BC=2 m,∠ABC=143°.机械臂端点C到工作台的距离CD=6 m.
(1)求A,C两点之间的距离(结果精确到0.1 m);
解:(1)如图所示,过点 A 作 AE⊥CB,交 CB 延长线于点 E,连接 AC,
在 Rt△ABE 中,AB=5 m,∠ABE=180°-143°=37°,
4.如图所示,从无人机C处测得地面A,B两点的俯角分别为30°,45°,
如果此时无人机C处的高度CD为100 m,点A,D,B在同一直线上,求A,B
两点的距离.
解:∵从无人机 C 处测得地面 A,B 两点的俯角分别为 30°,45°,
∴∠BCD=90°-45°=45°.∴∠ACD=90°-30°=60°.
28.2.2
第1课时
应用举例
仰角、俯角
仰角和俯角
在进行测量时,视线与水平线所成的角中,视线在水平线
角叫做仰角,视线在水平线 下 方的角叫做俯角.
上
方的
应用解直角三角形解决实际问题
[例1] (2022盐城)如图所示是处于工作状态的某型号手臂机器人示
意图,OA是垂直于工作台的移动基座,AB,BC为机械臂,OA=1 m,AB=5 m,
cos 37°≈0.80,tan 37°≈0.75, ≈2.24).
解:(2)如图所示,过点 A 作 AF⊥CD,垂足为 F,
∴FD=AO=1 m.∴CF=5 m.
在 Rt△ACF 中,由勾股定理,得
AF= -=2 (m).
∴OD=2 ≈4.5(m),
即 OD 的长约为 4.5 m.
新知应用
如图所示,某校数学兴趣小组在A处用仪器测得赛场一宣传气球顶部E
处的仰角为21.8°,仪器与气球的水平距离BC=20 m,且距地面高度