1.2.1-1.2.2充分条,必要条件,充要条件
- 格式:ppt
- 大小:995.50 KB
- 文档页数:28
1.2.1 充分条件与必要条件~1.2.2 充要条件学习目标(1)正确理解充分条件、必要条件、充要条件三个概念;(2)能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系;(3)在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系.学习重点:充分条件、必要条件和充要条件三个概念的定义.学习难点:必要条件的定义、充要条件的充分必要性.知识点充分条件、必要条件与充要条件问题导思观察下面四个电路图,开关A闭合作为命题的条件p,灯泡B亮作为命题的结论q.1.在上面四个电路中,你能说出p,q之间的推出关系吗?2.电路图③中开关A闭合,灯泡B亮;反之灯泡B亮,开关A一定闭合,两者的关系应如何表述?知识梳理1.充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系p q p q条件关系p是q的条件q是p的条件p不是q的条件q不是p的条件2.充要条件的概念一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说p是q的条件,简称条件.概括地说,如果p⇔q,那么p与q条件.互动探究类型1 充分条件、必要条件、充要条件的判断例1(1)已知实系数一元二次方程ax2+bx+c=0(a≠0),下列结论正确的是()①Δ=b2-4ac≥0是这个方程有实根的充要条件;②Δ=b2-4ac=0是这个方程有实根的充分条件;③Δ=b2-4ac>0是这个方程有实根的必要条件;④Δ=b2-4ac<0是这个方程没有实根的充要条件.A.③④B.②③C.①②③D.①②④(2)若p:(x-1)(x+2)≤0,q:x<2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件规律方法1.判断p是q的什么条件,主要判断p⇒q,及q⇒p两命题的正确性,若p⇒q真,则p是q成立的充分条件;若q⇒p真,则p是q成立的必要条件.要否定p与q不能相互推出时,可以举出一个反例进行否定.2.判定方法常用以下几种:(1)定义法:借助“⇒”号,可记为:箭头所指为必要,箭尾跟着充分.(2)集合法:将命题p、q分别看做集合A,B,当A⊆B时,p是q的充分条件,q是p的必要条件,即p⇒q,可以用“小范围推出大范围”来记忆;当A=B时,p、q互为充要条件.变式训练已知如下三个命题中:①若a∈R,则“a=2”是“(a-1)(a-2)=0”的充分不必要条件;②对于实数a,b,c,“a>b”是“ac2>bc2”的充分不必要条件;③直线l1:ax+y=3,l2:x+by-c=0.则“ab=1”是“l1∥l2”的必要不充分条件;④“m<-2或m>6”是“y=x2+mx+m+3有两个不同零点”的充要条件.正确的结论是________.类型2 充分条件、必要条件、充要条件的应用例2 设集合A ={x |-x 2+x +6≤0},关于x 的不等式x 2-ax -2a 2>0的解集为B (其中a <0).(1)求集合B ;(2)设p :x ∈A ,q :x ∈B ,且¬p 是¬q 的必要不充分条件,求实数a 的取值范围.规律方法1.利用充分、必要条件求参数的取值范围问题,常利用集合法求解,即先化简集合A ={x |p (x )}和B ={x |q (x )},然后根据p 与q 的关系(充分、必要、充要条件),得出集合A 与B 的包含关系,进而得到相关不等式组(也可借助数轴),求出参数的取值范围.2.判断p 是q 的什么条件,若直接判断困难,还可以用等价命题来判断,有时也可通过举反例否定充分性或必要性.变式训练已知p :x 2-8x -20≤0,q :x 2-2x +1-m 2≤0(m >0).若¬p 是¬q 的充分而不必要条件,求实数m 的取值范围.类型3 充要条件的证明例3 求证:方程mx 2-2x +3=0有两个同号且不等的实根的充要条件是:0<m <13.规律方法1.证明p 是q 的充要条件,既要证明命题“p ⇒q ”为真,又要证明“q ⇒p ”为真,前者证明的是充分性,后者证明的是必要性.2.证明充要条件,即说明原命题和逆命题都成立,要注意“p是q的充要条件”与“p的充要条件是q”这两种说法的差异,分清哪个是条件,哪个是结论.变式训练求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.课堂小结充分条件与必要条件的判断方法(1)定义法用定义法判断直观、简捷,且一般情况下,错误率低,在解题中应用极为广泛.(2)集合法从集合角度看,设集合A={x|x满足条件p},B={x|满足条件q}.①若A⊆B,则p是q的充分条件;若A B,则p是q的充分不必要条件.②若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件.③若A=B,则p是q的充要条件.④若A B,且A⊉B,则p是q的既不充分也不必要条件.(3)等价转化法当某一命题不易直接判断条件和结论的关系(特别是对于否定形式或“≠”形式的命题)时,可利用原命题与逆否命题等价来解决.(4)传递法充分条件与必要条件具有传递性,即由p1⇒p2⇒p3⇒…⇒p n,则可得p1⇒p n,充要条件也有传递性.当堂检测1.“x=3”是“x2=9”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件2.设p:x2+3x-4>0,q:x=2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在“x2+(y-2)2=0是x(y-2)=0的充分不必要条件”这句话中,已知条件是________,结论是________.4.若p:x=1或x=2;q:x-1=x-1,则p是q的什么条件?参考答案知识点充分条件、必要条件与充要条件问题导思1.【提示】①开关A闭合,灯泡B一定亮,灯泡B亮,开关A 不一定闭合,即p ⇒q ,qp ;②开关A 闭合,灯泡B 不一定亮,灯泡B 亮,开关A 必须闭合,即p q ,q ⇒p ;③开关A 闭合,灯泡B 亮,反之灯泡B 亮,开关A 一定闭合,即p ⇔q ;④开关A 闭合与否,不影响灯泡B ,反之,灯泡B 亮与否,与开关A 无关,即pq ,且q p .2.【提示】 p ⇔q .知识梳理1.⇒ 充分 充分 必要 必要2.充分必要 充要 互为充要互动探究类型1 充分条件、必要条件、充要条件的判断例1 【答案】 (1)D (2)A【解析】 (1)①对,Δ≥0⇔方程ax 2+bx +c =0有实根;②对,Δ=0⇒方程ax 2+bx +c =0有实根;③错,Δ>0⇒方程ax 2+bx +c =0有实根,但ax 2+bx +c =0有实根Δ>0;④对,Δ<0⇔方程ax 2+bx +c =0无实根.故选D.(2)p :-2≤x ≤1,q :x <2,显然p ⇒q ,但qp ,即p 是q 的充分不必要条件. 变式训练 【答案】 ①③④【解析】 ①中,当a =2时,有(a -1)(a -2)=0;但当(a -1)(a -2)=0时,a =1或a =2,不一定有a =2.∴“a =2”是“(a -1)(a -2)=0”的充分不必要条件,①正确.②∵a >b ac 2>bc 2(c =0),但ac 2>bc 2⇒a >b . ∴“a >b ”是“ac 2>bc 2”必要不充分条件,②错.③中,ab =1且ac =3时,l 1与l 2重合,但l 1∥l 2⇒a 1=1b,即ab =1, ∴“ab =1”是“l 1∥l 2”的必要不充分条件,③正确.④中,y =x 2+mx +m +3有两个不同零点⇔Δ=m 2-4(m +3)>0⇔m <-2或m >6. ∴是充要条件,④正确.类型2 充分条件、必要条件、充要条件的应用例2 解:(1)x 2-ax -2a 2>0⇔(x -2a )(x +a )>0,解得x >-a 或x <2a .故集合B ={x |x >-a 或x <2a }.(2)法一 若¬p 是¬q 的必要不充分条件,则¬q ⇒¬p ,由此可得p ⇒q ,则A ={x |x 2-x -6≥0}={x |(x -3)(x +2)≥0}={x |x ≥3或x ≤-2}由p ⇒q ,可得A ⊆B ,∴⎩⎪⎨⎪⎧-a <3-2<2a ,⇒a >-1. 法二 A ={x |x ≥3或x ≤-2},∁U A ={x |-2<x <3},而∁U B ={x |2a ≤x ≤-a },由¬p 是¬q 的必要不充分条件,可得¬q ⇒¬p ,也即∁U B ⊆∁U A ,∴⎩⎪⎨⎪⎧2a >-2-a <3,⇒a >-1. 变式训练解:法一 由x 2-8x -20≤0,得-2≤x ≤10,由x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m (m >0).∴¬p :A ={x |x >10或x <-2},¬q :B ={x |x >1+m 或x <1-m }.∵¬p 是¬q 的充分而不必要条件,∴A B .∴⎩⎪⎨⎪⎧m >0,1+m ≤10,1-m ≥-2,解得0<m ≤3.∴m 的取值范围是{m |0<m ≤3}.法二 由x 2-8x -20≤0,得-2≤x ≤10,由x 2-2x +1-m 2≤0得1-m ≤x ≤1+m (m >0),∴p :A ={x |-2≤x ≤10},q :B ={x |1-m ≤x ≤1+m }.∵¬p 是¬q 的充分不必要条件,∴q 也是p 的充分不必要条件,∴B A .∴⎩⎪⎨⎪⎧ m >0,1+m ≤10,1-m ≥-2,解得0<m ≤3.∴m 的取值范围是{m |0<m ≤3}.类型3 充要条件的证明例3 证明:充分性(由条件推结论):∵0<m <13, ∴方程mx 2-2x +3=0的判别式Δ=4-12m >0,∴方程有两个不等的实根.设方程的两根为x 1、x 2,当0<m <13时,x 1+x 2=2m >0且x 1x 2=3m>0,故方程mx 2-2x +3=0有两个同号且不相等的实根,即0<m <13⇒方程mx 2-2x +3=0有两个同号且不相等的实根.必要性(由结论推条件):若方程mx 2-2x +3=0有两个同号且不相等的实根,则有⎩⎪⎨⎪⎧Δ=4-12m >0x 1x 2>0, ∴0<m <13,即方程mx 2-2x +3=0有两个同号且不相等的实根⇒0<m <13. 综上,方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <13. 变式训练证明:假设p :方程ax 2+bx +c =0有一个根是1,q :a +b +c =0.(1)证明p ⇒q ,即证明必要性.∵x =1是方程ax 2+bx +c =0的根,∴a ·12+b ·1+c =0,即a +b +c =0.(2)证明q ⇒p ,即证明充分性.由a +b +c =0,得c =-a -b .∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.当堂检测1.【答案】A【解析】当x=3时,x2=9;但x2=9,有x=±3.∴“x=3”是“x2=9”的充分不必要条件.2.【答案】B【解析】当x2+3x-4>0时,不一定有x=2;但当x=2时,必有x2+3x-4>0,故p是q的必要不充分条件.3.【答案】x2+(y-2)2=0x(y-2)=04.解:因为x=1或x=2⇒x-1=x-1;x-1=x-1⇒x=1或x=2,所以p是q的充要条件.。
1.2.1 充分条件与必要条件充分条件与必要条件1.判一判(正确的打“√”,错误的打“×”) (1)若p 是q 的必要条件,则q 是p 的充分条件.( ) (2)若p 是q 的充分条件,则綈p 是綈q 的充分条件.( ) (3)“x =1”是“x 2=x ”的必要条件.( ) 答案 (1)√ (2)× (3)×2.做一做(请把正确的答案写在横线上)(1)(教材改编P 10T 4(1))“x =3”是“x 2=9”的________条件(填“充分”或“必要”). (2)若p 是q 的充分条件,q 是r 的充分条件,则p 是r 的________条件. (3)“a >0,b >0”是“ab >0”的________条件.(4)“若p ,则q ”的逆命题为真,则p 是q 的________条件. 答案 (1)充分 (2)充分 (3)充分 (4)必要探究1 充分条件与必要条件的判断例1 在下列各题中,分别判断p 是否为q 的充分条件或必要条件,并说明理由. (1)p :x 2=2x +1,q :x =2x +1; (2)p :a 2+b 2=0,q :a +b =0; (3)p :a <b ,q :ab<1;(4)p :ab ≠0,q :直线ax +by +c =0与两坐标轴都相交. [解] (1)∵x 2=2x +1⇒/x =2x +1,x =2x +1⇒x 2=2x +1, ∴p 是q 的必要条件,且p 不是q 的充分条件. (2)∵a 2+b 2=0⇒a =b =0⇒a +b =0,a +b =0⇒/a 2+b 2=0,∴p 是q 的充分条件,且p 不是q 的必要条件.(3)由于a <b ,当b <0时,ab >1;当b >0时,a b <1,故若a <b ,不一定有a b<1;当a >0,b >0,a b <1时,可以推出a <b ;当a <0,b <0,ab<1时,可以推出a >b .所以p 不是q 的充分条件,且p 不是q 的必要条件.(4)由ab ≠0,即a ≠0且b ≠0,此时直线ax +by +c =0与两坐标轴都相交;又当ax +by +c =0与两坐标轴都相交时,a ≠0且b ≠0,即ab ≠0,所以p 是q 的充分条件,且p 是q 的必要条件.拓展提升充分条件、必要条件的判定方法(1)定义法:直接判断p ⇒q 和q ⇒p 是否成立,然后得结论. (2)等价法:利用命题的等价形式:p ⇒q ⇔綈q ⇒綈p ,q ⇒p ⇔綈p ⇒綈q ,p ⇔q 与綈p ⇔綈q 的等价关系.对于条件和结论是否定形式的命题,一般运用等价法.(3)集合法:对于涉及取值范围的判断题,可从集合的角度研究,若两个集合具有包含关系,则小范围⇒大范围,大范围⇒/小范围.(4)传递法:由推式的传递性:p 1⇒p 2⇒p 3⇒…⇒p n ,则p 1⇒p n .【跟踪训练1】 在下列各题中,分别判断p 是否为q 的充分条件或必要条件,并说明理由.(1)p :|a |≥2,a ∈R ,q :方程x 2+ax +a +3=0有实根; (2)p :sin α>sin β,q :α>β;(3)p :四边形是矩形;q :四边形的对角线相等.解 (1) 当|a |≥2时,如a =3,则方程x 2+3x +6=0无实根,而方程x 2+ax +a +3=0有实根,则必有a ≤-2或a ≥6,可推出|a |≥2,故p 不是q 的充分条件,p 是q 的必要条件.(2)当α=π2,β=3π4时,sin α=1,sin β=22,此时sin α>sin β,而α<β,故充分性不成立;而当α=3π4,β=π2时,sin α=22,sin β=1,此时α>β,而sin α<sin β,故必要性也不成立.故p 既不是q 的充分条件,也不是q 的必要条件.(3)四边形的对角线相等⇒/四边形是矩形;四边形是矩形⇒四边形的对角线相等,故p 是q 的充分条件,p 不是q 的必要条件.探究2 利用充分条件与必要条件求参数的取值范围例2 已知集合A ={y |y =x 2-3x +1,x ∈R },B ={x |x +2m ≥0};命题p :x ∈A ,命题q :x ∈B ,并且綈p 是綈q 的必要条件,求实数m 的取值范围.[解] 由已知可得A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛x -322-54,x ∈R =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y ≥-54,B ={x |x ≥-2m },则∁R A =⎝ ⎛⎭⎪⎫-∞,-54,∁R B =(-∞,-2m ),因为綈p 是綈q 的必要条件,所以∁R B ⊆∁R A ,所以-2m ≤-54,解得m ≥58,所以m 的取值范围是⎣⎢⎡⎭⎪⎫58,+∞.[解法探究] 此题有没有其他解法? 解 由已知可得A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛x -322-54,x ∈R =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y ≥-54, B ={x |x ≥-2m }.因为綈p 是綈q 的必要条件, 所以p 是q 的充分条件,∴A ⊆B , ∴-2m ≤-54,∴m ≥58,即m 的取值范围是⎣⎢⎡⎭⎪⎫58,+∞.[条件探究] 如果把例2中“必要”改为“充分”,其他条件不变,如何解答?解 由已知得A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y ≥-54,B ={x |x ≥-2m }. 因为綈p 是綈q 的充分条件, 所以p 是q 的必要条件,所以B ⊆A , 所以-2m ≥-54,解得m ≤58,即m 的取值范围是⎝ ⎛⎦⎥⎤-∞,58.拓展提升利用充分、必要条件求参数的思路根据充分条件、必要条件求参数的取值范围时,先将p ,q 等价转化,再根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.【跟踪训练2】 已知M ={x |(x -a )2<1},N ={x |x 2-5x -24<0},若M 是N 的充分条件,求a 的取值范围.解 由(x -a )2<1,得a -1<x <a +1, 由x 2-5x -24<0,得-3<x <8. ∵M 是N 的充分条件,∴M ⊆N . 于是⎩⎪⎨⎪⎧a -1≥-3,a +1≤8,从而可得-2≤a ≤7.故a 的取值范围为[-2,7].探究3 充分条件与必要条件的实际应用例3 在下面电路图中,闭合开关A 是灯泡B 亮的什么条件?[解] 如题图(1),闭合开关A 或闭合开关C ,都可使灯泡B 亮.反之,若要灯泡B 亮,不一定非要闭合开关A .因此,闭合开关A 是灯泡B 亮的充分不必要条件;如题图(2),闭合开关A 而不闭合开关C ,灯泡B 不亮.反之,若要灯泡B 亮,开关A 必须闭合,说明闭合开关A 是灯泡B 亮的必要不充分条件;如题图(3),闭合开关A 但不闭合开关C ,灯泡B 不亮.反之,灯泡B 亮也不必闭合开关A ,只要闭合开关C 即可,说明闭合开关A 是灯泡B 亮的既不充分也不必要条件.拓展提升充分、必要条件实际应用的解题策略将问题转化为数学模型,分清条件与结论为解题关键.(1)p 是q 的充分条件是指“p 成立可充分保证q 成立,但是如果没有p ,q 也可能成立”. (2)q 是p 的必要条件是指“要使p 成立必须要有q 成立”,或者说“若q 不成立,则p 一定不成立”;但即使有q 成立,p 未必会成立.【跟踪训练3】 《三国演义》中曹操败走华容道是这样描写的:曹操投南郡,除华容道外,还有一条便于通行的大路,前者路险,但近50余里;后者路平,却远50余里,曹操令人上山观察敌情虚实,回报说:“小路山边有数处起烟,大路并无动静.”曹操说:“诸葛亮多谋,故使人于山僻烧烟,使我军不敢从这条山路上走,他却伏兵于大路等着,吾已料定,偏不中他计.”结果致使曹操败走华容道,请用数学知识解释这种现象.解“诸葛亮多谋”是“虚则实之,实则虚之”的充分条件,“虚则实之,实则虚之”是“小路山边有数处起烟,而大路并无动静(有伏兵却没动静)”的充分条件,因为诸葛亮多谋是事实,所以曹操认为诸葛亮必然运用兵法“虚则实之,实则虚之”,曹操不以调查事实为依据,而诸葛亮抓住了曹操的这一心理,所以致使曹操败走华容道.1.充分与必要条件的判断方法判断p是q的什么条件,其实质是判断“若p,则q”及其逆命题“若q,则p”的真假.若p⇒q,q⇒/p,则p是q的充分不必要条件;若p⇒/q,q⇒p,则p是q的必要不充分条件;若p⇒q,q⇒p,则p是q的充分条件,也是q的必要条件(也称充要条件);若p⇒/q,q⇒/p,则p是q的既不充分也不必要条件.2.等价转化法的应用一般地,根据命题间的等价关系,若“p⇒q且p⇐ /q”等价于“綈p⇐綈q且綈p⇒/綈q”,即“p是q的充分不必要条件”等价于“綈p是綈q的必要而不充分条件”.3.集合观点的应用若p,q对应的数集分别为P,Q,当P⊆Q时,p是q的充分条件,q是p的必要条件,这可以总结为“小范围推出大范围”,简记为:“小充分,大必要”.1.已知命题“若p,则q”,假设其逆命题为真,则p是q的( )A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件答案 B解析逆命题“若q,则p”为真命题,则p是q的必要条件.2.设x∈R,则x>2的一个必要不充分条件是( )A.x>1 B.x<1C.x>3 D.x<3答案 A解析x>2⇒x>1,但x>1⇒/x>2.3.对于任意的实数a,b,c,在下列命题中,真命题是( )A.“ac>bc”是“a>b”的必要条件B .“ac =bc ”是“a =b ”的必要条件C .“ac <bc ”是“a <b ”的充分条件D .“ac =bc ”是“a =b ”的充分条件 答案 B解析 若a =b ,则ac =bc ;若ac =bc ,则a 不一定等于b ,故“ac =bc ”是“a =b ”的必要条件.4.“b 2=ac ”是“a ,b ,c 成等比数列”的________条件.(填“充分”或“必要”) 答案 必要解析 a ,b ,c 成等比数列⇒b 2=ac . 5.下列说法是否正确?请说明理由. (1)x =1是(x -1)(x -2)=0的充分条件;(2)“△ABC ≌△A ′B ′C ′”是“△ABC ∽△A ′B ′C ′”的充分条件; (3)α=π6是sin α=12的必要条件;(4)x +y >2是x >1,y >1的必要条件. 解 (1)正确,因为x =1⇒(x -1)(x -2)=0.(2)正确,因为△ABC ≌△A ′B ′C ′⇒△ABC ∽△A ′B ′C ′. (3)错误,因为sin α=12⇒/α=π6.(4)正确,因为x >1,y >1⇒x +y >2.。
§1.2充分条件与必要条件1.2.1 充分条件与必要条件学习目标 1.理解充分条件、必要条件的意义.2.会求(判定)某些简单命题的条件关系.3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.知识点一充分条件与必要条件命题真假若“p,则q”为真命题“若p,则q”为假命题推出关系p⇒q p⇏q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件知识点二充分条件、必要条件与集合的关系思考“x<2”是“x<3”的__________条件,“x<3”是“x<2”的__________条件.答案充分必要梳理A={x|x满足条件p},B={x|x满足条件q}A⊆Bp是q的充分条件q是p的必要条件A⊈Bp是q的不充分条件q是p的不必要条件B⊆Aq是p的充分条件p是q的必要条件B⊈Aq是p的不充分条件p是q的不必要条件特别提醒:(1)p⇒q,q⇏p,p是q的充分不必要条件;(2)p⇏q,q⇒p,p是q的必要不充分条件;(3)p⇏q,q⇏p,p是q的既不充分也不必要条件.1.若p是q的充分条件,则p是唯一的.( ×)2.若q是p的必要条件,则p是q的充分条件( √)3.“若綈p,则綈q”是真命题,则p是q的必要条件.( √) 4.若q不是p的必要条件,则“p⇏q”成立.( √)类型一 充分条件与必要条件的概念例1 (1)判断下列说法中,p 是q 的充分条件的是____________________________________. ①p :“x =1”,q :“x 2-2x +1=0”;②已知α,β是不同的两个平面,直线a ⊂α,直线b ⊂β,p :a 与b 无公共点,q :α∥β; ③设a ,b 是实数,p :“a +b >0”,q :“ab >0”. 考点 充分条件、必要条件的概念及判断 题点 充分条件的判断 答案 ①解析 对①,p ⇒q ;②p ⇏q ;③p ⇏q ,故填①. (2)下列各题中,p 是q 的必要条件的是________. ①p :x 2>2016,q :x 2>2015;②p :ax 2+2ax +1>0的解集是实数集R ,q :0<a <1; ③已知a ,b 为正实数,p :a >b >1,q :log 2a >log 2b >0. 考点 充分条件、必要条件的概念及判断 题点 必要条件的判断 答案 ②③解析 ①q ⇏p ;②p :0≤a <1,故q ⇒p ; ③log 2a >log 2b >0⇒a >b >1, ∴q ⇒p ,故填②③. 引申探究例1(1)中p 是q 的必要条件的是________. 答案 ①②解析 ①x 2-2x +1=0⇒x =1,即q ⇒p ;②⎩⎪⎨⎪⎧α∥β,a ⊂α,b ⊂β⇒a 与b 无公共点,即q ⇒p ;③q ⇏p .故填①②.反思与感悟 充分条件、必要条件的两种判断方法 (1)定义法①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为结论的充分条件,否则就不是充分条件;③尝试从结论推条件,若结论能推出条件,则条件为结论的必要条件,否则就不是必要条件.(2)命题判断法①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p的必要条件;②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同时q也不是p的必要条件.跟踪训练1 (1)a>b的一个充分不必要条件是( )A.a2>b2B.|a|>|b|C.1a<1bD.a-b>1考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 D解析a-b>1⇒a-b>0而a-b>0⇏a-b>1,故选D.(2)如果命题“若p,则q”的否命题是真命题,而它的逆否命题是假命题,则p是q的________条件.(填“充分不必要”或“必要不充分”)考点充分条件、必要条件和充要条件的综合应用题点必要不充分条件的判定答案必要不充分解析由逆命题与否命题是等价命题知q⇒p,由原命题与逆否命题的等价性得p⇏q,故p是q的必要不充分条件.类型二充分条件与必要条件的应用例2 已知p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0.若綈p 是綈q的必要条件,求实数a的取值范围.考点充分条件、必要条件的概念及判断题点由充分条件、必要条件求参数的范围解由x2-4ax+3a2<0且a<0,得3a<x<a,所以p:3a<x<a,即集合A={x|3a<x<a}.由x2-x-6≤0,得-2≤x≤3,所以q:-2≤x≤3,即集合B={x|-2≤x≤3}.因为綈q ⇒綈p ,所以p ⇒q ,所以A ⊆B , 所以⎩⎪⎨⎪⎧3a ≥-2,a ≤3,a <0,解得-23≤a <0,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-23,0. 引申探究本例中条件“a <0”改为“a >0”,若綈p 是綈q 的充分条件,求实数a 的取值范围. 解 由x 2-4ax +3a 2<0且a >0,得a <x <3a , 所以p :a <x <3a , 即集合A ={x |a <x <3a }. 由x 2-x -6≤0,得-2≤x ≤3, 所以q :-2≤x ≤3, 即集合B ={x |-2≤x ≤3}.因为綈p ⇒綈q ,所以q ⇒p ,所以B ⊆A , 所以⎩⎪⎨⎪⎧3a >3,a <-2,a >0,解得a ∈∅.反思与感悟 (1)设集合A ={x |x 满足p },B ={x |x 满足q },则p ⇒q 可得A ⊆B ;q ⇒p 可得B ⊆A ;p ⇔q 可得A =B ,若p 是q 的充分不必要条件,则A B .(2)利用充分条件、必要条件求参数的取值范围的关键就是找出集合间的包含关系,要注意范围的临界值.跟踪训练2 已知p :x <-2或x >10,q :x 2-2x +1-a 2>0,若p 是q 的必要条件,求负实数a 的取值范围.考点 充分条件、必要条件的概念及判断 题点 由充分条件、必要条件求参数的范围 解 ∵a <0,解不等式得q :x <1+a 或x >1-a , ∵p 是q 的必要条件,∴q ⇒p , ∴⎩⎪⎨⎪⎧1+a ≤-2,1-a ≥10,a <0,解得a ≤-9.故负实数a的取值范围是(-∞,-9].1.“x>0”是“x≠0”的( )A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 A解析∵x>0⇒x≠0,而x≠0⇏x>0,∴x>0是x≠0的充分不必要条件.2.设向量a=(2,x-1),b=(x+1,4),则“x=3”是“a∥b”的( ) A.充分条件B.必要条件C.既不是充分条件,又不是必要条件D.无法判断考点充分条件、必要条件的概念及判断题点充分条件的判断答案 A解析∵a∥b,∴(x-1)(x+1)-8=0,解得x=±3,∴x=3是a∥b的充分条件.3.若a∈R,则“a=1”是“|a|=1”的( )A.充分条件B.必要条件C.既不是充分条件也不是必要条件D.无法判断考点充分条件、必要条件的概念及判断题点充分条件的判断答案 A解析当a=1时,|a|=1成立,但|a|=1时,a=±1,所以a=1不一定成立.∴“a =1”是“|a |=1”的充分条件.4.从“充分条件”“必要条件”中选出适当的一种填空: (1)“ax 2+bx +c =0(a ≠0)有实根”是“ac <0”的________. (2)“△ABC ≌△A ′B ′C ′”是“△ABC ∽△A ′B ′C ′”的________. 考点 充分条件、必要条件的概念及判断 题点 充分条件的判断答案 (1)必要条件 (2)充分条件5.是否存在实数p ,使得x 2-x -2>0的一个充分条件是4x +p <0,若存在,求出p 的取值范围,否则,说明理由.考点 充分条件、必要条件的概念及判断 题点 由充分条件、必要条件求参数的范围 解 由x 2-x -2>0,解得x >2或x <-1. 令A ={x |x >2或x <-1},由4x +p <0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-p4. 由题意得B ⊆A ,即-p4≤-1,即p ≥4,此时x <-p4≤-1⇒x 2-x -2>0,∴当p ≥4时,“4x +p <0”是“x 2-x -2>0”的一个充分条件.1.充分条件、必要条件的判断方法 (1)定义法:直接利用定义进行判断.(2)等价法:“p ⇔q ”表示p 等价于q ,等价命题可以进行转换,当我们要证明p 成立时,就可以去证明q 成立.(3)利用集合间的包含关系进行判断:如果条件p 和结论q 相应的集合分别为A 和B ,那么若A ⊆B ,则p 是q 的充分条件;若B ⊆A ,则p 是q 的必要条件;若A =B ,则p 既是q 的充分条件又是q 的必要条件.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.一、选择题1.“x为无理数”是“x2为无理数”的( )A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点必要不充分条件的判定答案 B解析当x2为无理数时,x为无理数;当x为无理数时,x2不一定为无理数.2.设a,b∈R,则“a+b>2”是“a>1且b>1”的( )A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点必要不充分条件的判定答案 B3.“x>0”是“x2+x>0”的( )A.充分不必要条件B.必要不充分条件C.必要条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 A解析由x2+x>0⇔x<-1或x>0,知A符合要求.4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的( )A.充分不必要条件B.必要不充分条件C.必要条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 A解析k=1⇒圆心到直线x-y+k=0的距离d=12<1,即相交,而直线x-y+k=0与圆x2+y2=1相交D⇏k=1,故选A.5.设x∈R,则x>π的一个必要不充分条件是( )A.x>4 B.x<4C.x>3 D.x<3考点充分条件、必要条件和充要条件的综合应用题点必要不充分条件的判定答案 C6.已知命题“若p,则q”,假设其逆命题为真,则p是q的( )A.充分条件B.必要条件C.充分不必要条件D.既不充分也不必要条件考点充分条件、必要条件的概念及判断题点必要条件的判断答案 B解析原命题的逆命题:“若q,则p”,它是真命题,即q⇒p,所以p是q的必要条件.7.在△ABC中,若p:A=60°,q:sin A=32,则p是q的( )A.充分不必要条件B.必要不充分条件C.必要条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 A解析因为sin 60°=32,故p⇒q,但sin A=32时,A=60°或120°.8.给出三个条件:①xt2>yt2;②xt>yt;③x2>y2.其中能成为x>y的充分条件的是( ) A.①②③B.②③C.③D.①考点充分条件、必要条件的概念及判断题点充分条件的判断答案 D解析 ①由xt 2>yt 2可知t 2>0,所以x >y ,故①对; ②当t >0时,则x >y ,当t <0时,则x <y ,故②错; ③由x 2>y 2,得x >y 或x <y ,故③错.9.集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +1<0,B ={x |-a <x -b <a },若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是( ) A .[-2,0) B .(0,2] C .(-2,2)D .[-2,2]考点 充分条件、必要条件的概念及判断 题点 由充分条件、必要条件求参数的范围 答案 C解析 A ={x |(x +1)(x -1)<0}={x |-1<x <1},B ={x |b -a <x <b +a },因为a =1,所以B ={x |b -1<x <b +1}, 若A ∩B =∅,则b +1≤-1或b -1≥1, 即b ≤-2或b ≥2, 所以A ∩B ≠∅时,-2<b <2. 二、填空题10.设A ,B 是非空集合,则“A ∩B =A ”是“A =B ”的______条件.(填“充分”“必要”) 考点 充分条件、必要条件的概念及判断 题点 必要条件的判断 答案 必要解析 由A =B ⇒A ∩B =A ,A ∩B =A ⇏A =B , 可知“A ∩B =A ”是“A =B ”的必要条件. 11.下列说法正确的是________.(填序号) ①“x >0”是“x >1”的必要条件;②已知向量m ,n ,则“m ∥n ”是“m =n ”的充分条件; ③“a 3>b 3”是“a >b ”的必要条件;④在△ABC 中,“a >b ”不是“A >B ”的充分条件. 考点 充分条件、必要条件的概念及判断题点必要条件的判断答案①③解析①中,当x>1时,有x>0,所以①正确;②中,当m∥n时,m=n不一定成立,所以②不正确;③a>b能推出a3>b3,即a3>b3是a>b的必要条件,所以③正确;④中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以④不正确.12.命题p :|x |<a (a >0),命题q :x 2-x -6<0,若p 是q 的充分条件,则a 的取值范围是________,若p 是q 的必要条件,则a 的取值范围是________.考点 充分条件、必要条件的概念及判断题点 由充分条件、必要条件求参数的范围答案 (0,2] [3,+∞)解析 p :-a <x <a ,q :-2<x <3,若p 是q 的充分条件,则(-a ,a )⊆(-2,3),∴⎩⎪⎨⎪⎧ -a ≥-2,a ≤3,∴a ≤2,又a >0,∴a 的取值范围是(0,2].若p 是q 的必要条件,则(-2,3)⊆(-a ,a ),∴⎩⎪⎨⎪⎧ -a ≤-2,a ≥3,∴a ≥3,∴a 的取值范围是[3,+∞).三、解答题13.已知p :x 2-2x -3<0,若-a <x -1<a 是p 的一个必要条件,求使a >b 恒成立的实数b 的取值范围.考点 充分条件、必要条件的概念及判断题点 由充分条件、必要条件求参数的范围解 由于p :x 2-2x -3<0⇔-1<x <3,-a <x -1<a ⇔1-a <x <1+a (a >0).依题意,得{x |-1<x <3}⊆{x |1-a <x <1+a }(a >0),所以⎩⎪⎨⎪⎧ 1-a ≤-1,1+a ≥3,a >0.解得a ≥2,则使a >b 恒成立的实数b 的取值范围是b <2,即(-∞,2).四、探究与拓展14.若“a ≥b ⇒c >d ”和“a <b ⇒e ≤f ”都是真命题,则“c ≤d ”是“e ≤f ”的________条件.(填“充分”或“必要”)考点 充分条件、必要条件的概念及判断题点 充分条件的判断答案 充分解析 因为“a ≥b ⇒c >d ”为真,所以它的逆否命题“c ≤d ⇒a <b ”也为真命题, 又“a <b ⇒e ≤f ”也是真命题,所以“c ≤d ⇒a <b ⇒e ≤f ”,故“c ≤d ”是“e ≤f ”的充分条件.15.已知命题p :对数log a (-2t 2+7t -5)(a >0,且a ≠1)有意义,q :关于实数t 的不等式t 2-(a +3)t +(a +2)<0.(1)若命题p 为真,求实数t 的取值范围;(2)若命题p 是q 的充分条件,求实数a 的取值范围. 考点 充分条件、必要条件的概念及判断题点 由充分条件、必要条件求参数的范围解 (1)因为命题p 为真,则-2t 2+7t -5>0,解得1<t <52, 所以实数t 的取值范围是⎝ ⎛⎭⎪⎫1,52. (2)因为命题p 是q 的充分条件,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫t ⎪⎪⎪ 1<t <52是不等式t 2-(a +3)t +(a +2)<0的解集的子集, 因为方程t 2-(a +3)t +(a +2)=0的两根为1和a +2,所以只需a +2≥52,解得a ≥12, 即实数a 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞.。
1.2.2充分条件和必要条件最新课程标准1.通过对典型数学命题的梳理,理解充分条件的意义,理解判定定理与充分条件的关系.2.通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系.学科核心素养1.能对充分条件、必要条件、充要条件进行判断.(逻辑推理)2.能从集合的观点理解充分条件、必要条件.(直观想象)3.能利用充分条件、必要条件、充要条件求参数的取值范围.(逻辑推理)教材要点要点一充分条件与必要条件命题真假“若p ,则q ”是真命题“若p ,则q ”是假命题推出关系由p 可以推出q ,记为:________由p 不能推出q ,记为:________条件关系p 是q 的____________p 不是q 的____________q 是p 的____________q 不是p 的____________状元随笔若p ⇒q ,则p 是q 的充分条件,所谓“充分”,即要使q 成立,有p 成立就足够了;q 是p 的必要条件,所谓“必要”,即q 是p 成立的必不可少的条件,缺其不可.要点二充要条件如果既有p ⇒q ,又有q ⇒p ,就记作________.即p 既是q 的充分条件,又是q 的必要条件,此时我们称p 是q 的充分必要条件,简称充要条件.换句话说,如果一个命题和它的________都成立,则此命题的条件和结论互为充分必要条件.状元随笔对于充要条件,要熟悉它的同义语“p 是q 的充要条件”可以说成“p 与q 是等价的”“q 成立当且仅当p 成立”“q 成立必须且只需p 成立”.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,只是说法不同.()(2)p 是q 的必要条件的含义是:如果p 不成立,则q 一定不成立.()(3)p 是q 的充分条件只反映了p ⇒q ,与q 能否推出p 没有任何关系.()(4)若p 是q 的充要条件,q 是r 的充要条件,则p 是r 的充要条件.()2.“x =1”是“x 2-2x +1=0”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.“x >0”是“x >1”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.△ABC 是锐角三角形是∠ABC 为锐角的________条件.题型1充分条件、必要条件的判断例1下列各题中,p 是q 的什么条件?(1)p :a +b =0,q :a 2+b 2=0;(2)p :四边形的对角线相等,q :四边形是矩形;(3)p :平行四边形,q :正方形;(4)p :m <-1,q :x 2-x -m =0无实根.方法归纳充分条件、必要条件判断方法(1)定义法①分清命题的条件和结论:分清哪个是条件,哪个是结论.②找推式:判断“p⇒q”及“q⇒p”的真假.③根据推式及条件得出结论.(2)集合法:写出集合A={x|p(x)}及B={x|q(x)},利用集合间的包含关系进行判断.(3)特殊值法:对于选择题,可以取一些特殊值或特殊情况,用来说明由条件(结论)不能推出结论(条件),但是这种方法不适用于证明题.跟踪训练1(1)祖暅原理:”幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的原理,意思是两个等高的几何体,若在同高处的截面积恒相等,则体积相等.设A,B为两个等高的几何体,p:A,B的体积相等.q:A,B在同高处的截面积恒相等.根据祖暅原理可知,q是p的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(多选)设x∈R,则使x>3.14成立的一个充分条件是()A.x>3.5B.x<3C.x>4D.x<4题型2充要条件的判断例2(1)(多选)下列结论中,正确的有()A.“x2>4”是“x3<-8”的必要不充分条件B.在△ABC中,“AB2+AC2=BC2”是“△ABC为直角三角形”的充要条件C.若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件D.x,y均为奇数是x+y为偶数的必要不充分条件(2)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么:①s是q的什么条件?②r是q的什么条件?③p是q的什么条件?方法归纳判断充分条件、必要条件及充要条件的四种方法(1)定义法:直接判断“若p,则q”以及“若q,则p”的真假.(2)集合法:利用集合的包含关系判断.(3)等价法:利用p⇔q与q⇔p的等价关系,对于条件和结论是否定形式的命题,一般运用等价法.(4)传递法:充分条件和必要条件具有传递性,即由p1⇒p2⇒…⇒p n,可得p1⇒p n;充要条件也有传递性.跟踪训练2(1)a,b中至少有一个不为零的充要条件是()A.ab=0B.ab>0C.a2+b2=0D.a2+b2>0(2)如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么()A.丙是甲的充分不必要条件B.丙是甲的必要不充分条件C.丙是甲的充要条件D.丙是甲的既不充分又不必要条件题型3充分条件、必要条件和充要条件的证明例3求证:关于x的方程ax2+bx+c=0(a≠0)有一正根和一负根的充要条件是ac<0.方法归纳充要条件的证明思路(1)根据充要条件的定义,证明充要条件时要从充分性和必要性两个方面分别证明.一般地,证明“p成立的充要条件为q”;①充分性:把q当作已知条件,结合命题的前提条件,推出p;②必要性:把p当作已知条件,结合命题的前提条件,推出q.解题的关键是分清哪个是条件,哪个是结论,然后确定推出方向,至于先证明充分性还是先证明必要性则无硬性要求.(2)在证明过程中,若能保证每一步推理都有等价性(⇔),也可以直接证明充要性.跟踪训练3求证:关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c =0.题型4充分条件、必要条件和充要条件的应用例4设p:|4x-1|≤1,q:a≤x≤a+1,若q是p的必要不充分条件,求实数a的取值范围.变式探究设p:|4x-1|≤1,q:a≤x≤a+1,若q是p的充分不必要条件,求实数a 的取值范围.方法归纳根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.跟踪训练4集合A=y y=x2−32x+1,34≤x≤2,,B={x|x+m2≥1},若“x∈A”是“x∈B”的充分不必要条件,求实数m的取值范围.易错辨析混淆条件与结论致误例5使不等式0<x<2成立的一个充分但不必要条件是()A.0<x<1B.-13<x<1C.-1<x<2D.0<x<2解析:设命题p所对应的集合为A,命题q所对应的集合为B,则“p成立的充分不必要条件是q”⇔B A,所以不等式0<x<2成立的充分不必要条件对应的集合是集合{x|0<x<2}的真子集,根据选项,只有A符合要求,故选A.答案:A易错警示易错原因纠错心得混淆条件与结论容易得出错误答案C.弄清此类题的条件与结论.本题条件是“选项”,结论是“0<x<2”,所以“选项”是“0<x<2”的真子集.课堂十分钟1.命题:p:(a+b)·(a-b)=0,q:a=b,则p是q的()A.充分条件B.必要条件C.充要条件D.既不是充分条件也不是必要条件2.已知x∈R,则“x<2”是“2x>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(多选)下列说法中正确的是()A.“m是有理数”是“m是实数”的充分条件B.“x∈A∩B”是“x∈A”的必要条件C.“x2-2x-3=0”是“x=3”的必要条件D.“x>3”是“x2>4”的充分条件4.函数y=x2-2x-a的图象与x轴无交点的充要条件是________.5.若“x>m”是“x>3或x<1”的充分条件但不是必要条件,求m的取值范围.参考答案与解析新知初探·课前预习要点一p⇒q p⇒q充分条件充分条件必要条件必要条件要点二p⇔q逆命题[基础自测]1.答案:(1)√(2)√(3)√(4)√2.解析:x=1时,x2-2x+1=0成立,故是充分的,又当x2-2x+1=0时,即(x-1)2=0,x=1故是必要的,因此是充要条件.答案:A3.解析:∵x>0D⇒/x>1但x>1⇒x>0.∴“x>0”是“x>1”的必要不充分条件.故选B.答案:B4.解析:∵△ABC是锐角三角形说明△ABC的三个内角都是锐角.∴△ABC是锐角三角形⇒∠ABC为锐角,反之不一定.答案:充分不必要题型探究·课堂解透例1解析:(1)∵a+b=0⇒a2+b2=0;a2+b2=0⇒a+b=0,∴p是q的必要不充分条件.(2)∵四边形的对角线相等⇒四边形是矩形;四边形是矩形⇒四边形的对角线相等,∴p是q的必要不充分条件.(3)由图可知B A,所以p是q的必要不充分条件.(4)若方程x2-x-m=0无实根,则Δ=1+4m<0,即m<-14.∵m<-1⇒m<-14,m<-14D⇒/m<-1,∴p是q的充分不必要条件.跟踪训练1解析:(1)设A为正方体,其棱长为2,体积为8,B为长方体,底面为边长为1的正方形,高为8,显然A,B在等高处的截面面积不相等,所以q是p的不必要条件;当A,B在同高处的截面积恒相等时,根据祖暅原理有A,B的体积相等,所以充分性成立,因此q是p的充分不必要条件.故选A.(2)∵x>3.5⇒x>3.14,x>4⇒x>3.14.∴x>3.14成立的一个充分条件是x>3.5或x>4.故选AC.答案:(1)A(2)AC例2解析:(1)A中,x2>4⇔x<-2或x>2D⇒/x3<-8,但x3<-8⇒x2>4.A正确;B中,AB2+AC2=BC2⇒△ABC为直角三角形,反之不一定,B不正确;C中,a2+b2≠0⇔a,b 不全为0,C正确;D中,x,y均为奇数⇒x+y为偶数,反之不一定,D不正确.故选AC.(2)①∵q是r的必要条件,∴r⇒q.∵s是r的充分条件,∴s⇒r,∴s⇒r⇒q,又∵q是s的充分条件,∴q⇒s.∴s是q的充要条件.②由r⇒q,q⇒s⇒r,知r是q的充要条件.③∵p是r的必要条件,∴r⇒p,∴q⇒r⇒p.∴p是q的必要条件.答案:(1)AC(2)见解析跟踪训练2解析:(1)a2+b2>0,则a,b不同时为零;a,b中至少有一个不为零,则a2+b2>0.故选D.(2)如图所示,∵甲是乙的必要条件,∴乙⇒甲.又∵丙是乙的充分条件,但不是乙的必要条件,∴丙⇒乙,但乙⇒丙.综上,有丙⇒乙⇒甲,甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件.故选A.答案:(1)D(2)A例3证明:充分性:由ac<0可得b2-4ac>0及x1·x2=c a<0,∴方程ax2+bx+c=0,有两不相等的实根,且两根异号,即方程ax2+bx+c=0有一正根和一负根.必要性:由于方程ax2+bx+c=0,有一正根和一负根,∴Δ=b2-4ac>0,x1·x2=c a<0,∴ac<0.综上可知,关于x的方程ax2+bx+c=0(a≠0)有一正根和一负根的充要条件是ac<0.跟踪训练3证明:设p:a+b+c=0;q:关于x的方程ax2+bx+c=0有一个根为1,(1)充分性(p⇒q):因为a+b+c=0,所以c=-a-b,代入方程ax2+bx+c=0中,得ax2+bx-a-b=0,即(x-1)(ax+a+b)=0.所以方程ax2+bx+c=0有一个根为1.(2)必要性(q⇒p):因为方程ax2+bx+c=0有一个根为1,所以x=1满足方程ax2+bx+c=0.所以有a×12+b×1+c=0,即a+b+c=0.故关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.例4解析:由|4x-1|≤1得-1≤4x-1≤1,故0≤x≤12,由q是p的必要不充分条件,即p⇒q,q⇒p,即{x|0≤x≤12}{x|a≤x≤a+1}.∴a≤0,a+1≥12,且“=”不能同时成立,解得-12≤a≤0,故实数a的取值范围是{a|−12≤a≤0}.变式探究解析:∵q是p的充分不必要条件,∴q⇒p,p⇒q,∴{x|a≤x≤a+1}{x|0≤x≤12},∴a≥0a+1≤12,且“=”不能同时成立,∴此不等式组无解.故实数a的取值范围是∅.跟踪训练4解析:A={y|y= 2−32x+1,34≤x≤2}={y|716≤y≤2},B={x|x+m2≥1}={x|x≥1-m2},∵“x∈A”是“x∈B”的充分不必要条件,∴A B,∴1-m2≤716.解得m≥34或m≤-34.故m的取值范围为m≤-34或m≥34.[课堂十分钟]1.解析:由命题p:(a+b)·(a-b)=0,得:|a|=|b|,推不出a=b,由a=b,能推出|a|=|b|,故p是q的必要条件.答案:B2.解析:当x=-1时,“x<2”成立,但2x<0,故“2x<1”,故“x<2”不是“2x>1”的充分条件,“2x>1”等价于x−2x<0⇔0<x<2,即2x>1能推出x<2,∴“x<2”是“2x>1”的必要条件,故“x<2”是“2x>1”的必要不充分条件,故选B.答案:B3.解析:A正确,因为“m是有理数”⇒“m是实数”,所以“m是有理数”是“m 是实数”的充分条件;B不正确,因为“x∈A” “x∈A∩B”,所以“x∈A∩B”不是“x∈A”的必要条件;C正确,由于“x=3”⇒“x2-2x-3=0”,故“x2-2x-3=0”是“x=3”的必要条件;D正确,由于“x>3”⇒“x2>4”,所以“x>3”是“x2>4”的充分条件.故选ACD.答案:ACD4.解析:Δ=4+4a<0,∴a<-1.答案:a<-15.解析:由已知条件,如{x|x>m}{x|x>3或x<1}.∴m≥3.∴m的取值范围是[3,+∞).。