Chapter 5 线性方程组的迭代法 例题
- 格式:pdf
- 大小:146.47 KB
- 文档页数:3
高斯-赛德尔迭代法例题高斯-赛德尔迭代法是一种用于解线性方程组的迭代方法。
它通过不断更新变量的值来逼近方程组的解。
以下是一个使用高斯-赛德尔迭代法求解线性方程组的例题:考虑以下线性方程组:```2x + y + z = 9x + 3y + z = 10x + y + 4z = 16```我们可以将方程组表示为矩阵形式:```| 2 1 1 | | x | | 9 || 1 3 1 | x | y | = | 10 || 1 1 4 | | z | | 16 |```迭代的过程如下:1. 选择一个初始解向量,比如x=0, y=0, z=0。
2. 使用迭代公式进行更新:-更新x 的值:x_new = (9 - y - z) / 2-更新y 的值:y_new = (10 - x_new - z) / 3-更新z 的值:z_new = (16 - x_new - y_new) / 43. 重复步骤2,直到解向量的值收敛于方程组的解。
假设我们进行3次迭代,初始解向量为x=0, y=0, z=0。
则迭代的过程如下:1. 第一次迭代:-更新x 的值:x_new = (9 - 0 - 0) / 2 = 4.5-更新y 的值:y_new = (10 - 4.5 - 0) / 3 ≈1.83-更新z 的值:z_new = (16 - 4.5 - 1.83) / 4 ≈2.422. 第二次迭代:-更新x 的值:x_new = (9 - 1.83 - 2.42) / 2 ≈2.87-更新y 的值:y_new = (10 - 2.87 - 2.42) / 3 ≈1.9-更新z 的值:z_new = (16 - 2.87 - 1.9) / 4 ≈2.813. 第三次迭代:-更新x 的值:x_new = (9 - 1.9 - 2.81) / 2 ≈1.65-更新y 的值:y_new = (10 - 1.65 - 2.81) / 3 ≈1.85-更新z 的值:z_new = (16 - 1.65 - 1.85) / 4 ≈3.14经过3次迭代后,解向量的值接近于x ≈ 1.65, y ≈1.85, z ≈3.14,这就是方程组的近似解。
线性方程组求解习题课一、给定方程组123211*********x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦试考察用Jacobi 迭代法和Seidel 迭代法求解的收敛性。
解:对Jacobi 迭代法,迭代矩阵为-1J 00.50.5B =I-D A=1010.50.50-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦因为3504J I B λλλ-=+=,得特征值1230,,22i iλλλ===-得()12J B ρ=> ,由定理知Jacobi 迭代法发散。
对Seidel 迭代法,迭代矩阵为()1S B D L U-=-=120001100.50.511000100.50.5112000000.5---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦显然,其特征值为1230,0.5λλλ===-故()0.51s B ρ=<,由定理知Seidel 迭代法收敛。
二、设线性方程组111211212222a a x b a a x b ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,11220a a ≠,112221120a a a a -≠。
证明:解线性方程组的Jacobi迭代法和Gauss —Seidel 迭代法同时收敛或不收敛。
证明:12111111222212122000000J a a a a B a a a a -⎛⎫- ⎪-⎛⎫⎛⎫⎪==⎪ ⎪ ⎪-⎝⎭⎝⎭- ⎪⎝⎭()212211122det J a a I B a a λλ-=-,故()J B λ= ()J B ρ=。
121111112212212211122000000S a a a a B a a a a a a -⎛⎫-⎪-⎛⎫⎛⎫ ⎪==⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭ ()12211122det S a a I B a a λλλ⎛⎫-=- ⎪⎝⎭,()12211,211220,S a a B a a λ=,得 ()12211122G a a B a a ρ=。