蚁群算法
- 格式:doc
- 大小:156.50 KB
- 文档页数:8
蚁群算法实现TSP蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的算法,常被用来解决旅行商问题(Traveling Salesman Problem, TSP)。
旅行商问题是一个经典的组合优化问题,目标是找到一条最短的路径,使得旅行商能够访问所有城市并返回起始城市。
蚁群算法的基本思想是模拟蚂蚁寻找食物的行为,每只蚂蚁在过程中释放信息素,并根据信息素浓度和距离选择下一个城市。
信息素的释放和更新规则是蚁群算法的核心。
蚁群算法的实现步骤如下:1.初始化蚁群:随机放置一定数量的蚂蚁在不同城市。
2.计算路径长度:根据蚂蚁的选择规则,计算每只蚂蚁的路径长度。
3.更新信息素:根据路径长度,更新城市之间的信息素浓度。
4.更新蚂蚁的选择规则:根据信息素浓度和距离,更新蚂蚁的选择规则。
5.重复步骤2-4,直到达到指定的迭代次数或找到最优解。
在蚂蚁的选择规则中,信息素浓度和距离是两个重要的因素。
信息素浓度越高,蚂蚁越有可能选择该路径;距离越短,蚂蚁越倾向于选择该路径。
为了平衡这两个因素,通常使用一个参数来调节它们的权重。
在更新信息素时,一般采用全局信息素更新和局部信息素更新两种方式。
全局信息素更新是将所有蚂蚁路径上的信息素浓度进行更新,以加强优质路径的信息素浓度。
局部信息素更新是只更新最优路径上的信息素浓度,以加强当前最优路径的信息素浓度。
蚁群算法的优点是能够找到近似最优解,并且具有较好的鲁棒性和适应性。
然而,蚁群算法也存在一些问题,例如易陷入局部最优解、收敛速度较慢等。
针对TSP问题,蚁群算法的实现可以按照上述步骤进行。
具体来说,可以通过以下几个方面的设计来优化算法的性能:1.蚂蚁的选择规则:可以采用轮盘赌选择法,即根据信息素浓度和距离计算每个城市被选择的概率,然后根据概率选择下一个城市。
2.信息素更新:可以采用全局信息素更新和局部信息素更新相结合的方式,以平衡全局和局部的效果。
蚁群算法(ACO)解决TSP问题⼀、蚁群算法1.基本原理蚁群算法(Ant Colony Optimization,ACO)是⼀种基于种群寻优的启发式搜索算法,有意⼤利学者M.Dorigo等⼈于1991年⾸先提出。
该算法受到⾃然界真实蚁群集体在觅⾷过程中⾏为的启发,利⽤真实蚁群通过个体间的信息传递、搜索从蚁⽳到⾷物间的最短路径等集体寻优特征,来解决⼀些离散系统优化中的困难问题。
经过观察发现,蚂蚁在寻找⾷物的过程中,会在它所经过的路径上留下⼀种被称为信息素的化学物质,信息素能够沉积在路径上,并且随着时间逐步挥发。
在蚂蚁的觅⾷过程中,同⼀蚁群中的其他蚂蚁能够感知到这种物质的存在及其强度,后续的蚂蚁会根据信息素浓度的⾼低来选择⾃⼰的⾏动⽅向,蚂蚁总会倾向于向信息素浓度⾼的⽅向⾏进,⽽蚂蚁在⾏进过程中留下的信息素⼜会对原有的信息素浓度予以加强,因此,经过蚂蚁越多的路径上的信息素浓度会越强,⽽后续的蚂蚁选择该路径的可能性就越⼤。
通常在单位时间内,越短的路径会被越多的蚂蚁所访问,该路径上的信息素强度也越来越强,因此,后续的蚂蚁选择该短路径的概率也就越⼤。
经过⼀段时间的搜索后,所有的蚂蚁都将选择这条最短的路径,也就是说,当蚁巢与⾷物之间存在多条路径时,整个蚁群能够通过搜索蚂蚁个体留下的信息素痕迹,寻找到蚁巢和⾷物之间的最短路径。
蚁群算法中,蚂蚁个体作为每⼀个优化问题的可⾏解。
⾸先随机⽣成初始种群,包括确定解的个数、信息素挥发系数、构造解的结构等。
然后构造蚁群算法所特有的信息素矩阵每只妈蚁执⾏蚂蚊移动算⼦后,对整个群体的蚂蚁做⼀评价,记录最优的蚂蚁。
之后算法根据信息素更新算⼦更新信息素矩阵,⾄此种群的⼀次选代过程完成。
整个蚂蚁群体执⾏⼀定次数的选代后退出循环、输出最优解。
2.术语介绍(1)蚂蚁个体。
每只蚂蚁称为⼀个单独的个体,在算法中作为⼀个问题的解。
(2)蚂蚁群体。
⼀定数量的蚂蚁个体组合在⼀起构成⼀个群体,蚂蚁是群体的基本单位。
蚁群算法内容简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻经的行为而提出的一种基于种群的启发式随机搜索算法,蚁群算法具有并行性、鲁棒性、正反馈性等特点.蚁群算法最早成功应用于解决著名的旅行商问题以及二次分配问题、车间任务调度问题、图的着色问题、网络路由等许多复杂的组合问题。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
随着人们对效益的要求越来越高,人们发现组合优化的各种方法,但在一些复杂度比较高的问题上,一些传统的方法显示了他的限制,列如计算量上升太快,时间复杂度很高,这就需要一些新的方法来解决这些问题,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
蚁群系统(Ant Colony System),这种算法是目前国内外启发式算法中的研究热点和前沿课题,被成功地运用于旅行商问题的求解,蚁群算法在求解复杂优化问题方面具有很大的优越性和广阔的前景。
但是,根据观察实验发现,蚁群中的多个蚂蚁的运动是随机的,在扩散范围较大时,在较短时间内很难找出一条较好的路径,在算法实现的过程中容易出现停滞现象和收敛速度慢现象。
在这种弊端的情况下,学者们提出了一种自适应蚁群算法,通过自适应地调整运行过程中的挥发因子来改变路径中信息素浓度,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
下面是一些最常用的变异蚁群算法精英蚂蚁系统全局最优解决方案在每个迭代以及其他所有的蚂蚁的沉积信息素.最大最小蚂蚁系统( MMAS)添加的最大和最小的信息素量[ τmax ,τmin ],只有全局最佳或迭代最好的巡逻沉积的信息素。
一种求解连续空间约束优化问题的蚁群算法蚁群算法是一种用于求解连续空间约束优化问题的智能算法,它可以在搜索过程中考虑对连续空间中的约束。
它以蚂蚁的协作行为为模型,通过交互式迭代学习的方法来搜索优化的最优点。
蚁群算法首先将被优化的多变量函数想象为一个虚拟蚁群运行的空间,然后引入一种启发式规则来促进蚁群在这个空间里收敛。
这样,每只蚂蚁会在该空间中寻找最优点。
1、关于蚁群算法(1)概念:蚁群算法是一种以蚂蚁群集体智能行为为基础,用于求解连续空间约束优化问题的计算方法,它采取交互式迭代学习的方法,通过不断迭代的过程来获取局部最优解的全局最优解。
(2)运行机制:蚁群算法通过不断派生更新后的解来寻找全局最优解,它以有限集合中的粒子为搜索基础,通过分布式迭代迭代式搜索获取高效可用的解决方案。
(3)优点:蚁群算法搜索过程中可以很好地考虑约束,计算复杂度较低,可以很好地并行计算,具有自适应性,可以抗局部局势影响,对解的准确度更高,计算效率高2、蚁群算法的应用(1)服务排队:蚁群算法可用于排队管理,求解系统的服务时间最优策略。
(2)复杂工程设计:可以用于建筑、机械等复杂工程设计优化,通过模拟蚁群大量行为来搜寻对目标值的最佳取值,以此计算出最佳设计方案。
(3)优化投资组合:可以应用于投资组合优化,通过蚁群智能技术,找出投资组合可以得到更优的风险收益指标。
(4)飞行路径规划:蚁群算法可用于航空航迹规划,通过迭代寻优,解决航班活动的最优路径问题。
3、蚁群算法的缺陷(1)结果可能不稳定:蚁群算法运行的结果可能不稳定,算法的收敛性、局部搜索特性决定算法的收敛性,如果初始参数不合理,可能导致收敛至错误的最优值。
(2)调整参数对结果影响大:参与蚁群算法运行的参数会对算法运行结果造成极大的影响,需要谨慎审查才能得到可靠的结果。
(3)计算复杂度高:蚁群算法需要大量的计算,耗时可能较长,因此针对特定临界问题,其计算度可能较大。
(4)算法初值依赖性强:蚁群算法对初值依赖性很强,如果初值设置不当,结果有可能会出错,而且需要大量试验才能获得正确的结论。
蚁群算法的基本原理和应用简介蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的启发式算法,它源于对蚂蚁在寻找食物时的行为规律的研究。
蚁群算法模拟了蚂蚁在寻找最佳路径时释放信息素、选择路径的策略,通过蚁群成员之间的相互合作和信息共享来求解各类优化问题。
蚁群算法具有较高的适应性和鲁棒性,被广泛应用于优化问题求解中。
基本原理蚁群算法基于一种基本的反馈机制:蚂蚁在行动过程中释放信息素,并根据所释放的信息素密度来选择路径。
信息素在路径上的积累程度会影响蚂蚁选择路径的概率,从而引导整个蚁群向目标位置集中。
具体的基本原理如下:1.蚂蚁的行动规则:蚂蚁按照一定的规则进行移动,每个蚂蚁根据当前位置的信息素密度以及启发式信息(例如距离、路径质量等)选择下一步的移动方向。
2.信息素的更新:蚂蚁在路径上释放信息素,并且信息素的蒸发和更新过程会导致信息素的动态变化。
经过多次迭代后,信息素会逐渐积累在最优路径上,从而引导后续的蚂蚁选择该路径。
3.路径选择概率:蚂蚁在选择下一步移动方向时,会根据当前位置的信息素和启发式信息计算路径选择概率。
较高的信息素密度和启发式信息将增加路径的选择概率。
应用领域蚁群算法在众多领域中取得了广泛的应用,以下列举几个示例:1.路径规划问题:蚁群算法可以用于解决路径规划问题,例如在城市中找到最短路径。
蚁群算法通过模拟蚂蚁的觅食行为,可以在复杂的网络中找到最优路径,无论是在城市道路网络还是在电信网络中。
–寻找最短路径:蚁群算法可以应用于解决最短路径问题,例如在城市导航、物流路径规划等领域。
–车辆路径优化:蚁群算法可以优化车辆的路线,减少行驶距离和时间,提高运输效率。
2.优化问题:蚁群算法在求解各种优化问题中具有较好的性能,例如旅行商问题、装箱问题等。
–旅行商问题:蚁群算法可以应用于解决旅行商问题,找到最短的旅行路线,减少旅行的距离和时间。
–装箱问题:蚁群算法可以优化装箱问题,将不同大小的物品装入不同大小的容器中,减少空间浪费。
蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。
针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
目录1基本信息1.1 概念1.2 原理1.3 问题2详细说明2.1 范围2.2 环境2.3 觅食规则2.4 移动规则2.5 避障规则2.6 信息素规则3相关研究3.1 引申3.2 蚁群算法的实现3.3 解读搜索引擎算法“蚁群算法”1.基本信息1.1概念各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。
有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。
最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
1.2原理设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。
这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
蚁群优化算法的JA V A实现收藏蚁群算法简介蚁群算法是群智能算法的一种,所谓的群智能是一种由无智能或简单智能的个体通过任何形式的聚集协同而表现出智能行为,它为在没有集中控制且不提供全局模型的前提下寻找复杂的分布式问题求解方案提供了基础,比如常见的蚂蚁觅食,大雁南飞等行为。
蚁群算法是模拟自然界中蚂蚁觅食的一种随机搜索算法,由Dorigo等人于1991年在第一届欧洲人工生命会议上提出[1] 。
蚁群算法的生物原理通过观察发现,蚁群在觅食的时候,总能找到一条从蚁巢到食物之间的一条最短的路径。
这个现象引起了生物学家的注意,根据研究,原来是蚂蚁在行进的过程中,会分泌一种化学物质——信息素,而蚂蚁在行进时,总是倾向于选择信息素浓度比较高的路线。
这样,在蚁巢和食物之间假如有多条路径,初始的时候,每条路径上都会有蚂蚁爬过,但是随着时间的推迟,单位时间内最短的那条路上爬过的蚂蚁数量会比较多,释放的信息素就相对来说比较多,那么以后蚂蚁选择的时候会大部分都选择信息素比较多的路径,从而会把最短路径找出来。
蚁群算法正是模拟这种蚁群觅食的原理,构造人工蚂蚁,用来求解许多组合优化问题。
有关蚁群算法的详细信息,可参考[2]——[5]。
蚁群算法的JA V A实现我个人认为利用JA V A编写一些计算密集型的算法不是一个好的选择。
本身一些算法是要要求高效率的,但是我感觉JA V A语言的性能不够,所以编写算法最好用c,其次也可以用c++。
当然,这仅是一家之言,欢迎拍砖。
此处使用JA V A的原因是为了演示算法的框架,给出一种思路,如果需要c++的参考,可以参考,如果需要c的代码,可以上http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html, 这个可以看作是ACO的官方网站了,里面的内容比较多。
算法说明算法以求解TSP问题为例,用来演示ACO的框架。
算法设定了两个类,一个是ACO,用来处理文件信息的读入,信息素的更新,路径的计算等;另一个是ant,即蚂蚁的信息。
一、蚁群算法的背景信息蚁群优化算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,之后,又系统研究了蚁群算法的基本原理和数学模型,并结合TSP优化问题与遗传算法、禁忌搜索算法、模拟退火算法、爬山法等进行了仿真实验比较,为蚁群算法的发展奠定了基础,并引起了全世界学者的关注与研究蚁群算法是一种基于种群的启发式仿生进化系统。
蚁群算法最早成功应用于解决著名的旅行商问题(TSP),该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性。
二、蚁群算法的原理[1]蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。
蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromo ne)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象 :某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。
基本的ACO模型由下面三个公式描述:a g(2-1;m号("1)二05®)+》蚯(2-2;(如果第k个蚂蚁经过了由i到j的路轻)〈2-3)btagJBJ.CDdTYykrLaoiO 式(2-1)、式(2-2)和式(2-3)中:m为蚂蚁个数;n为迭代次数;i为蚂蚁所在位置;j为蚂蚁可以到达的置;为蚂蚁可以到达位置的集合;为启发性信息(3-8>(3-9>Dlog. iirykii_2O1CJ式(3-9)中根据进行信息素更新的蚂蚁的类别可以是已知的最优解的路径长度或者是本次循环中的最优解的路径长度。
(2)信息素浓度的限制。
为了防止某条路径上的信息素出现大或者过小的极端情况,设定信息素浓度区间为。
通过这种方式使得在某条路径上的信息素浓度增大到超过区间上限或者减小到低于区间下限时,算法采用强制手段对其进行调整,以此提高算法的有效性。
蚁群算法
目录
1 蚁群算法基本思想 (1)
1.1蚁群算法简介 (1)
1.2蚁群行为分析 (1)
1.3蚁群算法解决优化问题的基本思想 (2)
1.4蚁群算法的特点 (2)
2 蚁群算法解决TSP问题 (3)
2.1关于TSP (3)
2.2蚁群算法解决TSP问题基本原理 (3)
2.3蚁群算法解决TSP问题基本步骤 (5)
3 案例 (6)
3.1问题描述 (6)
3.2解题思路及步骤 (6)
3.3MATLB程序实现 (7)
3.1.1 清空环境 (7)
3.2.2 导入数据 (7)
3.3.3 计算城市间相互距离 (7)
3.3.4 初始化参数 (7)
3.3.5 迭代寻找最佳路径 (7)
3.3.6 结果显示 (7)
3.3.7 绘图 (7)
1 蚁群算法基本思想
1.1 蚁群算法简介
蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。
该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。
蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。
蚁群算法是群智能理论研究领域的一种主要算法。
1.2 蚁群行为分析
E
A
B
C
D
F d=3
d=2 m=20 t=0
A
B C D
d=3
d=2 m=10 m=10
t=1
1.3 蚁群算法解决优化问题的基本思想
用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。
最后,整个蚂蚁会在正反馈的作用下集中到最佳路径上,此时对应的便的待优化问题的最优解。
1.4 蚁群算法的特点
(1)采用正反馈机制,使得搜索过程不断收敛,最终逼近最优解;
(2)每个个体可能通过释放信息素来改变周围的环境,且每个个体能够感知周围环境的
E A B
C D
F
d=3
d=2 m=10
t=7
m=10
E
A
B C
D
F d=3
d=2 m=10
t=9
m=10
E
A
B
C
D
F
d=3
d=2 m=20
T>8
m=20
蚂蚁释放的信息素与路径长度成反比
路径上信息素浓度越大,路径被选概率越大
实时变化,个体间通过环境进行间接通讯;
(3)搜索过程采用分布式计算方式,多个个体同时进行并行计算,大大提高了算法的计算能力和运行效率;
(4)启发式的概率搜索方式不容易陷入局部最优,易于寻找到最优解。
2 蚁群算法解决TSP 问题
2.1 关于TSP
G =(N , E ),N ={1,2,3,…,n },E ={(i ,j ) | i ,j ∈N }
城市之间的距离n n ij d ⨯)(
目标函数∑=-=n
l i i l l d w f 1
1)(,其中),,,(21n i i i w =为城市1,2,3,..n 的一个排列,11i i n =+。
2.2 蚁群算法解决TSP 问题基本原理
1.初始假设 蚂蚁群体中蚂蚁数量为m ; 城市个数为n ;
城市i 与城市j 之间的距离为)n j i d ij ,...3,2,1,( =;
t 时刻城市i 与城市j 连接路径上的信息浓度为)(t ij τ。
初始时刻,各城市间连接路径上的
信息浓度相同,可设为0)0(ττ=ij 。
2. 转移概率计算
t 时刻蚂蚁k 从城市i 转移到城市j 的概率为)(t P k ij ,其计算公式为
⎪⎪⎩⎪⎪⎨
⎧∉∈••=∑∈k k allow s is is ij ij K
ij allow s allow s t t t P k 0 ][)]([][)]([)(,
,βαβ
αητητ 其中:
)(t ij η为启发函数,ij ij d t /1)(=η,表示蚂蚁从城市i 转移到城市j 的期望程度;
)(m k allow k ,...,3,2,1 =为蚂蚁k 待访问城市的集合,开始时,k allow 中有(n-1)个元素,即
包括除了蚂蚁k 出发城市的其他所有城市,随意时间的推进,k allow 中元素不断减少,直到为空,即表示所有的城市均访问完毕; α为信息素重要程度因子,其值越大,表示信息素的浓度在转移中起的作用越大;
β为启发函数重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁会
以较大的概率转移到距离短的城市。
3. 信息素更新
信息素更新包括信息素的挥发和信息素增强(释放信息素)。
蚂蚁释放信息素的三种模型: (1) ant cycle system 模型
, 0i /⎩⎨⎧=∆其他访问城市只蚂蚁从城市第,
j k L Q k k ij
其中,Q 为常数,表示蚂蚁循环一次所释放的信息素总量;k L 为第k 只蚂蚁经过路径的
长度。
(2) ant quanlity system 模型
, 0i /⎩⎨⎧=∆其他访问城市只蚂蚁从城市第,j k d Q ij k ij
(3) ant density system 模型
, 0i ⎩
⎨⎧=∆其他访问城市只蚂蚁从城市第,
j k Q k
ij
一般用ant cycle system 模型计算释放的信息浓度,即蚂蚁经过的路径越短,释放的信息素浓度越高。
信息素挥发(evaporation )过程是信息素痕迹的浓度自动逐渐减弱的过程。
挥发过程主要用于避免算法过快地向局部最优区域集中,有助于搜索区域的扩展。
设)10(ρρ<表示信息素的挥发程度。
当所有蚂蚁完成一次循环后,各个城市间连接路径上的信息浓度可需进行如下实进更新:
10 )()1()1(1<<⎪⎩
⎪⎨⎧∆=∆∆+-=+∑=ρττττρτ,n k k ij
ij ij ij ij t t 其中: k
ij
τ∆表示第k 只蚂蚁在城市i 与城市j 连接路径上释放的信息浓度;
ij τ∆表示所的蚂蚁在城市i 与城市j 连接路径上释放的信息浓度之和。
2.3 蚁群算法解决TSP 问题基本步骤
1. 初始化参数
在计算之初,需要对相关的参数进行初始化,如蚁群模型(蚂蚁数量)m 、信息素重要适
度因子α、启发函数重要程度因子β、信息系挥发因子ρ、信息素释放总量Q 、最大迭代次数iter_max 、迭代初值iter=1。
2. 构建解空间
将各个蚂蚁随机地置于不同出发点,对每个蚂蚁k (k=1,2,3,…m ),计算转换概率,确定
蚁群算法解决TSP 问题的基本步骤
其下一个待访问的城市,直到所有蚂蚁访问完所有的城市。
3. 更新信息素
计算各蚂蚁经过的路径长度k L (k =1,2,3,…,m )
,记录当前迭代次数中的最优解(最短路径)。
同时,对各城市连接路径上的信息素浓度进行更新。
4. 判断是否终止
若iter<iter_maxt ,则令iter=iter+1,清空蚂蚁经过路径的记录表,并返回步骤2;否则终止计算,输出最大优解。
3 案例
3.1 问题描述
找一条遍历我国直辖市、省会和自治区首府的最佳路径。
3.2 解题思路及步骤
1. 计算城市羊相互距离
根据城市位置坐标,计算两两城市间的相互距离,得到对称的距离矩阵。
由于启了函数
ij ij d t /1)(=η,为保证分母不为零,将对角线上的元素修正为一个非常小的正数(如10-4)。
2. 初始化参数
3. 迭代寻找最佳路径
首先构造解空间,各蚂蚁根据转移概率公式访问所有城市。
然后计算各个蚂蚁经过路径的长度,并在每次后进行各城市连接路径上信息浓度更新,经过循环迭代,记录下最优路径及其长度。
4. 结果分析
找到最优路径后,与其他方得出的结果进行比较,从而对蚁群算法的性能进行评价。
同时,也可以探究不同取值的参数对优化结果的影响,从而找到一组最佳或较佳的参数组合。
蚁群算法求解TSP 问题的一般步骤
3.3 MATLB程序实现3.1.1 清空环境
3.2.2 导入数据
3.3.3 计算城市间相互距离3.3.4 初始化参数
3.3.5 迭代寻找最佳路径3.3.6 结果显示
3.3.7 绘图。