仰角与俯角
- 格式:ppt
- 大小:632.50 KB
- 文档页数:12
北京版数学九年级上册《仰角与俯角》说课稿一. 教材分析北京版数学九年级上册《仰角与俯角》这一节的内容,主要介绍了仰角和俯角的定义、计算方法以及应用。
通过这一节的学习,使学生能够理解并掌握仰角和俯角的概念,学会如何利用三角板和直尺等工具进行角度的测量和计算,培养学生空间想象能力和实际操作能力。
在教材的处理上,我将以学生的生活经验为基础,利用多媒体教学手段,直观地展示仰角和俯角的概念和应用,通过学生的自主探究和合作交流,使学生能够深刻理解仰角和俯角的含义,提高学生的数学素养。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和几何知识,对于角度的概念也有一定的了解。
但是,对于仰角和俯角这两个概念,学生可能还比较陌生,需要通过具体的实例和生活情境来进行引导和讲解。
此外,学生在进行角度计算时,可能还存在一些困难,需要通过具体的操作和实践来进行巩固。
三. 说教学目标1.知识与技能:学生能够理解仰角和俯角的概念,学会如何利用三角板和直尺等工具进行角度的测量和计算。
2.过程与方法:学生通过自主探究和合作交流,学会如何运用仰角和俯角的概念解决实际问题。
3.情感态度与价值观:学生能够体验到数学与生活的紧密联系,提高学生学习数学的兴趣和自信心。
四. 说教学重难点1.重点:学生能够理解仰角和俯角的概念,学会如何利用三角板和直尺等工具进行角度的测量和计算。
2.难点:学生能够运用仰角和俯角的概念解决实际问题,提高学生的空间想象能力和实际操作能力。
五. 说教学方法与手段在这一节课中,我将采用多媒体教学手段,结合学生的自主探究和合作交流,以案例教学法和问题驱动法为主,引导学生通过观察、思考、操作、交流等活动,掌握仰角和俯角的概念和应用。
六. 说教学过程1.导入新课:通过多媒体展示一些生活中的实例,如登山运动员观察山峰、建筑师观察建筑物的立面图等,引导学生思考这些实例中涉及到的角度概念。
2.自主探究:学生通过观察实例,总结出仰角和俯角的定义,并学会如何利用三角板和直尺等工具进行角度的测量和计算。
解直角三角形(仰角和俯角)一、知识点讲解1、仰角和俯角的定义:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。
二、典例分析利用解直角三角形解决仰角、俯角问题例1 一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)变式练习:1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为A、50B、51C、50+1D、101第1题第2题第3题2、如图,从坡顶C处测得地面A、B两点的俯角分别为30°、45°,如果此时C处的高度CD为150米,且点A、D、B在同一直线上,则AB两点间距离是米。
3、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)4、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度m(结果保留根号)反馈练习 基础夯实1、如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看地平面 A 、 1200m B 、 1200m C .、 1200m D 、 2400m第1题 第2题 第3题 第4题2、如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,、 米B D 的仰角为α,从点A 测得点D 的仰角为β,已知甲、乙两建筑物之间的距离为a ,则甲建筑物的高AB 为 。
俯角和仰角讲解新教学设计引言:在学习过程中,如何提高学生的理解和掌握能力始终是教师不断思考和探索的问题。
针对这一问题,本文将介绍一个全新的教学设计方案,通过讲解俯角和仰角的概念,帮助学生更好地理解和应用这两个概念。
通过这个新的教学设计,教师将能够提高学生的学习兴趣和学习效果,从而促进他们在这个领域的深入学习。
一、背景介绍俯角和仰角是物体与水平面之间的夹角,它们在几何学和物理学中起到非常重要的作用。
然而,对于许多学生来说,理解和应用这两个概念并不容易。
在传统的教学方法中,教师通常只是简单地定义这两个概念,并给出一些例题让学生进行计算。
这种教学方式往往无法引起学生的兴趣,也无法帮助他们真正理解和应用这两个概念。
二、新教学设计的目标本教学设计的目标是通过创新的教学方法,帮助学生更好地理解和应用俯角和仰角的概念。
具体目标如下:1. 培养学生对俯角和仰角的兴趣和好奇心;2. 帮助学生理解俯角和仰角的数学定义;3. 培养学生运用俯角和仰角解决实际问题的能力;4. 通过实例讲解,巩固学生对俯角和仰角的理解。
三、教学方法1. 引发学生的兴趣在进行俯角和仰角的讲解之前,教师可以通过引发学生的兴趣来预热课堂氛围。
可以通过展示一些与俯角和仰角相关的实际问题或现象的图片或视频来引起学生的兴趣。
例如,飞机起飞和降落时的角度、建筑物的倾斜角度等。
2. 讲解俯角和仰角的定义在引发学生的兴趣之后,教师可以给出俯角和仰角的数学定义。
可以通过绘制示意图、使用实物模型或投影仪等方式来直观地展示这两个概念。
同时,可以通过与学生的互动,让学生参与其中,提出问题和解答问题,加深学生对俯角和仰角概念的理解。
3. 运用俯角和仰角解决实际问题理解了俯角和仰角的概念后,教师可以给出一些实际问题让学生运用这两个概念进行解答。
例如,给出一个飞机起飞的问题,要求学生计算出飞机的仰角;或者给出一个建筑物高度的问题,要求学生计算出观察者的俯角。
这样的实际问题能够帮助学生将抽象的概念与实际问题联系起来,提高他们的应用能力。
仰角和俯角的意思仰角和俯角是物理学中常用的概念,用于描述物体或光线与地平面的夹角。
在空间导航、航空航天、地理测量等领域中,仰角和俯角的应用非常广泛。
本文将详细介绍仰角和俯角的概念、计算方法及实际应用。
1. 仰角仰角是指物体或者观测点朝天空方向偏离地面的角度,通常用竖直线与视线的夹角来表示。
在天文学中,仰角通常用于描述天体在天空中的位置。
在观测卫星时,需要知道卫星的仰角,以便调整观测仪器的朝向和位置。
2. 俯角二、仰角和俯角的计算方法1. 计算方法(1)在地理测量中,仰角和俯角可以通过测量两点之间的水平距离和垂直距离来计算。
假设A点比B点高h米,则A点到B点的俯角为atan(h/d),其中d为A点到B点的水平距离。
如果B点比A点高,则仰角为90度减去俯角。
(2)在天文学中,仰角可以通过观测天体时测量天顶角(垂直于地面的角度)和天体高度角(天体与地平面的夹角)来计算。
仰角=90度-天体高度角。
俯角=天体高度角。
(3)在航空航天领域中,仰角和俯角需要通过仪器进行测量。
无人机上装有摄像头,可以通过调整仰角和俯角来改变拍摄视角。
2. 测量仪器(1)测距仪:可以测量两点之间的水平距离和垂直距离。
(2)全站仪:可测量目标物体的仰角、方位角和距离等参数。
三、仰角和俯角的实际应用1. 航空航天在航空航天中,仰角和俯角的应用非常广泛。
飞机、无人机等航空器需要根据目标物体的仰角和俯角来选择飞行高度,调整拍摄角度等。
在航天探测中,也需要测量行星、卫星等目标物体的仰角和俯角。
在地理测量中,仰角和俯角用于计算两点之间的高度差,确定地形高低等。
地面的地形特征对于城市规划、农业种植等方面有着重要的参考价值。
3. 天文观测在天文观测中,仰角和俯角通常用于描述恒星、行星等天体在天空中的位置。
天文观测对于了解宇宙的物理特性和演化历史具有重要的意义。
四、小结仰角和俯角是物理学中重要的概念,在导航、航空航天、地理测量等领域有着广泛的应用。
第十二讲、仰角、俯角第一部分、教学目标:1、能够用三角函数有关知识解决问题,学会解决仰角俯角问题。
2、掌握仰角俯角的关系,能利用解直角三角形的知识,解决相关的实际问题。
第二部分、教学重点和难点:1、理解仰角与俯角的概念,并能灵活运用。
2、利用仰角与俯角等条件,解决有关的实际问题。
第三部分、教学过程:例题讲解:例1、直角梯形ABCD如图放置,AB、CD为水平线,BC⊥AB,如果∠BCA=67°,从低处A处看高处C处,那么点C在点A的()A.俯角67°方向B.俯角23°方向C.仰角67°方向D.仰角23°方向【分析】求出∠BAC=23°,即可得出答案.【解答】解:∵BC⊥AB,∠BCA=67°,∴∠BAC=90°﹣∠BCA=23°,从低处A处看高处C处,那么点C在点A的仰角23°方向;故选:D.练1.1、跳伞运动员小李在200米的空中测得地面上的着落点A的俯角为60°,那么此时小李离着落点A的距离是()A.200米B.400米C.米D.米【分析】已知直角三角形的一个锐角和直角边求斜边,运用三角函数定义解答.【解答】解:根据题意,此时小李离着落点A的距离是=,故选:D.练1.2、如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC 的长为()A.B.C.D.1800米【分析】此题可利用俯角的余弦函数求得缆车线路AC的长,AC=.【解答】解:由于A处测得C处的俯角为30°,两山峰的底部BD相距900米,则AC==600(米).故选:B.例2、如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD 为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+【分析】根据直角三角形锐角三角函数即可求解.【解答】解:∵在Rt△ABC中,BC=AB•tanα=a tanα,在Rt△ABD中,BD=AB•tanβ=a tanβ,∴CD=BC+BD=a tanα+a tanβ.故选:C.练2.1、某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150米C.900米D.(300+300)米【分析】由题意可得在Rt△ACD中,∠A=30°,CD=300米,在Rt△BCD中,∠B=45°,然后利用三角函数,求得AD与BD的长,继而求得答案.【解答】解:∵在Rt△ACD中,∠A=30°,CD=300米,∴AD===300(米),∵在Rt△BCD中,∠B=45°,CD=300米,∴BD=CD=300米,∴AB=AD+BD=(300+300)米.故选:D.练2.2、在湖边高出水面40m的山顶A处看见一架无人机停留在湖面上空某处,观察到无人机底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则无人机底部P距离湖面的高度是()A.(40+40)m B.(40+80)m C.(50+100)m D.(50+50)m 【分析】设AE=x,则PE=AE=x,根据山顶A处高出水面40m,得出OE=40,OP′=x+40,根据∠P′AE=60°,得出P′E=x,从而列出方程,求出x的值即可.【解答】解:设AE=xm,在Rt△AEP中∠P AE=45°,则∠P=45°,∴PE=AE=x,∵山顶A处高出水面40m,∴OE=40m,∴OP′=OP=PE+OE=x+40,∵∠P′AE=60°,∴P′E=tan60°•AE=x,∴OP′=P′E﹣OE=x﹣40,∴x+40=x﹣40,解得:x=40(+1)(m),∴PO=PE+OE=40(+1)+40=40+80(m),即无人机离开湖面的高度是(40+80)m.故选:B.例3、如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()A.千米B.千米C.千米D.千米【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可表示出此时飞机离地面的高度.【解答】解:作PC⊥AB交AB于点C,如右图所示,AC=,BC=,∵m=AC﹣BC,∴m=﹣,∴PC==,故选:A.练3.1、小明同学在数学实践课中测量路灯的高度.如图,已知他的目高AB为1.5米,他先站在A处看路灯顶端O的仰角为30°,向前走3米后站在C处,此时看灯顶端O的仰角为60°(≈1.732),则灯顶端O到地面的距离约为()A.3.2米B.4.1米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F.设DF=x,∵tan60°=,∴OF=x,∴BF=3+x,∵tan30°=,∴OF=(3+x)•,∴x=(3+x),∴x=1.5,∴OF=1.5×≈2.60,∴OE≈2.60+1.5≈4.1,故选:B.练3.2、当地时间2019年4月15日下午,法国巴黎圣母院发生火灾,大火烧毁了巴黎圣母院后塔的塔顶.烧毁前,为测量此塔顶B的高度,在地面选取了与塔底D共线的两点A、C,A、C在D的同侧,在A处测量塔顶B的仰角为27°,在C处测量塔顶B的仰角为45°,A到C的距离是89.5米.设BD的长为x米,则下列关系式正确的是()A.tan27°=B.cos27°=C.sin27°=D.tan27°=【分析】根据三角函数得出CD=BD,进而利用根据CD=AD﹣AC可得答案.【解答】解:∵在A处测量塔顶B的仰角为27°,在C处测量塔顶B的仰角为45°,A到C的距离是89.5米.设BD的长为x米,可得:tan27°=,故选:A.例4、如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A、B两点的俯角分别为60°和45°.若飞机离地面的高度CO为900m,且点O,A,B在同一水平直线上,则这条江的宽度AB为.(结果保留根号)【分析】在Rt△ACO和Rt△OCB中,利用锐角三角函数,用CO表示出AO、BO的长,然后计算出AB的长.【解答】解:由于CD∥OB,∴∠CAO=∠ACD=60°,∠B=∠BCD=45°在Rt△ACO中,∵∠CAO=30°∴AO=CO=300米,在Rt△OCB,∵tan∠B=∴OB=(米).∴AB=OB﹣OA=900﹣300(米)故答案为:900﹣300(米)练4.1、如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN 为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【分析】根据题意需求AB长.由已知易知AB=BM,解直角三角形MNB求出BM即AB,再求速度,与限制速度比较得结论.注意单位.【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.练4.2、如图,无人飞机从A点水平飞行10秒至B点,在地面上C处测得A点、B点的仰角分别为45°,75°,已知无人飞机的飞行速度为80米/秒,则这架无人飞机的飞行高度为.【分析】如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.【解答】解:如图,作BD⊥AC,AH⊥水平线,由题意得:∠BCH=75°,∠ACH=30°,AB∥CH,∴∠BAC=45°,∠ACB=30°,∵AB=80×10=800m,∴BD=AD=400m,CD==400m,∴AC=CD+AD=(400+400)m,则AH=AC•sin45°=(400+400)m.答:这架无人飞机的飞行高度为(400+400)m例5、金牛区某学校开展“数学走进生活”的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为42°,测得楼AB的底部B处的俯角为30°.已知D处距地面高度为12m,则这个小组测得大楼AB的高度是多少?(结果保留整数,参考数据:tan42°=0.90,tan48°=1.11,≈1.73)【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△AED、△CBD,通过解这两个直角三角形求得AE、DC的长度,进而可解即可求出答案.【解答】解:如图,过点D作DE⊥AB于点E.依题意得:∠ADE=42°,∠CBD=30°,CD=12m.可得四边形DCBE是矩形.∴BE=DC,DE=CB.∵在直角△CBD中,tan∠CBD=,∴DE=CB=.∵在直角△ADE中,tan∠ADE=.∴AE=DE•tan42°.∴AE=•tan42°≈=18.68(米).∴AB=AE+BE≈31(米).答:楼AB的高度约为31米.练5.1、如图,小明家的窗口到地面的距离CE=9米,他在C处测得正前方花园中树木顶部A点的仰角为37°,树木底部B点的俯角为45°,求树木AB的高度.(参考数据sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】根据等腰直角三角形的性质求出DC,根据正切的概念计算即可.【解答】解:如图,由题意得,DB=CE=9,∵∠CDB=90°,∠DCB=45°,∴CD=DB=9,在Rt△ADC中,AD=DC×tan∠ACD=9tan37°,∴AB=AD+BD=9+9tan37°≈15.75,答:旗杆AB的高约为15.75米.练5.2、从一栋二层楼AE的楼顶点A处看对面的教学楼CD,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知楼AE高6米,AB⊥CD于B,求楼CD高度(结果保留根号)【分析】在Rt△ABC根据三角函数求出CB,再在Rt△ABD中根据三角函数求出BD,继而相加可求出CD.【解答】解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AE=6米,∴AB=BC=AE=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6,∴DC=CB+BD=6+6(米).答:教学楼的高CD是(6+6)米.例6、为庆祝中华人民共和国成立70周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角为32°,测得“平安中心”AB的顶部A处的仰角为44°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知C、D、B三点在同一水平直线上,且CD=400米,求平安金融中心AB的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,tan44°≈0.99,≈1.41,)【分析】作EF⊥AB于F.在Rt△DCE中,根据正切函数的定义即可求出大厦DE的高度;设EF=DB=x米,BF=DE,∠AEF=60°.在Rt△ABC中,根据正切函数的定义得出AB=BC•tan∠ACB,在Rt△AFE中,根据正切函数的定义得出AF=EF•tan∠AEF,由AB=BF+AF列出方程求出x,从而求解.【解答】解:如图,作EF⊥AB于F.∵在Rt△DCE中,∠CDE=90°,∠ECD=32°,CD=400米,∴DE=CD•tan∠ECD≈400×0.62=248(米).设EF=DB=x米,BF=DE=248米,∠AEF=60°.∵在Rt△ABC中,∠ABC=90°,AB=BC•tan∠ACB≈0.99(400+x)(米),∵在Rt△AFE中,∠AFE=90°,∴AF=EF•tan∠AEF=x(米),∴AB=BF+AF=248+x=0.99(400+x),解得x=200,AB=0.99(400+x)=0.99×(400+200)=594.故平安金融中心AB的高度约为594米.练6.1、在小水池旁有一盏路灯(如图),已知支架AB的长是0.8m,A端到B地面的距离AC是4m,支架AB与灯柱AC的夹角为65°小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.(结果精确到0.1.参考数据:sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】作BF⊥AC于F,作BG⊥CD于G,则CG=BF,BG=CF,在Rt△ABF中,由三角函数得出BF=AB×sin65°≈0.72,AF=AB×cos65°≈0.32,得出BG=CF=AF+AC =0.32+4=4.32,CG=BF=0.72,在Rt△ACE中,由三角函数得出CE=≈3.333,证明△BDG是等腰直角三角形,得出DG=BG=4.32,求出CD的长,即可得出答案.【解答】解;作BF⊥AC于F,作BG⊥CD于G,如图所示:则CG=BF,BG=CF,在Rt△ABF中,∠BAF=65°,AB=0.8,sin∠BAF=,cos∠BAF=,∴BF=AB×sin65°≈0.8×0.9=0.72,AF=AB×cos65°≈0.8×0.4=0.32,∴BG=CF=AF+AC=0.32+4=4.32,CG=BF=0.72,在Rt△ACE中,tan∠CEA=,∴CE=≈≈3.333,∵∠BDG=45°,∠BGD=90°,∴△BDG是等腰直角三角形,∴DG=BG=4.32,∴CD=CG+DG=0.72+4.32=5.04,∴DE=CD﹣CE=5.04﹣3.333≈1.7(m);答:小水池的宽DE约为1.7m.练6.2、如图是某校体育场内一看台的截面图,看台CD与水平线的夹角为30°,最低处C 与地面的距离BC为2.5米,在C,D正前方有垂直于地面的旗杆EF,在C,D两处测得旗杆顶端F的仰角分别为60°和30°,CD长为10米,升旗仪式中,当国歌开始播放时,国旗也在离地面1.5米的P处同时冉冉升起,国歌播放结束时,国旗刚好上升到旗杆顶端F,已知国歌播放时间为46秒,求国旗上升的平均速度.(结果精确到0.01米/秒)【解答】解:由题意得,∠FCD=90°,∠FDC=60°,∴FC=CD•tan∠FDC=10,在Rt△CGF中,FG=FC•sin∠FCG=10×=15,∴PF=FG+GE﹣PE=15+2.5﹣1.5=16,16÷46≈0.35,答:国旗上升的平均速度约为0.35米/秒.第四部分、出门测试时间(10分钟左右)第六部分、作业布置今天是2020年月日星期天气今日所学:仰角俯角今日作业:自我巩固1-10题老师说:1、下次正常上课2、路上注意安全。
华师大版数学九年级上册《仰角、俯角问题》教学设计4一. 教材分析华师大版数学九年级上册《仰角、俯角问题》是学生在掌握了角的定义、分类以及基本性质的基础上进行学习的内容。
本节课主要介绍仰角和俯角的概念,并通过实际问题引出它们的计算方法。
教材通过丰富的实例,让学生体会数学与生活的联系,提高学习兴趣。
此外,本节课还为后续学习三角函数、解直角三角形等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对角的定义和性质有一定的了解。
但学生在实际应用中,可能对仰角和俯角的概念理解不深,难以将理论知识与实际问题相结合。
因此,在教学过程中,教师需要注重引导学生通过实际问题探究仰角和俯角的计算方法,提高学生的应用能力。
三. 教学目标1.了解仰角和俯角的概念,掌握它们的计算方法。
2.能运用仰角和俯角的知识解决实际问题,提高应用能力。
3.培养学生的空间想象能力,提高对数学的兴趣。
四. 教学重难点1.重点:仰角和俯角的概念,计算方法的掌握。
2.难点:实际问题中仰角和俯角的运用。
五. 教学方法1.情境教学法:通过生活实例引入仰角和俯角的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生通过实际问题探究仰角和俯角的计算方法,培养学生的逻辑思维能力。
3.实践操作法:让学生亲自动手操作,体会仰角和俯角的计算过程,提高学生的动手能力。
六. 教学准备1.教学课件:制作课件,展示仰角和俯角的实例及计算方法。
2.教学素材:准备一些实际问题,用于引导学生探究仰角和俯角的计算方法。
3.板书设计:设计合理的板书,突出本节课的重点知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实际问题,如登山运动员观测山的高度、飞行员观测地面目标等,引导学生思考这些问题与数学知识的联系。
2.呈现(10分钟)介绍仰角和俯角的概念,通过实例解释它们的含义。
同时,讲解仰角和俯角的计算方法,让学生初步掌握。
3.操练(10分钟)让学生分组讨论,运用仰角和俯角的知识解决实际问题。