第二章 共轴球面系统(二)
- 格式:ppt
- 大小:500.50 KB
- 文档页数:32
第二章球面和共轴球面系统2。
1某一透镜结构参数如下:r/mm d/mm n100300 1.5∞当l=-∞时,求l',在第二个面(平面)上刻十字线,试问通过球面的共轭像在何处?当入射高度h=10mm时,实际光线和光轴的交点应在何处?在高斯面上的交点高度是多少?这个值说明了什么问题?l’=299。
解:l’=0,在第二面上十字线其共轭像在无限远。
H=10mm,实际光线与广州交点133203mm,这说明了该光线经球面折射后不交于锦州光像点,所以一个物点得到的像是一个弥散斑。
2.2一个玻璃球的直径为400mm,玻璃折射率n=1.5,球中有两个小气泡,一个正在球心,另一个在1/2半径处,沿两气泡的连线方向在球的两边观察两个气泡,它们应在什么位置?如果在水中(n=1.33)观察。
则它们应在什么位置?解:设一个气泡在中心处,另一个在第二面和中心之间.(1)从右侧观察时,如图a:a b(2)从左侧观察时如图b:(3)在水中时: 中心气泡所成像: ,n ’=1。
33 n=1。
5,r=200mm ,l=200mm 得到:l'=200mm 仍在圆心处1/2半径处气泡所成像:,n ’=1。
33 ,n=1.5,r=200mm ,l=100mm 时 , l ’=94mml=—300mm 时 , l'=—320mm2.3一个玻璃球直径为60mm ,玻璃折射率n=1.5,一束平行光射在玻璃球上,其会聚点应在什么位置?解:首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:由 1n '=1。
5 1r =30mm 1n =1 1l =∞得到:1l '=90mm对于第二面,d=60mm ,2l =1l '—d=30mm由 22'222'22'r n n l n l n -=- 2n =1。
5 2n ’=1 2r =-30mm 1n =1 2l =30mm 得到:2l ’=15mm会聚点位于第二面后15mm 处.2。
第二章共轴球面系统的物像关系本章内容:共轴球面系统求像。
由物的位置和大小求像的位置和大小。
φ U ˊ - UO C A A ˊ n n ˊ P- LrL’II’Q1. 符号规则反射情形看成是折射的一种特殊情形:n’= -n把反射看成是n’= -n 时的折射。
往后推导公式时,只讲折射的公式;对于反射情形,只需将n’用-n代入即可,无需另行推导。
(1) 物像位置关系式rn n l n l n -=-'''2. 近轴光学的基本公式(2) 物像大小关系式这就是物像大小的关系式。
利用公式就可以由任意位置和大小的物体,求得单个折射球面所成的近轴像的大小和位置。
对由若干个透镜组成的共轴球面系统,逐面应用公式就可以求得任意共轴系统所成的近轴像的位置和大小。
l n nl y y '''==β3. 共轴理想光学系统的基点——主平面和焦点近轴光学基本公式的缺点:物面位置改变时,需重新计算,若要求知道整个空间的物像对应关系,势必要计算许多不同的物平面。
已知两对共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上的两对共轭点的位置,则其任意物点的像点就可以根据这些已知的共轭面和共轭点来求得。
光学系统的成像性质可用这些基面和基点求得最常用的是一对共轭面和轴上的两对共轭点。
(1) 放大率β=1的一对共轭面——主平面rn n l n l n -=-'''l n nl y y '''==β不同位置的共轭面对应着不同的放大率。
放大率β=1的一对共轭面称为主平面。
物平面称为物方主平面,像平面称为像方主平面。
两主平面和光轴的交点分别称为物方主点和像方主点,用H 、H’表示,H 和H’显然也是一对共轭点。
主平面性质:任意一条入射光线与物方主平面的交点高度和出射光线与像方主平面的交点高度相同(2)无限远轴上物点和它所对应的像点F’——像方焦点rn n l n l n -=-''' 当轴上物点位于无限远时,它的像点位于F’处。
共轴球面系统是一种通过两个球面透镜组合在一起形成的光学系统。
在共轴球面系统中,两个球面透镜的曲率半径和相对位置都对系统的成像性能产生重要影响。
本文将重点讨论共轴球面系统中主平面和焦点位置的计算方法。
一、共轴球面系统主平面的计算在共轴球面系统中,由于两个球面透镜的共轴排列,主平面的计算相对较为复杂。
在实际计算中,可以采用以下步骤进行推导和计算:1. 根据两个球面透镜的曲率半径R1和R2,以及两个球面透镜的相对位置d,首先计算出两个球面透镜之间的等效焦距Feq。
等效焦距Feq的计算公式为:Feq = (R1 * R2) / ((n - 1) * d)其中,n为介质的折射率。
2. 接下来,根据等效焦距Feq和两个球面透镜的位置,计算出主平面的位置H。
主平面的位置H的计算公式为:H = d * (Feq - (R1 + R2)) / Feq3. 根据主平面的位置H和两个球面透镜的位置,计算出主平面的曲率半径R。
主平面的曲率半径R的计算公式为:R = Feq * (1 + (H / d))通过以上步骤的计算,可以得到共轴球面系统中主平面的位置和曲率半径,为系统的设计和分析提供了重要的参数。
二、共轴球面系统焦点位置的计算在共轴球面系统中,焦点位置的计算也是系统设计和分析中的重要一环。
在实际计算中,可以采用以下步骤进行推导和计算:1. 根据两个球面透镜的曲率半径R1和R2,以及两个球面透镜的相对位置d,计算出系统的等效焦距。
系统的等效焦距F的计算公式为:F = (R1 * R2) / ((n - 1) * d)2. 根据等效焦距F和两个球面透镜的位置,计算出系统的合焦位置。
系统的合焦位置的计算公式为:S = F * (1 - (d / Feq))通过以上步骤的计算,可以得到共轴球面系统的焦点位置,为系统的成像性能和光学设计提供了重要的参数。
结论共轴球面系统的主平面和焦点位置的计算是系统设计和分析中的关键步骤。
第二章共轴球面光学系统第一节符号规则●常见的光学系统有多个光学零件组成,每个光学零件往往由多个球面组成●这些球面的球心在一条直线上即为“共轴球面系统”●这条直线称为“光轴”●折射球面的结构参数:曲率半径r、物方折射率n、像方折射率n'●入射光线的参数:物方截距L、物方孔径角U●像方量在相应的物方量字母旁加“ ’ ”区分●光线的传播方向为自左向右●规定符号规则如下:●1)沿轴线段(如L、L’和r)●以顶点为原点,与光线方向相同为正,相反为负●2)垂轴线段(如h、y和y’)●以光轴为基准,光轴以上为正,以下为负●3)光线与光轴的夹角(如U、U’)●光轴转向光线;角量均以锐角计、顺时针为正、逆时针为负●4)光线与法线的夹角(如I、I’、I”)●光线转向法线●5)光轴与法线的夹角(如φ)●光轴转向法线●6)折射面间隔d●前一面顶点到后一面顶点,与光线方向相同为正,相反为负;在折射系统中,d恒为正●物方截距、像方截距、物方孔径角、像方孔径角等物理量是可以有正负的,但作为几何量AO、OA’、∠EAO、∠EA’O等应为正值;在负值物理量前加负号,以保证相应几何量为正●根据物像的位置判断物像的虚实●负(正)物距对应实(虚)物●正(负)像距对应实(虚)像第二节物体经过单个折射球面的成像1,单球面成像的光路计算已知折射球面的结构参数曲率半径r ,物方折射率n ,像方折射率n ’已知入射光线AE 的参数物方截距L ,物方孔径角U (轴上物点)求出射光线参数像方截距L ’,像方孔径角U ’(轴上像点)光路计算2在ΔAEC 中用正弦定律,有 sin sin()I U r L r -=-导出求入射角I 的公式sin sin L r I U r -=(2-1)由折射定律可以求得折射角I ’sin sin n I I n '=='(2-2)由角度关系,可以求得像方孔径角U ’U U I I ''=+-(2-3) 在ΔA ’EC 中应用正弦定律,得像方截距L ’ sin sin I L r r U ''=+' (2-4)式(2-1)至(2-4)就是子午面内实际光线的光路计算公式,利用这组公式可以由已知的L 和U 求L ’和U ’ sin sin L r I U r -= sin sin n I I n '=='U U I I ''=+-sin sin I L r r U ''=+'当物点A 位于轴上无限远处时,相应的L=∞,U=0,则式(2-1)须改变为sin hI r =(2-5)●若L 是定值,L ’是U 的函数,即从同一点发出的光线,孔径角不同,将在像方交在不同的点上 ● 同心光束经过单球面后不再是同心光束●这种误差被称为“球差” ●球差是各种像差中最常见的一种●如果把孔径角U 限制在很小的范围内,光线距光轴很近,称为“近轴光”,U 、U ’、I 和I ’都很小,式(2-1)~(2-4)中的正弦值用弧度来表示 ● 用小写字母u 、u ’、i 、i ’、l 和l ’表示近轴量● l r i u r n ii n u u i i i l r r u -='='''=+-''=+'(2-6)~(2-9) ● 当入射光线平行于光轴时,也以h 作为入射光线的参数,有●h i r =(2-10) ●近轴光线l ’与u 无关,即当物点位置确定后,其像点位置与孔径角u 无关,物点发出的同心光束经折射后在近轴区仍为同心光束 ●在近轴区成的是完善像,这个完善像通常称为“高斯像” ● 近轴区最常用的物像位置公式●n n n n l l r ''--='(2-14) ●已知物点位置l 求像点位置l ’时(或反过来)十分方便 ●1、轴上物点:轴上同一物点发出的近轴光线,经过球面折射以后聚交一点,即轴上物点近轴成像时是符合理想成像条件的。