燃气管网的水力工况
- 格式:pptx
- 大小:286.07 KB
- 文档页数:38
燃气管网水利工况实验指导书一、实验测试目的城市燃气管道构成城市输配管网系统的环网或枝网,输配管网的布置,是根据工业和民用用户的用气量和城区地理特性,全面规划设计而成的管网系统。
对管网进行测试、分析和处置,是减少火灾、爆炸、中毒、输气损失,提高供气的可靠性的关键环节。
二、实验测试原理低压管网中,干管压力降与支管压力降的分配是一个技术经济问题,它与燃气供应地区干管和支管的数量、长度、燃气用具数量及建筑物特点等因素有关,图1是城市低压管网与用户直接连接,在计算工况下的压力曲线。
图中A 为管网起点,1p 为起点压力,即调压器的出口压力,B 为干管的终点,2p 为用户燃具前压力。
E 、F 、G 、B 、为用户1234C C C C 、、、与干管的连接点,A B '''-为干管A-B 的压力线,p '∆为干管A-B 的压力降,p ''∆为用户支管(包括室内管)的压力降。
压力图上的1234E C C C C ''''''''----、F 、G 、B 为支管压力线,1234pc pc pc pc 、、、分别为1234C C C C 、、、用户处的压力。
由图可见,从调压器出口A 到各用户管道的压力降是不同的,这就使用户处出现不同的压力,由A 点到用户2C 和用户4C 的压力降均为计算压力降p ∆,即计算压力降全被利用,而用户1C 和3C 的实际压力降均小于计算压力降p ∆,燃具前压力大于()21232p pc p pc p >、>。
因此,直接连在管网上的用户设备前的燃气压力降随计算压力降利用程度不同而异。
因为管网负荷是随着时间而不断变化的,当调压器出口压力为定值时,随着负荷的降低、管道中流量减小,压力降也就随之减小,因而用户处的压力将增大。
当负荷为零时,所有用户处的压力都落在44A C C A ''''''---范围内。
燃气管网的水力可靠性分析随着城市规模的不断扩大、人民生活水平的不断提高和卫生设施的不断完善,城市用气量在不断地上升,即使在一天的不同时间,节点流量的变化系数也较大,如白天高峰时的用气量就比晚上低谷时用气量大得多。
为此,本文建立了一种基于水力计算的管网可靠性评价方法。
优良的水力性能是保证燃气管网具有高度可靠性的前提[1],考虑管网实际运行水力条件的变化,根据不同时段用气量不同,建立能较为真实地反映管网实际供气服务质量的城市燃气管网广义可靠性模型——系统服务性能指标法。
1.燃气管网水力可靠性评价基本方法在进行燃气管网系统水力可靠性定量评价时,首先应针对不同评价体系选定相关的状态变量,然后定义标准服务性能曲线用以标定元素级性能指标对状态变量的变化规律,最后选择归纳函数拓展元素级性能评价得到整个管网的性能指标值[2,3]。
1.1状态变量所谓状态变量一般是指管网中节点或管段等元素的量值。
本文中的燃气管网水力可靠性评价的第一步是确定状态变量,即针对不同的评价体系选定相关的状态变量。
对于水力评价体系,则应选择节点压力作为状态变量之一。
通常已知燃气管网的拓扑结构,在选定状态变量后需要通过燃气管网模拟计算及其他相关模型计算来决定状态变量的数值。
无论通过何种途径获得状态变量的数值,都不影响它参与燃气管网的性能评价,但变量数值的精度将直接影响燃气管网性能评价的准确性。
1.2 服务性能曲线燃气管网水力可靠性评价方法的第二步是在不同的评价体系中,针对相应的状态变量定义标准服务性能曲线。
服务性能曲线通常反映了燃气管网元素级的性能指标对状态变量的变化规律,根据所定义的性能曲线可求得相应于各管网元素的性能指标值,即首先对管网元素进行性能评价。
由于燃气管网系统的可靠性与其服务水平密切相关,因此在定义曲线时建立一个性能指标比尺。
随着状态变量值的改变则指标在“无服务”和“最优服务”状态之间变化。
1.3归纳函数对燃气管网系统中的基本元素(如节点或管段)进行水力可靠性评价后,就可得到相对于各个元素的指标值,然后再通过某种归纳函数建立各同类元素指标值之间的相关性,从而得到相对于整个燃气管网系统的总指标值[4]。
燃气管道输送水力计算一、适用公式燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。
整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:1、层流状态 Re≤2100λ=64/Re Re=dv/γΔP/L=1.13×1010(Q0/d4)γρ0(T/T0)2、临界状态 Re=2100~3500λ=0.03+(Re -2100)/(65 Re-1×105)ΔP/L=1.88×106[1+(11.8 Q0-7×104dγ)/(23.0Q-1×105dγ)](Q02/d5)ρ(T/T)3、紊流状态 Re≥35001)钢管λ=0.11[(Δ/d)+(68/ Re)]0.25ΔP/L=6.89×106[(Δ/d)+192.26(dγ/ Q0)]0.25(Q2/d5)ρ(T/T)2)铸铁管λ=0.102[(1/d)+4960(dγ/ Q)]0.284ΔP/L=6.39×106[(1/d)+4960(dγ/ Q0)]0.284(Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q——燃气流量(Nm3/h)d——管道内径(mm)ρ——燃气密度(kg/Nm3)γ——0℃和101.325kPa时的燃气运动粘度(m2/s)Δ——管壁内表面的绝对当量粗糙度(mm) Re——雷诺数T——燃气绝对温度(K) T——273Kv——管内燃气流动的平均速度(m/s)(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)二、燃气的输配工况条件起点压力——10KPa 最大流速——10m/s燃气密度——1.658kg/Nm3(20℃和浓度20%时)纯轻烃燃气运动粘度——1.92×10-6m2/s(0℃和101.325kPa时)燃气运动粘度——11.1×10-6m2/s(0℃和101.325kPa时)三、钢管阻力降的计算与查表结果注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。