函数的表示法 第二课时
- 格式:ppt
- 大小:1.52 MB
- 文档页数:31
第2课时函数关系的表示法——列表法、解析法【知识与技能】了解函数的表示方法:列表法、解析法,领会它们的联系和区别,进一步理解掌握确定函数关系式,会确定自变量取值范围.【过程与方法】学会用不同方法表示函数,会应用综合的思维、思想分析问题.【情感与态度】培养变化与对应的思想方法,体会函数模型的建构在实际生活中的应用价值.【教学重点】重点是进一步掌握确定函数关系的方法以及确定自变量的取值范围.【教学难点】难点是确定函数关系.一、提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变化,同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.活动一在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).让学生思考后回答(或小组讨论)【教学说明】学生通过思考问题,为掌握新知识函数的表示方法:列表法做铺垫.活动二用10 cm长的绳子围成矩形,设矩形的长度为x cm,面积为Scm2.怎样用含有x的式子表示S?【教学说明】引导学生通过合理、正确的思维方法探索出变化规律.二、导入新课上述活动一、活动二反应了两个变量间的函数关系,函数关系式的表示方法主要有三种方法:列表法、解析法、图象法.在用表达式表示函数时,要考虑自变量的取值必须使函数的表达式有意义.例1求下列函数中自变量x的取值范围;(1)y=2x+4; (2)y=-2x2; (3)1; 3.2y y xx==--【分析】在(1)(2)中,x取任何实数时,2x+4与-2x2都有意义;在(3)中,当x=2时,12x-没有意义;在(4)中,当x<3时,x-3没有意义.【解】(1)x为全体实数.(2)x为全体实数.(3)x≠2.(4)x≥3.注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义.如函数S=πR2中自变量R可取全体实数,如果指明这个式子是表示圆面积S与圆半径R 的关系,那么自变量R的取值范围是R>0.例2当x=3时,求下列函数的函数值:(1)y=2x+4; (2)y=-2x2; (3)1; 3.2y y xx==--【解】(1)当x=3时,y=2x+4=2×3+4=10. (2)当x=3时,y=-2x2=-2×32=-18.(3)当x=3时,y=12x-=1.(4)当x=3时,y=3x-=0.例3一个游泳池内有水300 m3,现打开排水管以每时25 m3排出量排水.(1)写出游泳池内剩余水量Q (m3)与排水时间t(h)间的函数关系式;(2)写出自变量t的取值范围;(3)开始排水后的第5 h末,游泳池中还有多少水?(4)当游泳池中还剩150 m3水时,已经排水多少时间?【解】(1)排水后的剩水量Q 是排水时间t的函数,有Q=-25t+300(2)由于池中共有300 m3水,每时排25 m3,全部排完只需300÷25=12(h),故自变量t的取值范围是0≤t≤12.(3)当t=5,代入上式得Q=-5×25+300=175(m3),即第5h末池中还有水175 m3.(4)当Q=150时,由150=-25t+300,得t=6,即已经排水6 h.三、运用新知,深化理解1.(广西来宾中考)函数y=3x-中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3D.x≤32.(四川遂宁中考)在函数y=11x-中,自变量x的取值范围是()A.x>1B.x<1C.x≠1D.x=13.函数y=21xx+-中,自变量x的取值范围是.4.如图,根据流程图中的程序,当输出数值y=5时,输入数值x是()5.水箱内原有水200升,7点30分打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱内的水恰好放完?【参考答案】1.B 2.C 3.x≥-2且x≠1 4.C5.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t,∵y≥0,∴200-2t≥0,解得:t≤100,∴0≤t≤100,所以y关于t的函数关系式为:y=200-2t(0≤t≤100);(2)∵7:55-7:30=25(分钟),∴当t=25时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y=0时,200-2t=0,解得:t=100分钟=1小时40分钟,7:30+1小时40分钟=9点10分,答:故9点10分水箱内的水恰好放完.四、师生互动,课堂小结学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力.1.课本第26页练习1、2、3、5.2.完成练习册中相应的作业.通过本节课学习让学生了解函数的表示方法:列表法、解析法,并领会它们的联系和区别,进一步理解掌握确定函数关系式,会确定自变量取值范围.学会用不同方法表示函数,会应用综合的思维、思想分析问题,培养变化与对应的思想方法,体会函数模型的构建在实际生活中的应用价值.。
1.2.2 函数的表示方法(第二课时)教学目标:1.进一步理解函数的概念;2.使学生掌握分段函数及其简单应用。
教学重点:分段函数的理解教学难点:分段函数的图象及简单应用教学方法:自学法和尝试指导法教学过程:(Ⅰ)引入问题1.函数有几种常用的表示方法?它们分别是哪几种?2.如何作出函数y x =的图象?(II )讲授新课例1.作出函数y x =的图象和1y x =-的图象,并分别求出函数的值域。
注:分段函数的定义域和值域分别是各段函数的定义域和值域的并集。
例2.国内投寄信函(外埠),假设每封信函不超过20g 时付邮资80分;超过20g 不超过40g 时付邮资160分;依次类推,每封xg(100x 0≤<)的信函付邮资为:()(](](](]⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈∈∈∈=)100,80x (400)80,60x (320)80,60x (240)40,20x (160)20,0x (80y , 画出这个函数的图象。
说明:表示函数的式子也可以不止一个(如例1与例2),对于这类分几个式子表示的函数称为分段函数。
注意它是一个函数,不要把它误认为是“几个函数”。
例3.(教材24P 例6)例4.作出下列各函数的图象:(1)1(01)()(1)x f x x x x ⎧<<⎪=⎨⎪≥⎩; (2)222(0)()2(0)x x x f x x x x ⎧+≥=⎨--<⎩ 对第(2)小题的函数,试根据a 的取值讨论方程()f x a =的根的个数问题。
练习:1.在函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()3f x =,则x 的值为 。
2.已知1(0)()(0)0(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,则{[(1)]}f f f -= 。
作业:课本P 28习题1.2第10、11、12、13题。
1.2.2 函数的表示方法(第三课时)教学目标:1.使学生了解映射的概念、表示方法;2.使学生了解象、原象的概念;3.使学生通过简单的对应图示了解一一映射的概念;4.使学生认识到事物间是有联系的,对应、映射是一种联系方式。
3.1.2函数的表示法(第2课时)(人教A版普通高中教科书数学必修第一册第三章)深圳市坪山高级中学钟南林一、教学目标1.明确函数的三种表示方法.2.在实际情境中,会根据不同的需要选择恰当的方法表示函数.3.通过具体实例,了解简单的分段函数,并能简单应用.二、教学重难点1.函数的三种表示方法,分段函数的概念.2.如何根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.三、教学过程1.复习导入1.1函数三种表示方法定义及优缺点1.2分段函数的定义及特点(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.【设计意图】在上节课的基础上进一步掌握比较函数三种不同表示方法的优缺点,为本节课在具体情境中选取何种函数的表示方法作铺垫,同时对分段函数的特点进一步深化,为在具体实例中应用分段函数做好准备。
2.探究典例例1 下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表问题1:上表反映了几个函数关系?这些函数的自变量是什么?定义域是什么?【预设的答案】4个;测试序号;{1,2,3,4,5,6}【设计意图】让学生体会列表法不单单是表示一个函数,让学生体会列表法表示多个函数,进一步理解函数的定义.问题2:上述4个函数能用解析法表示吗?能用图象法表示吗?【预设的答案】用解析法并不能很好的表示出对应的解析式,可以类似例题4用图像法表示。
【设计意图】在问题1的基础上继续追问,让学生进一步深化函数三种表示方法的优缺点.问题3:若分析、比较每位同学的成绩变化情况,用哪种表示法为宜?【预设的答案】表格上并不能很好的看出每位同学的成绩变化情况,用图像法较好【设计意图】让学生体会用表格区分三位同学的成绩变化并不直观,引导学生用图像法分别表示出三个同学的成绩和班级平均分对应的函数图像,让学生体会在实际需要中选择恰当的方法表示函数是需要给予关注的.问题4:试根据图象对这三位同学在高一学年度的数学学习情况做一个分析?【预设的答案】王伟同学的数学成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;赵磊同学的数学成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩在稳步提升.【活动预设】让学生动手将每个同学的成绩与测试序号之间的函数关系分别用图像(均为6个离散的点)表示出来,学生分组讨论,能从图像上得出哪些结论,每组派代表进行发言,.【设计意图】让学生动手做出每位同学成绩对应的散点图,让学生进一步理解函数定义域与值域的对应关系,并体会如何能更好的表示出每位同学成绩变化情况。
教案: 15.2函数的表示法(第二课时)一、教学目标:1、学生理解运用图象法表示函数关系 2、能通过函数的图象,读取正确信息 3、培养学生数形结合与识图的能力二、教学重点:读取函数图象上的信息三、教学难点:运用图象判断是否存在函数关系 四、教学过程: 课前预习:(培养学生独立探究的能力)小明向一个水池蓄水,水池蓄满为16立方米,他先把水池蓄满,玩水玩了三个小时后他又把水排掉,这个过程如图所示,观察这个图形,你能从中获得什么信息?(1) 填写下表:(2) 对于每一时刻是否都有唯一确定的水量和它对应?_______,水量是否是时间的函数?______.(3) 他用了_____小时蓄满水,用了______小时排完水。
二:课上探究基本学习内容 (三)图象法图象法:用画图象表现一个函数关系的方法 例1:如图,一水库现蓄水a 立方米,从开闸放水起,每小时放水b 立方米,同时从上游每小时流入水库2b 立方米,那么到水库蓄满水为止,水库蓄水量y (立方米)是开闸时间t (时)的函数,其图像只能是图中的( )加强学生解决实际问题的能力;例2:例2、某汽车行驶的路程s (km )与时间t (min )的函数关系图如下,观察图形,说出你得到的信息:(学生随意发挥,只要是对的就表扬、鼓励)S t(D)(C)(B)1、 描述汽车行驶的过程; 2、 汽车途中休息的时间(如何理解图象中的“休息”); 3、 全程的总路程、总时间、平均速度; 练习:书P17,T4(4) P31,T5(培养学生探究能力)例3、如图,小明、小强两人进行百米赛跑,小明比小强跑的快,如果两人同时跑,小明肯定赢,现在小明让小强先跑若干米,图中的射线a 、b 分别表示小明追的路程与小强跑的路程与时间的关系,根据图象判断:小明的速度比小强的速度每秒快( )米.(加强学生对图象的理解,培养“读图”能力;)要求:先明确两轴表示的量的意义,再体会变化过程小结:思考计论三种表示方法的区别和各自优势。