-sin sin I L r r U ''=+'当物点A 位于轴上无限远处时,相应的L=∞,U=0,则式(2-1)须改变为sin hI r =(2-5)●若L 是定值,L ’是U 的函数,即从同一点发出的光线,孔径角不同,将在像方交在不同的点上 ● 同心光束经过单球面后不再是同心光束●这种误差被称为“球差” ●球差是各种像差中最常见的一种●如果把孔径角U 限制在很小的范围内,光线距光轴很近,称为“近轴光”,U 、U ’、I 和I ’都很小,式(2-1)~(2-4)中的正弦值用弧度来表示 ● 用小写字母u 、u ’、i 、i ’、l 和l ’表示近轴量● l r i u r n ii n u u i i i l r r u -='='''=+-''=+'(2-6)~(2-9) ● 当入射光线平行于光轴时,也以h 作为入射光线的参数,有●h i r =(2-10) ●近轴光线l ’与u 无关,即当物点位置确定后,其像点位置与孔径角u 无关,物点发出的同心光束经折射后在近轴区仍为同心光束 ●在近轴区成的是完善像,这个完善像通常称为“高斯像” ● 近轴区最常用的物像位置公式●n n n n l l r ''--='(2-14) ●已知物点位置l 求像点位置l ’时(或反过来)十分方便 ●1、轴上物点:轴上同一物点发出的近轴光线,经过球面折射以后聚交一点,即轴上物点近轴成像时是符合理想成像条件的。