圆周运动圆盘模型
- 格式:docx
- 大小:79.45 KB
- 文档页数:7
模型组合讲解——水平方向的圆盘模型[模型概述]水平方向上的“圆盘”模型大多围绕着物体与圆盘间的最大静摩擦力为中心展开的,因此最大静摩擦力的判断对物体临界状态起着关键性的作用。
[模型讲解]例1. 如图1所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求:图1(1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。
(2)当转盘的角速度ωμ232=gr时,细绳的拉力F T 2。
解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。
(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。
(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mgT 22=μ。
例2. 如图2所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。
A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求图2(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。
ω再增大,AB 间绳子开始受到拉力。
由F m r fm =1022ω,得:ω011111055===F m r m gm r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。
圆周运动——圆盘模型1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求:2、(1)转盘的角速度为时绳中的张力T1;(2)转盘的角速度为时绳中的张力T2。
2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。
A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。
A离轴心r1=20 cm,B离轴心r2=30 cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。
(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B 两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B 与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()A.B所受合外力一直等于A所受合外力B.A受到的摩擦力一直指向圆心C.B受到的摩擦力一直指向圆心D.A、B两物块与圆盘保持相对静止的最大角速度为5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(g=10m/s2)6、如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()A.两物体均沿切线方向滑动B.两物体均沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg的小物体A、B,它们到转轴的距离分别为rA =10 cm,rB=40 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍。
专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。
此时,圆盘上该点所受的向心力最大,达到极限值。
热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。
球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。
单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。
这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。
球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。
双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。
这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。
热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。
热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。
在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。
圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。
在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。
车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。
高考物理解题模型目 录第一章 运动和力一、追及、相遇模型; 二、先加速后减速模型; 三、斜面模型; 四、挂件模型;五、弹簧模型(动力学); 第二章 圆周运动一、水平方向的圆盘模型; 二、行星模型; 第三章 功和能;一、水平方向的弹性碰撞; 二、水平方向的非弹性碰撞; 三、人船模型;四、爆炸反冲模型; 第四章 力学综合 一、解题模型; 二、滑轮模型; 三、渡河模型; 第五章 电路一、电路的动态变化; 二、交变电流; 第六章 电磁场一、电磁场中的单杆模型; 二、电磁流量计模型;三、回旋加速模型;四、磁偏转模型; ****第一章 运动和力一、追及、相遇模型模型讲解:1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。
为了使两车不相撞,加速度a 应满足什么条件?解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。
若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。
因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。
即:dv v a ad v v 2)(2)(0221221-=-=--,,故不相撞的条件为dv v a 2)(221-≥2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。
甲物体在前,初速度为v 1,加速度大小为a 1。
乙物体在后,初速度为v 2,加速度大小为a 2且知v 1<v 2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少? 解析:若是2211a v a v ≤,说明甲物体先停止运动或甲、乙同时停止运动。
在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为22212122av a v s s -+=∆ 若是2221a va v >,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得1212a a vv t --=在t 时间内 甲的位移t v v s 211+=共乙的位移t v v s 222+=共 代入表达式21s s s s -+=∆求得)(2)(1212a a v v s s ---=∆3. 如图1.01所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和A v 。
2025届高三物理一轮复习多维度导学与分层专练专题24圆周运动基本物理量、水平面内的圆周运动、离心现象导练目标导练内容目标1圆周运动基本物理量目标2水平面内的圆周运动(圆锥摆、圆筒、转弯模型和圆盘临界模型)目标3离心现象【知识导学与典例导练】一、圆周运动基本物理量1.匀速圆周运动各物理量间的关系2.三种传动方式及特点(1)皮带传动(甲乙):皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等。
(2)齿轮传动(丙):两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等。
(3)同轴传动(丁):两轮固定在同一转轴上转动时,两轮转动的角速度大小相等。
3.向心力:(1)来源:向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,在受力分析中要避免再另外添加一个向心力。
(2)公式:F n=ma n=m v2r=mω2r=mr·4π2T2=mr·4π2f2=mωv。
【例1】如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转轴上,其半径之比为RB∶RC=3∶2,A轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦力作用,B轮也随之无滑动地转动起来.a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中的()A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.向心加速度大小之比为9∶6∶4【答案】D【详解】A.A、B靠摩擦传动,则边缘上a、b两点的线速度大小相等,即v a∶v b=1∶1 BC同轴转动角速度相等,根据v=ωR又R B∶R C=3∶2可得v b∶v c=3∶2解得线速度大小之比为v a ∶v b ∶v c =3∶3∶2故A 错误;BC .B 、C 同轴转动,则边缘上b 、c 两点的角速度相等,即ωb =ωca 、b 两点的线速度大小相等,根据v =ωR 依题意,有R B ∶R A =3∶2解得ωb :ωa =2:3解得角速度之比为ωa :ωb :ωc =3∶2∶2又ω=2πn 所以转速之比n a :n b :n c =3∶2∶2故BC 错误;D .对a 、b 两点,由2n v a R=解得a a ∶a b =3∶2对b 、c 两点,由a n =ω2R 解得a b ∶a c =3∶2可得a a ∶ab ∶ac =9∶6∶4故D 正确。
专题02圆周运动一、描述圆周运动的物理量和常见的传动装置特点1.匀速圆周运动的特点(1)“变”与“不变”描述匀速圆周运动的四个物理量中,角速度、周期和转速恒定不变,线速度是变化的。
(2)性质匀速圆周运动中的“匀速”不同于匀速直线运动中的“匀速”,这里的“匀速”是“匀速率”的意思,匀速圆周运动是变速运动。
2.匀速圆周运动各物理量间的关系3.传动装置及其特点同轴传动皮带传动齿轮传动装置A、B两点在同轴的一个圆盘上两个轮子用皮带连接,A、B两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A、B两点分别是两个齿轮边缘上的点特点角速度、周期相同线速度大小相同线速度大小相同转动方向相同相同相反规律线速度与半径成正比:v Av B=rR角速度与半径成反比:ωAωB=rR。
周期与半径成正比:T AT B=Rr角速度与半径成反比:ωAωB=r2r1。
周期与半径成正比:T AT B=r1r2【例1】如图所示,秒针绕O点转动,A、B为秒针两端的两个质点,A点比B点离O更近。
在转动时,关于A、B两质点的向心加速度a、线速度v、周期T、角速度ω的说法正确的是()A.A Ba a<B.A BT T<C.A Bv v<D.A Bωω<【答案】AC【详解】A 、B 为秒针两端的两个质点,可知A 、B 的角速度相等,周期相等,则有A B ωω=,A BT T =根据v r ω=,2a r ω=由于A 点比B 点离O 更近,则有A B v v <,A B a a <故选AC 。
【例2】如图是磁带录音机的磁带盒的示意图,A 、B 为缠绕磁带的两个轮子边缘上的点,两轮的半径均为r ,在放音结束时,磁带全部绕到了B 轮上,磁带的外缘半径R =3r ,C 为磁带外缘上的一点,现在进行倒带。
此时下列说法正确的是()A .A 、B 、C 三点的周期之比3∶1∶3B .A 、B 、C 三点的线速度之比3∶1∶3C .A 、B 、C 三点的角速度之比1∶3∶3D .A 、B 、C 三点的角速度之比3∶1∶1【答案】BD【详解】CD .根据磁带传动装置的特点可知,A 、C 两点的线速度大小相等,即: 1:1A C v v =B 、C 两点的角速度相等,即B C ωω=由于3C A r r =,根据v r ω=可得:3:1A C ωω=所以::3:1:1A B C ωωω=故C 错误,D 正确;A .根据周期与角速度的关系2T πω=,可得: : 1:3:3A B C T T T =,A 错误;B .根据v r ω=可知:1:3BC v v =所以: : 3:1:3A B C v v v =,B 正确。
圆周运动——圆盘模型1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求:2、(1)转盘的角速度为时绳中的张力T1;(2)转盘的角速度为时绳中的张力T2。
2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。
A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。
A离轴心r1=20 cm,B离轴心r2=30cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。
(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B 两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,rB=2R,且A、B与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()A.B所受合外力一直等于A所受合外力B.A受到的摩擦力一直指向圆心C.B受到的摩擦力一直指向圆心D.A、B两物块与圆盘保持相对静止的最大角速度为5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(g=10m/s2)6、如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是( )A.两物体均沿切线方向滑动B.两物体均沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg的小物体A、B,它们到转轴的距离分别为rA=10 cm,rB=40 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍。
圆周运动——圆盘模型1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求:2、(1)转盘的角速度为时绳中的张力T1;(2)转盘的角速度为时绳中的张力T2。
2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。
A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。
A离轴心r1=20 cm,B离轴心r2=30 cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。
(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B 与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()A.B所受合外力一直等于A所受合外力B.A受到的摩擦力一直指向圆心C.B受到的摩擦力一直指向圆心D.A、B两物块与圆盘保持相对静止的最大角速度为5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(g=10m/s2)6、如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()A.两物体均沿切线方向滑动B.两物体均沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg的小物体A、B,它们到转轴的距离分别为rA =10 cm,rB=40 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍。
圆周运动——圆盘模型1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块与转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力就是其重力的k倍,求:2、(1)转盘的角速度为时绳中的张力T1;(2)转盘的角速度为时绳中的张力T2。
2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。
A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0、5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。
A离轴心r1=20 cm,B离轴心r2=30cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0、4倍,取g=10 m/s2。
(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块(可视为质点).A与B距轴心O的距离分别为r A=R,r B=2R,且A、B与转盘之间的最大静摩擦力都就是f m,两物块A与B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的就是( )A.B所受合外力一直等于A所受合外力B.A受到的摩擦力一直指向圆心C.B受到的摩擦力一直指向圆心D.A、B两物块与圆盘保持相对静止的最大角速度为5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0、5),试求⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(g=10m/s2)6、如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A与B,它们与盘间的动摩擦因数相同、当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况就是( )A、两物体均沿切线方向滑动B、两物体均沿半径方向滑动,离圆盘圆心越来越远C、两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg的小物体A、B,它们到转轴的距离分别为rA =10 cm,rB=40 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍。
第20讲 水平面和斜面上的圆周运动(转盘模型)及其临界问题1.(2021·山东)如图所示,粗糙程度处处相同的水平桌面上有一长为L 的轻质细杆,一端可绕竖直光滑轴O 转动,另一端与质量为m 的小木块相连。
木块以水平初速度v 0出发,恰好能完成一个完整的圆周运动。
在运动过程中,木块所受摩擦力的大小为( )A .mv 022πLB .mv 024πLC .mv 028πLD .mv 0216πL【解答】解:因为细杆为轻质细杆,又因为其一端绕竖直光滑轴O 转动,所以杆对球的力沿杆,即杆对球不做功,对小球完成一个完整的圆周运动过程,由动能定理得﹣f •2πL=0−12mv 02,解得摩擦力f =mv 024πL,故B 正确,ACD 错误。
故选:B 。
一. 知识总结1.水平转盘上运动物体的临界问题水平转盘上运动物体的临界问题,主要涉及与摩擦力和弹力有关的临界极值问题。
(1)如果只有摩擦力提供向心力,物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,则最大静摩擦力F m =m v 2r ,方向指向圆心。
(2)如果水平方向除受摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其临界情况要根据题设条件进行判断,如判断某个力是否存在以及这个力存在时的方向(特别是一些接触力,如静摩擦力、绳的拉力等)。
(3)运动实例2.解决临界问题的注意事项(1)先确定研究对象受力情况,看哪些力充当向心力,哪些力可能突变引起临界问题。
(2)注意分析物体所受静摩擦力大小和方向随圆盘转速的变化而发生变化。
(3)关注临界状态,例如静摩擦力达到最大值时,静摩擦力提供向心力,随转速的增大,静摩擦力增大,当所需向心力大于最大静摩擦力时开始相对滑动,出现临界情况,此时对应的角速度为临界角速度。
3.斜面上圆周运动的临界问题在斜面上做圆周运动的物体,根据受力情况的不同,可分为以下三类。
(1)物体在静摩擦力作用下做圆周运动。
(2)物体在绳的拉力作用下做圆周运动。
【下载后获高清完整版】高考高中物理必考:圆周运动-知识点+例题详解1.圆周运动的物理量⑴线速度:通过的弧长与所用时间的比值方向为圆周上该点的切线方向,线速度大小不变的圆周运动即为匀速圆周运动;⑵角速度:连接质点与圆心的半径转过的弧度与所用时间的比值方向用右手定则判断,四指表示运动方向,大拇指指向角速度的方向;对于圆周来讲,弧长与圆心角存在几何关系∆s=R·∆θ,所以有=·R;⑶周期T:完成一周运动所用的时间;⑷频率和转速:1s时间内完成的周数为频率,频率和转速的含义相同,显然有[例1]如图所示,一个圆台上底半径为,下底半径为,其母线AB长为L,侧放在水平地面上。
推动它之后,它自身以角速度ω旋转,整体绕O点做匀速圆周运动,若接触部分不打滑,求旋转半径OA及旋转一周所需的时间。
解析:由几何关系,可得解得OA=求出A点的线速度有设旋转一周所需的时间为T,则T==2.同心轮与皮带轮同心轮各轮的角速度ω相同,线速度与轮半径成正比;用皮带连接的两个轮的线速度相同,角速度ω与轮半径成反比。
3.向心加速度由于做圆周运动的物体其速度方向时刻沿圆周的切线,即速度方向时刻都在变化,所以一定存在加速度,而力是产生加速度的原因,因此做圆周运动的物体一定受到合外力的作用。
如图,运用相似三角形的知识,容易得到对上式进行变形,两边同除以∆t,可得当∆t 0时,上式可改写为,即为向心加速度的表达式方向指向圆心。
注:不要误认为向心加速度与成正比,与R成反比,实际上加速度只由受力决定,受力确定了,加速度也就确定了,在确定的前提下,才可以讨论与R的关系。
4.曲率圆的概念任意一段曲线都可以分成很多小段,每小段都可以看成圆弧的一部分,即把整条曲线用一系列不同半径的小圆弧代替,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点做一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫作A点的曲率半径。
通过向心加速度的表达式,告诉了我们求曲率半径的方法。
物理建模系列(七)竖直平面内圆周运动的两种模型1.模型构建在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.3.常用模型面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg【解析】 解法一:以小环为研究对象,设大环半径为R ,根据机械能守恒定律,得mg ·2R =12m v 2,在大环最低点有F N -mg =m v 2R ,得F N =5mg ,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为F ′N =F N ,方向竖直向下,故F =Mg +5mg ,由牛顿第三定律知C 正确.解法二:设小环滑到大环最低点时速度为v ,加速度为a ,根据机械能守恒定律12m v 2=mg ·2R ,且a =v 2R,所以a =4g ,以整体为研究对象,受力情况如图所示.F -Mg -mg =ma +M ·0 所以F =Mg +5mg ,C 正确. 【答案】 C[高考真题]1.(2016·上海卷,16)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大,平均速率为8πnrΔt【解析】 据题意,从b 图可以看出,在Δt 时间内,探测器接收到光的时间在增长,圆盘凸轮的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以从图看出有4次挡光,即圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,叶片转动速率为:v =8n πrΔt,故选项B 正确.【答案】 B2.(2016·浙江卷,20)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s【解析】 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由2.25mg =m v 21r 得v 1=30 m/s ;通过大圆弧时,由2.25mg =m v 22R得v 2=45 m/s ,B 项正确.赛车从小圆弧到大圆弧通过直道时需加速,故A 项正确.由几何关系可知连接大、小圆弧的直道长x =50 3 m ,由匀加速直线运动的速度位移公式:v 22-v 21=2ax得a ≈6.50 m/s 2,C 项错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t =13×2πrv 1≈2.79 s ,故D 项错误.【答案】 AB3.(2015·课标卷Ⅰ,22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg.(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为 ________ kg.(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.(4)N ;小车通过最低点时的速度大小为 ________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)【解析】 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.【答案】 (2)1.40 (4)7.9 1.4[名校模拟]4.(2018·山东烟台高三上学期期中)如图所示,水平圆盘可以绕竖直转轴OO ′转动,在距转轴不同位置处通过相同长度的细绳悬挂两个质量相同的物体A 、B .不考虑空气阻力的影响,当圆盘绕OO ′轴匀速转动达到稳定状态时,下列说法正确的是( )A .A 比B 的线速度小B .A 与B 的向心加速度大小相等C .细绳对B 的拉力大于细绳对A 的拉力D .悬挂A 与B 的细绳与竖直方向夹角相等【解析】 物体A 、B 绕同一轴转动,角速度相同,由v =ωr 知,v A <v B ,由a =ω2r 知,a A <a B ,由T sin θ=ma ,T cos θ=mg 及a A <a B 得T A <T B ,θA <θB ,故A 、C 正确.【答案】 AC5.(2018·广东惠州市高三上学期第二次调研)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的.其中一个玻璃盘通过从动轮与手摇主动轮链接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .玻璃盘的转动方向与摇把转动方向相反B .P 、Q 的线速度相同C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min【解析】 若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故A 正确;线速度也有一定的方向,由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故B 错误;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度:v =ωr =2n πr =2×10060×π×0.32m/s =0.5π m/s ≈1.6 m/s ,故C 正确;从动轮边缘的线速度:v c =ωr c =2×10060×π×0.02m/s =115π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即v z =v c ,所以主动轮的转速:n z =ωz 2π=v z r z 2π=115π2π×0.08=12.4r/s =25 r/min.故D 错误.【答案】 AC6.(2018·华中师大第一附中高三上学期期中)如图所示,ABC 为在竖直平面内的金属半圆环,AC 连线水平,AB 为固定的直金属棒,在金属棒上和圆环的BC 部分分别套着两个相同的小环M 、N ,现让半圆环绕对称轴以角速度ω做匀速转动,半圆环的半径为R ,小圆环的质量均为m ,棒和半圆环均光滑,已知重力加速度为g ,小环可视为质点,则M 、N 两环做圆周运动的线速度之比为( )A.gR 2ω4-g 2B .g 2-R 2ω4gC.g g 2-R 2ω4D .R 2ω4-g 2g【解析】 AB 杆倾角45°,对于M 环:mg =mrω2=m v 2Mr2v M =g ω.对于N 环:mg tan θ=mR sin θ·ω2=mωv N v N =R sin θ·ω=Rω1-g 2R 2ω4 所以v M ∶v N =g ∶R 2ω4-g 2,A 对,B 、C 、D 错. 【答案】 A课时作业(十二) [基础小题练]1.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同【解析】同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度不同,C 错误;根据公式F =ma ,质量相同,但是加速度不同,所以向心力大小不同,D 错误.【答案】 A2.(2018·甘肃河西五市联考)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A ,B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根细线承受的张力为( )A .23mgB .3mgC .2.5mgD .732mg【解析】 小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,根据动能定理得mg ·3L =12m v 22-12m v 21,由牛顿第二定律得3T -mg =m v 2232L ,联立得T =23mg ,故A 正确,B 、C 、D 错误.【答案】 A3.如图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1D .从动轮的转速为r 2r 1n 1【解析】 主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,故A 错误,B 正确;由ω=2πn 、v =ωr 可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,从动轮边缘线速度大小v =2πn 2r 2=2πn 1r 1,故C 、D 错误.【答案】 B4.(2018·山东青岛市即墨一中高三上学期期中)如图所示,甲、乙圆盘的半径之比为1∶2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动.两圆盘上分别放置质量为m 1和m 2的小物体,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.m 1距甲盘圆心为r ,m 2距乙盘圆心为2r ,此时它们正随圆盘做匀速圆周运动.下列判断正确的是( )A .m 1和m 2的线速度之比为1∶4B .m 1和m 2的向心加速度之比为2∶1C .随转速慢慢增加,m 1先开始滑动D .随转速慢慢增加,m 2先开始滑动【解析】 甲、乙两轮子边缘上的各点线速度大小相等,有:ω1R =ω22R ,则得ω1∶ω2=2∶1,所以物块相对圆盘开始滑动前,m 1与m 2的角速度之比为2∶1.根据公式:v =ωr ,所以:v 1v 2=ω1r ω2·2r =11,故A 错误.根据a =ω2r 得:m 1与m 2的向心加速度之比为 a 1∶a 2=(ω21r )∶(ω222r )=2∶1,故B 正确.根据μmg =mrω2=ma 知,m 1先达到临界角速度,可知当转速增加时,m 1先开始滑动,故C 正确,D 错误.【答案】 BC5.如图所示,水平放置的圆筒可以绕中心轴线匀速转动,在圆筒上的直径两端有两个孔A 、B ,当圆筒的A 孔转到最低位置时,一个小球以速度v 0射入圆筒,圆筒的半径为R ,要使小球能够不碰到筒壁首次离开圆筒,则圆筒转动的角速度可能为(已知重力加速度大小为g )( )A.n πgv 0,n =1,2,3,… B.(2n -1)πg 2v 0,n =1,2,3,…C.2n πg v 0-v 20-4Rg ,n =1,2,3,…D.2n πg v 0+v 20-4Rg,n =1,2,3,… 【解析】 若小球上升最大高度小于圆筒直径,小球从A 孔离开,则竖直上抛时间为t =2v 0g =2n πω,n =1,2,3,…,ω=n πgv 0,A 正确;若小球上升最大高度小于圆筒直径,从B 孔离开,则有t =2v 0g =(2n -1)πω,n =1,2,3,…,ω=(2n -1)πg 2v 0,B 正确;若小球上升最大高度大于直径,从B 孔离开,小球经过圆筒时间为t ,则有2R =v 0t -gt 22,圆筒转动时间为t =2n πω,n =1,2,3,…,解得ω=2n πgv 0-v 20-4Rg ,C 正确;若小球上升最大高度大于直径,从A 孔离开,则圆筒转动时间为t =(2n -1)πω,n =1,2,3,…,解得ω=(2n -1)πgv 0-v 20-4Rg,D 错误. 【答案】 ABC6.(2018·开封高三模拟)在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,则管状模型转动的最低角速度ω为( )A.gR B . g 2R C.2g RD .2g R【解析】 最易脱离模型内壁的位置在最高点,转动的最低角速度ω对应铁水在最高点受内壁的作用力为零,即mg =mω2R ,得:ω=gR,A 正确. 【答案】 A[创新导向练]7.生活实际——圆周运动中的自行车问题雨天在野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,并离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来【解析】 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情况下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F bd=mω2R ,在c 点有F c -mg =mω2R ,所以泥巴与轮胎在c 位置的相互作用力最大,容易被甩下,故B 、D 错误,C 正确.【答案】 C8.生活实际——通过“过山车”考查圆周运动最高点的临界问题如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR【解析】 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.【答案】 BC9.高新科技——圆周运动中的运动学问题应用实例某计算机读卡系统内有两个围绕各自固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度均为4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 s C.0.70 s D.0.84 s【解析】P的周期T P=2πr Pv=2π×0.284πs=0.14 s,同理Q的周期T Q=2πr Qv=2π×0.164πs=0.08 s,而经过的时间应是它们周期的整数倍,因此B项正确.【答案】 B10.科技生活——汽车后备箱升降学问汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O 点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等【解析】在合上后备箱盖的过程中,O′A的长度是变化的,因此A点相对O′点不是做圆周运动,A错误;在合上后备箱盖的过程中,A点与B点都是绕O点做圆周运动,相同的时间绕O点转过的角度相同,即A点与B点相对O点的角速度相等,但是OB大于OA,根据v=rω,所以B点相对于O点转动的线速度大,故B错误,C正确;根据向心加速度a=rω2可知,B点相对O点的向心加速度大于A点相对O点的向心加速度,故D错误.【答案】 C[综合提升练]11.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定,若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需<F供,物体将做近心运动.现有一根长L=1 m的刚性轻绳,其一端固定于O 点,另一端系着质量m=0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10 m/s2,则:(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F 1+mg =m v 21L,代入数据得绳中张力F 1=3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.(2018·山东潍坊高三上学期期中)如图所示,圆形餐桌中心有一半径为R 的圆盘,可绕穿过中心的竖直轴转动,圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计.当圆盘的角速度为 g 2R时,放置在圆盘边缘的小物体恰好滑上餐桌.已知小物体与餐桌间的动摩擦因数为0.25,最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)小物体与圆盘的动摩擦因数;(2)小物体恰好不从餐桌滑落时餐桌的最小半径.【解析】(1)设小物体与圆盘间的动摩擦因数为μ1,小物体恰好滑到餐桌上时圆盘的角速度为ω0μ1mg=mω20R代入数据解得:μ1=0.5.(2)小物体从圆盘甩出时的速度v1=ω0R设小物体与餐桌间的动摩擦因数为μ2,小物体在餐桌上滑动距离x1恰不滑出桌面,0-v21=2ax1a=-μ2g餐桌的最小半径R min=R2+x21联立解得:R min=2R【答案】(1)0.5(2)2R。
圆周运动——圆盘模型1、如下图,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直〔绳中张力为零〕,物块与转盘间最大静摩擦力是其重力的k倍,求:2、〔1〕转盘的角速度为时绳中的张力T1;(2)转盘的角速度为时绳中的张力T2。
2、如下图,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。
A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:〔1〕当圆盘转动的角速度为多少时,细线上开场出现张力?〔2〕欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?〔〕3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。
A离轴心r1=20 cm,B离轴心r2=30 cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。
(1)假设细线上没有张力,圆盘转动的角速度ω应满足什么条件?(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(3)当圆盘转速到达A、B刚好不滑动时,烧断细线,则A、B将怎样运动?4、如下图,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块〔可视为质点〕.A和B距轴心O的距离分别为r A=R,r B=2R,且A、B与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,以下说法正确的选项是〔〕A.B所受合外力一直等于A所受合外力B.A受到的摩擦力一直指向圆心C.B受到的摩擦力一直指向圆心D.A、B两物块与圆盘保持相对静止的最大角速度为5、如下图,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍〔k=0.5〕,试求⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?〔g=10m/s2〕6、如下图,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数一样.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是〔〕A.两物体均沿切线方向滑动B.两物体均沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远7、如下图,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg的小物体A、B,它们到转轴的距离分别为rA =10 cm,rB=40 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍。
圆周运动
圆盘模型
1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时, 连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求:
2、( 1)转盘的角速度为叫=程时绳中的张力T i ;
k挣时绳中的张力T2。
(2)转盘的角速度为
2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小
物块。
A的质量为叫=2炮,离轴心『1 = 2曲,B的质量为叫二呢,离轴心
G = 悄,A B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:
(1)当圆盘转动的角速度於。
为多少时,细线上开始出现张力?
(2)欲使A B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?
■q
(g = IM/ s)
3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为 m 的A 、B 两个小物块。
A 离轴心r i = 20 cm, B 离轴心r 2 = 30 cm, A 、B 与圆盘面 间相互作用的最大静摩擦力为其重力的 0.4倍,取g = 10 m/s 2。
(1) 若细线上没有张力,圆盘转动的角速度3应满足什么条件?
(2) 欲使A B 与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?
(3) 当圆盘转速达到A B 刚好不滑动时,烧断细线,则 A B 将怎样运动?
4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为 m 的A B 两个物块(可视为质点).A 和B 距轴心0的距离分别为r A =R, r B =2R ,且A B 与转盘之间的最大静摩擦力都是f m,两物块A 和B 随着圆盘转动时,始终与圆盘 保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的 是
B 所受合外力一直等于A 所受合外力
A 受到的摩擦力一直指向圆心
B 受到的摩擦力一直指向圆心
A B 两物块与圆盘保持相对静止的最大角速度为 Y 曲 如图所示,在绕竖直轴匀速转动的水平圆盘盘面上, 离轴心r= 20cm 处放置一
小物块A,其质量为m= 2kg ,A 与盘面间相互作用的静摩擦力的最大值为其重力 的k 倍(k = 0.5 ),试求 ⑴当圆盘转动的角速度3= 2rad/s 时,物块与圆盘间的摩擦力大小多大?方向 如何?
A. B. C D.
5、
⑵欲使A 与盘面间不发生相对滑动,则圆盘转动的最大角速度多大? (g=10m/s 2) 6如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等 的两个物体A 和B,它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚 好还未发生滑动时,烧断细线,则两个物体的运动情况
( )
A. 两物体均沿切线方向滑动
B. 两物体均沿半径方向滑动,离圆盘圆心越来越远
C. 两物体仍随圆盘一起做匀速圆周运动,不会发生滑动
D. 物体B 仍随圆盘一起做匀速圆周运动,物体A 发生滑动,离圆盘圆心越来越远
7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为 的小物体A 、B,它们到转轴的距离分别为r A =1O cm, r B =40 cm ,A 、B 与盘面
间 最大静摩擦力均为重力的0.4倍。
如果圆盘的转速可以从零开始由小到大的调 节,试求:(g 取10 m/s 2)
(1)如图甲所示,A B 之间没有细线相连,随着圆盘转速的增大,哪一个物体 先发生相对圆盘的滑动?
(2)如图乙所示,A B 之间用刚好拉直的细线相连,当细线上开始出现弹力 T 时,圆盘的角速度3 1多大?当A 开始滑动时,圆盘的角速度3 2多大?
(3) 当A 即将滑动时,烧断细线。
请在图丙给出的坐标系中,为坐标轴选取合 适的标度,作出烧断细线之前,细线上的弹力 T 随圆盘角速度平方 系图线。
m=1kg I-
32的变化关
o 甲
参考答案
1、设角速度为3 0时绳刚好被拉直且绳中张力为零,则由题意有:
........................................
解得:站
(1)当转盘的角速度为气=£1时,有:
•••旳Q 叫,物体所受静摩擦力足以提供物体随转盘做圆周运动所需向心
……③
即:T i =0 (2)当转盘的角速度为“厂厝 时,有:
•••吗 >叫,物体所受最大静摩擦力不足以提供物体随转盘做圆周运动所需向心 力 ...... ⑤
.... ⑥
... (⑦
2( 1)⑺较小时,A B 均由静摩擦力充当向心力,雲增大,F = 加F 可知,它 们受到的静摩擦力也增大,而『宀,所以A 受到的静摩擦力先达到最大值。
赧 再增大,AB 间绳子开始受到拉力。
.... ②
....④
(2)皿达到0。
后,赧再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供, A 增大的向心力靠增加拉力来提供,由于 A 增大的向心力超过B 增加的向心力, 皿再增加,B 所受摩擦力逐渐减小,直到为零,如 ①再增加,B 所受的摩擦力就 反向,直到达最大静摩擦力。
如 潰再增加,就不能维持匀速圆周运动了, A B 就在圆盘上滑动起来。
设此时角速度为
,绳中张力为碍,对A B 受力分析:
2 对A 有片肿+码=册迎"
2
对B 有碍厂粘尬" 联立解得:
& + 弘=5 屈^ / g = Ze 说 # S
3【答案】 ⑴3< 3.7rad/s (2)4.0rad/s
(3)A 随圆盘一起转动,B 做离心运
动 2
⑴当B 所需向心力%兰Em 迂时,细线上的张力为0,即rn® G
即当②<3?说几时,细线上不会有张力。
(2)当A B 所受静摩擦力均达到最大静摩擦力时,圆盘的角速度达到最大值3
m ,
超过3 m 时,A B 将相对圆盘滑动。
设细线中的张力为 F T O
对 A : Tg-FT=m 诘1,对 B : lcnig+F 『=miZJ :E
0 <
得
rad/s« 3.7rad/s
o
⑶烧断细线时,A 做圆周运动所需向心力代犷0.艾吨,又最大静摩擦力 为0.4mg,贝U A 随盘一起转动。
B 此时所需向心力犷OVgmg ,大于它的最大静摩擦力0.4mg ,因此B 将 彳故离心尼:动。
4、CD
5、⑴ / = Wr = 2>c2^xa.2.V = 1.6M ……
方向为指向圆心。
.... ③
耳=J ——=5rid/s
6解析:根据两个物体的质量相等且与盘间动摩擦因数相同可知,它们与盘间 的最大静摩擦力大小相等.当它们刚好还未发生滑动时,对物体A :f ma +T=m^ 2 ••A , 对物体B : f ma 灯T=m 3 2- r B .若细线烧断,对A 而言,仅靠f max 不足以提供需要的 向心力,A 将沿半径方向相对圆盘发生滑动;对物体 B ,由静摩擦力提供需要的 向心力,它将仍随圆盘一起做匀速圆周运动.选项D 正确.
答案:D
7、( 1) B 先滑动 (2)rad/s , 4 rad/s
....................................... .... ②。