微波技术 第四章 微带和表面波波导
- 格式:ppt
- 大小:1.06 MB
- 文档页数:88
波导中微波的模式波导是一种用来传输微波信号的导波结构,由金属壁面构成,中间空腔内充满介质。
在波导中,微波信号通过内部的反射而传播,产生各种模式。
不同模式具有不同的传播特性和分布特点,对于波导设计和应用都非常重要。
本文将介绍波导中常见的几种微波模式。
1.矩形波导模式:矩形波导是最常见的一种波导类型,由金属矩形管道组成。
在矩形波导中,有许多不同的模式,包括正交模式(TE模式)和纵向模式(TM模式)。
(1)TE模式:TE模式是横向电场模式,在矩形波导中,电场垂直于波导的横截面方向。
TE模式的特点是不含有磁场分量,只有电场分量。
TE模式分为TE10,TE20,TE01等不同的阶次。
(2)TM模式:TM模式是纵向磁场模式,在矩形波导中,磁场沿波导的横截面方向。
TM模式的特点是不含有电场分量,只有磁场分量。
TM模式也分为TM10,TM20,TM01等不同的阶次。
矩形波导模式的分布特点是波束在波导内壁上反射,形成驻波模式。
TE和TM模式可以共存,交替出现。
2.圆形波导模式:圆形波导是由金属圆管构成的波导结构。
圆形波导模式与矩形波导模式类似,也有TE模式和TM模式,但其阶次的确定方式略有不同。
(1)TE模式:TE模式是横向电场模式,电场沿着圆柱壁面方向。
TE 模式中的波动电场与壁面垂直,并且没有磁场分量。
(2)TM模式:TM模式是纵向磁场模式,磁场沿着圆柱壁面方向。
TM 模式中的波动磁场与壁面垂直,并且没有电场分量。
与矩形波导不同的是,圆形波导模式的阶次由径向模式数目(m)和角向模式数目(n)两个参数共同确定。
例如,TE11模式表示径向和角向模式都为13.表面波模式:除了矩形和圆形波导模式外,波导中还存在一种特殊的模式,称为表面波模式。
表面波模式是指波在波导壁面上沿着壁面传播的模式,不进一步传播到波导的深处。
表面波模式包括射线波、栅波和电磁波导模式。
射线波模式是指波束沿着表面传播,而不发散或收敛;栅波模式是指波束被壁面上的栅格结构所限制;电磁波导模式是指在电磁波导中,电磁波束是由电和磁场的耦合形成的。
《微波技术》课程教学大纲一、课程基本信息课程编号:08030010课程中文名称:微波技术课程英文名称:microwave technology课程性质:专业指定选修课考核方式:考查开课专业:电子信息工程、通信工程、信息对抗技术开课学期:5总学时:40+16总学分:3.5二、课程目的和任务《微波技术》是研究微波信号的产生、放大、传输、发射、接收和测量的学科。
通过讲述传输线理论、理想导波系统理论、微波网络理论,使学生掌握传输线的工作状态和特性参量、波导的场结构和传输特性,了解常用微波元件的基本结构和工作原理,具有解决微波传输基本问题的能力。
三、教学基本要求(含素质教育与创新能力培养的要求)1.掌握传输线的基本理论和工作状态,具有分析传输线特性参量的基本能力,掌握阻抗圆图和导纳圆图的基本构成和应用,了解阻抗匹配的基本方法和原理。
2.掌握矩形波导的一般理论与传输特性,掌握矩形波导主模的场分布与相应参数,了解圆波导、同轴线、带状线和微带线等传输线的工作原理、结构特点、传输特性和分析方法。
3.掌握微波网络的基本理论,重点包括微波网络参量的基本定义、基本电路单元的参量矩阵、微波网络组合的网络参量、微波网络的工作特性参量,了解二端口微波网络参量的基本性质,具有分析二端口微波网络工作特性参量的基本能力。
4.掌握阻抗变换器、定向耦合器、微带功分器、波导匹配双T的结构特点、工作原理、分析方法及其主要用途,了解电抗元件、连接元件、衰减器和移相器、微波滤波器和微波谐振器等微波元件的结构特点和工作原理。
四、教学内容与学时分配第一章绪论(2学时)微波的概念及其特点,微波技术的发展和应用,微波技术的研究方法和基本内容。
第二章传输线理论(13学时)1.传输线方程及其求解2.传输线的特性参量3.均匀无耗传输线工作状态分析4.阻抗圆图及其应用5.传输线的阻抗匹配第三章微波传输线(9学时)1.理想导波系统的一般理论2.导波系统的传输特性3.矩形波导4.带状线5.微带线第四章微波网络(9学时)1.波导等效为平行双线2.微波元件等效为微波网络3.二端口微波网络4.基本电路单元的参量矩阵5.二端口微波网络的组合及参考面移动的影响6.二端口微波网络的工作特性参量7. 多端口微波网络第五章常用微波元件(7学时)1.阻抗变换器2.定向耦合器3.波导匹配双T4.微波滤波器第六章实验教学(16)五、教学方法及手段(含现代化教学手段)以课堂讲授为主,适当配合课堂讨论,充分使用多媒体教学;以学生自学为辅,学生可以通过网络课堂和微波网站在线学习。
第 1 章 电 磁 场 与 电 磁 波 的 基 本 原 理电 磁 场 的 基 本 方 程一、电磁场中的基本场矢量电磁场中的基本场矢量有四个:电场强度E,电位移矢量D,磁感应强度B 和磁场强度H 。
(一) 电场强度E 场中某点的电场强度E 定义为单位正电荷在该点所受的力,即 : 电场强度E 的单位为伏/米(V/m)。
(二) 电位移矢量D如果电解质中存在电场,则电介质中分子将被极化,极化的程度用极化强度P 来表示。
此时电介质中的电场必须用电位移矢量D 来描写。
它定义为 : 在SI 单位制中,D 的单位为库仑/米2(C/m2)。
对于线性媒质中某点的电极化强度P 正比于该点的电场强度E 。
在各向同性媒质中某点的P 和E 方向相同,即 : 故 ,式中ε=ε0(1+χe)称为介质的介电常数,而εr=1+χe 称为介质的相对介电常数。
(三) 磁感应强度B磁感应强度B 是描写磁场性质的基本物理量。
它表示运动电荷在磁场中某点受洛仑兹力的大小。
磁感应强度B 定义为: (四) 磁场强度H如果磁介质中有磁场,则磁介质被磁化。
描写磁介质磁化的程度用磁化强度M 来表 示。
此时磁介质中的磁场必须引入磁场强度H 来描写,它定义为: M 和H 的单位为安培/米 (A/m)。
在各向同性媒质中M 和H 方向相同。
即有: 故 B=μ0(H+M)=μ0(1+χm)H=μ0μrH=μH 。
式中χm 称为媒质的磁极化率,它是一个没有量纲的纯数。
μ=μ0(1+χm)称为媒质的磁导率。
μr=1+χm 称为相对磁导率。
二、全电流定律式中Jc 和Jd 分别为传导电流密度和位移电流密度,ic 和id 分别为传导电流和位移电流。
三、电磁感应定律感应电场沿着任意的封闭曲线的积分应等于感应电势,用数学式子表示即为 :由此得出一个结论:随时间变化的磁场会产生电场,而且磁通量的时间变化率愈大,则感应电动势愈大、电场愈强;反之则愈弱。
同时,穿过一个曲面S 的磁通量为:F E q =0D E P ε=+0e P x Eε=0000(1)e e r D E x E x E E E εεεεεε=+=+==F qv B=⨯0B H M μ=-m M Hχ=()()D e c l e d l Sc Sd H dl i i i dt H dl J J dS dD J dS dtφ===+=+=+⎰⎰⎰⎰ ml d e E dL dtφ==-⎰ m S l SB dS d E dL B dS dt φ==-⎰⎰⎰四、高斯定律 在普通物理中讨论了静电场的高斯定律,即: 式中V 是封闭曲面S 所包围的体积,∑q 为封闭曲面S 所包围的自由电荷电量的代数和,ρ为S 曲面所包围的自由电荷的体密度。
第一章引论微波是指频率从300MHz到3000GHz范围内的电磁波,相应的波长从1m到0.1mm。
包括分米波(300MHz到3000MHz)、厘米波(3G到30G)、毫米波(30G 到300G)和亚毫米波(300G到3000G)。
微波这段电磁谱具有以下重要特点:似光性和似声性、穿透性、信息性和非电离性。
微波的传统应用是雷达和通信。
这是作为信息载体的应用。
微波具有频率高、频带宽和信息量大等特点。
强功率—微波加热弱功率—各种电量和非电量的测量导行系统:用以约束或者引导电磁波能量定向传输的结构导行系统的种类可以按传输的导行波划分为:(1)TEM(transversal Electromagnetic,横电磁波)或准TEM传输线(2)封闭金属波导(矩形或圆形,甚至椭圆或加脊波导)(3)表面波波导(或称开波导)导行波:沿导行系统定向传输的电磁波,简称导波微带、带状线,同轴线传输的导行波的电磁能量约束或限制在导体之间沿轴向传播。
是横电磁波(TEM)或准TEM波即电场或磁场沿即传播方向具有纵向电磁场分量。
开波导将电磁能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播,其导波为表面波。
导模(guided mode ):即导波的模式,又称为传输模或正规模,是能够沿导行系统独立存在的场型。
特点:(1)在导行系统横截面上的电磁场呈驻波分布,且是完全确定的,与频率以及导行系统上横截面的位置无关。
(2)模是离散的,当工作频率一定时,每个导模具有唯一的传播常数。
(3)导模之间相互正交,互不耦合。
(4)具有截止频率,截止频率和截止波长因导行系统和模式而异。
无纵向磁场的导波(即只有横向截面有磁场分量),称为横磁(TM)波或E波。
无纵向电场的导波(即只有横向截面有电场分量),称为横电(TE)波或H波。
TEM波的电场和磁场均分布在与导波传播方向垂直的横截面内。
第二章传输线理论传输线是以TEM模为导模的方式传递电磁能量或信号的导行系统,其特点是横向尺寸远小于其电磁波的工作波长。
4-1 谐振腔有哪些主要的参量?这些参量与低频集总参数谐振回路有何异同点?答:谐振腔的主要特性参数有谐振频率、品质因数以及与谐振腔中有功损耗有关的谐振电导,对于一个谐振腔来说,这些参数是对于某一个谐振模式而言的,若模式不同,这些参数也是不同的。
谐振频率具有多谐性,与低频中的回路,当其尺寸、填充介质均不变化时,只有一个谐振频率是不相同的。
在谐振回路中,微波谐振腔的固有品质因数要比集总参数的低频谐振回路高的多。
一般谐振腔可以等效为集总参数谐振回路的形式。
4-2 何谓固有品质因数、有载品质因数?它们之间有何关系?答:固有品质因数是对一个孤立的谐振腔而言的,或者说,是谐振腔不与任何外电路相连接(空载)时的品质因数。
当谐振腔处于稳定的谐振状态时,固有品质因数0Q 的定义为02TWQ W π=,其中W 是谐振腔总的储存能量,T W 是一周期谐振腔损耗的能量。
有载品质因数是指由于一个腔体总是要通过孔、环或探针等耦合机构与外界发生能量的耦合,这样不仅使腔的固有谐振频率发生了变化,而且还额外地增加了腔的功率损耗,从而导致品质因数下降,这种考虑了外界负载作用情况下的腔体的品质因数称为有载品质因数l Q 。
对于一个腔体,01l Q Q k=+,其中k 为腔体和外界负载之间的耦合系数。
4-4 考虑下图所示的有载RLC 谐振电路。
计算其谐振频率、无载Q 0和有载Q L 。
谐振器负载1800Ω解:此谐振电路属于并联谐振电路,其谐振频率为:0356f MHz ===无载时,017.9R Q w L====有载时,040.25L e R Q w L ====根据有载和无载的关系式111L e Q Q Q=+得: 1112.5111140.2517.9L e Q Q Q===++4-5 有一空气填充的矩形谐振腔。
假定x 、y 、z 方向上的边长分别为a 、b 、l 。
试求下列情形的振荡主模及谐振频率:(1)a b l >>;(2)a l b >>;(3)l a b >>;(4)a b l ==。
开放项目讲义微波频率及波导波长的测量1.微波的性质微波技术是近代发展起来的一门尖端科学技术, 它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用, 在科学研究中也是一种重要的观测手段, 微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出, 微波的频率范围是处于光波和广播电视所采用的无线电波之间, 因此它兼有两者的性质, 却又区别于两者。
与无线电波相比, 微波有下述几个主要特点图1 电磁波的分类(1). 波长短(1m —1mm): 具有直线传播的特性, 利用这个特点, 就能在微波波段制成方向性极好的天线系统, 也可以收到地面和宇宙空间各种物体反射回来的微弱信号, 从而确定物体的方位和距离, 为雷达定位、导航等领域提供了广阔的应用。
(2). 频率高: 微波的电磁振荡周期(10-9一10-12s)很短, 已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟, 甚至还小, 因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中, 而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外, 微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级, 在导体中传播时趋肤效应和辐射变得十分严重, 一般无线电元件如电阻, 电容, 电感等元件都不再适用, 也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
(3). 微波在研究方法上不像无线电那样去研究电路中的电压和电流, 而是研究微波系统中的电磁场, 以波长、功率、驻波系数等作为基本测量参量。
(4). 量子特性:在微波波段, 电磁波每个量子的能量范围大约是10-6~10-3eV, 而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。
人们利用这一特点来研究分子和原子的结构, 发展了微波波谱学和量子电子学等尖端学科, 并研制了低噪音的量子放大器和准确的分子钟, 原子钟。
第四章规则波导理论前面介绍了几种无色散的TEM波传输线,它们在结构上都属于双导体系统。
其中平行双线是用在米波波段和分米波低频端的一种传输线;同轴线是用在分米波~厘米波段的一种传输线;带状线和微带是最近20多年来发展起来的新型平面传输线,它们在微波集成电路(MIC)中做传输线或元器件之用,是属于厘米波高频端的一种传输线。
当频率再升高时,上述几种传输线出现了一系列缺点,致使它们失去了实用价值。
比如,随着频率的增高,趋肤效应显著,因而导体热损耗增加;介质损耗和辐射损耗也随之增加;横向尺寸减小,功率容量明显下降,加工工艺也愈加困难。
上述缺点促使人们寻找一种新的,适用于更高频率,具有大功率容量的传输手段,于是产生了波导管。
实际上早在第二次世界大战前的1933年就已在实验室内被证明,采用波导管是行之有效的微波功率的传输手段。
现代雷达几乎无一例外地采用波导作为其高频传输系统。
波导管的使用频带范围很宽,从915MHz(微波加热)到94GHz(F波段)都可使用波导传输线。
本章所讲的“波导”是指横截面为任意形状的空心金属管。
所谓“规则波导”是指截面形状、尺寸及内部介质分布状况沿轴向均不变化的无限长直波导。
最常用的波导,其横截面形关是矩形和圆形的。
波导具有结构简单、牢固、损耗小、功率容量大等优点,但其使用频带较窄,这一点就不如同轴线和微带线了。
导行波理论不仅用于分析各类波导传输线本身,还是下面分析谐振腔、各种微波元件等的理论基础。
§4-1 电磁场基础同前面讨论同轴线、双线传输线所用的“路”的方法不同,本章所讨论的规则波导采用的是“场”的方法,即从麦克斯韦方程出发,利用边界条件导出波导传输线中电、磁场所服从的规律,从而了解波导中的模式及其场结构(即所谓横向问题)以及这些模式沿波导轴向的基本传输特性(即所谓纵向问题)。
一、麦克斯韦方程麦克斯韦总结了一系列电磁实验定律,得出一组反映宏观电磁现象所服从的普遍规律的方程式,这就是著名的麦克斯韦方程组。
一文理解微波波导微波波导是一种用于传输和控制微波能量的设备。
它通常由金属管道构成,内部是空气或其他绝缘材料填充。
微波波导具有许多独特的特性和应用,被广泛用于通信、雷达、微波炉等领域。
微波波导的主要作用是将微波信号从一个地方传输到另一个地方,同时保持信号的稳定和准确。
它可以通过金属管道的反射和折射来控制和引导微波能量的传播。
由于微波波导内部是空气或绝缘材料填充,可以减少信号的衰减和干扰,从而提高传输的效率和质量。
微波波导的传输特性取决于其几何形状、材料和工作频率。
常见的微波波导形状包括矩形、圆形和同轴形。
矩形波导适用于低频率的应用,圆形波导适用于高频率的应用,而同轴波导则可以在较宽的频率范围内工作。
不同形状的波导还具有不同的传输损耗和功率容量。
微波波导的工作原理可以通过电磁场的传播和反射来解释。
当微波信号进入波导时,它会在波导内部产生电磁场。
这些电磁场会在波导内部反射和折射,最终将信号传输到目标位置。
通过调整波导的形状和尺寸,可以控制电磁场的传播路径和模式,从而实现对微波信号的精确控制和调节。
微波波导广泛应用于通信和雷达系统中。
在通信系统中,微波波导被用于传输无线信号,如手机信号和卫星通信信号。
它可以提供稳定和高质量的信号传输,保证通信的可靠性和准确性。
在雷达系统中,微波波导被用于传输和控制雷达信号,实现对目标的监测和测量。
它可以提供高分辨率和高灵敏度的雷达图像,帮助用户实时了解目标的位置和运动状态。
微波波导还被应用于微波炉等家用电器中。
微波炉利用微波波导将微波能量传输到食物中,加热和烹饪食物。
微波波导可以将微波能量聚焦在食物上,使其迅速加热,提高烹饪效率和速度。
微波波导是一种用于传输和控制微波能量的重要设备。
它通过金属管道的反射和折射来控制和引导微波信号的传播,具有稳定、高效和精确的传输特性。
微波波导广泛应用于通信、雷达、微波炉等领域,为人们的生活和工作带来了诸多便利和效益。
微波技术与天线复习知识要点资料讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。