1-1第一章充分必要条件及充要条件
- 格式:ppt
- 大小:608.50 KB
- 文档页数:29
高一上必修一第一章《集合与常用逻辑用语》知识点梳理1.2.3 充分条件、必要条件学习目标1.理解充要条件的概念,并会判断和证明p 是q 的充要条件.2.培养逻辑推理能力.重难点重点:掌握充要条件的概念和判断方法.难点:能利用命题之间的关系判定充要条件或进行充要性的证明.一、充分条件、必要条件我们已经接触过很多形如“如果p ,那么q”①的命题,例如:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)在直角三角形中,如果一个锐角等于30°,那么这个锐角所对的直角边等于斜边的一半;(3)如果x>2,那么x>3;(4)如果a>b 且c>0,那么ac>bc.在“如果p ,那么q”形式的命题中,p 称为命题的条件,q 称为命题的结论.若“如果p ,那么q”是一个真命题,则称由p 可以推出q ,记作p q读作“p 推出q”;否则,称由p 推不出q ,记作p q ,读作“p 推不出q”.例如,上述例子中,(1)是一个真命题,即“两条直线都与第三条直线平行”可以推出“这两条直线也互相平行”,这也可记作两条直线都与第三条直线平行这两条直线也互相平行;而(3)是一个假命题,即x>2推不出x>3,这也可记作x>2⇏x>3.①“如果p ,那么q”也常常记为“如果p ,则q”或“若p ,则q”,【尝试与发现】当p q 时,我们称p 是q 的充分条件,q 是p 的必要条件;当p q 时,我们称p 不是q 的充分条件,q 不是p 的必要条件.事实上,前述课前导读中的“充分”“必要”与这里的充分条件、必要条件表示的是类似的意思.因此, “如果p ,那么q”是真命题,⇒⇒⇒p q ,p 是q 的充分条件,q 是p 的必要条件,这四种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.例如,因为“如果x=-y ,则x 2=y 2”是真命题,所以x=-y x 2=y 2,x=-y 是x 2=y 2的充分条件,x 2=y 2是x=-y 的必要条件.再例如,因为命题“若A∩B≠∅,则A≠∅”是真命题,所以A∩B≠∅ A≠∅A∩B≠∅是A≠∅的 条件A≠∅是A∩B≠∅的 条件【思考与辨析】【典型例题】例1 判断下列各题中,p 是否是q 的充分条件,q 是否是p 的必要条件:(1)p:x ∈Z ,q:x ∈R ;(2)p:x 是矩形,q:x 是正方形。
1.2 充分条件和必要条件(2)[教学目标]:1.进一步理解并掌握充分条件、必要条件、充要条件的概念;2.掌握判断命题的条件的充要性的方法; [教学重点、难点]:理解充要条件的意义,掌握命题条件的充要性判断[教学过程]:一、复习回顾一般地,如果已知p q ⇒,那么我们就说p 是q 成立的充分条件,q 是p 的必要条件 ⑴“a b c >>”是“()()()0a b b c c a ---<”的 充分不必要 条件. ⑵若a 、b 都是实数,从①0ab >;②0a b +>;③0ab =;④0a b +=;⑤220a b +>;⑥220a b +=中选出使a 、b 都不为0的充分条件是 ①②⑤ .二、例题分析条件充要性的判定结果有四种,判定的方法很多,但针对各种具体情况,应采取不同的策略,灵活判断.下面我们来看几个充要性的判断及其证明的例题.1.要注意转换命题判定,培养思维的灵活性例1:已知p :2x y +≠-;q :x 、y 不都是1-,p 是q 的什么条件?分析:要考虑p 是q 的什么条件,就是判断“若p 则q ”及“若q 则p ”的真假性 从正面很难判断是,我们从它们的逆否命题来判断其真假性“若p 则q ”的逆否命题是“若x 、y 都是1-,则2x y +=-”真的“若q 则p ”的逆否命题是“若2x y +=-,则x 、y 都是1-”假的故p 是q 的充分不必要条件注:当一个命题很难判断其真假性时,我们可以从其逆否命题来着手.练习:已知p :2x >或23x <;q :2x >或1x <-,则p ⌝是q ⌝的什么条件? 方法一:2:23p x ⌝≤≤ :12q x ⌝-≤≤ 显然p ⌝是q ⌝的的充分不必要条件方法二:要考虑p ⌝是q ⌝的什么条件,就是判断“若p ⌝则q ⌝”及“若q ⌝则p ⌝”的真假性“若p ⌝则q ⌝”等价于“若q 则p ”真的“若q ⌝则p ⌝”等价于“若p 则q ”假的故p ⌝是q ⌝的的充分不必要条件2.要注意充要条件的传递性,培养思维的敏捷性例2:若M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则M 是Q 的什么条件?分析:命题的充分必要性具有传递性M N P Q ⇒⇔⇒ 显然M 是Q 的充分不必要条件3.充要性的求解是一种等价的转化例3:求关于x 的一元二次不等式21ax ax +>于一切实数x 都成立的充要条件 分析:求一个问题的充要条件,就是把这个问题进行等价转化由题可知等价于000004040a a a a a a ≠⎧⎪=>⇔=<<⇔≤<⎨⎪∆<⎩或或4.充要性的证明,关键是理清题意,特别要认清条件与结论分别是什么例4:证明:对于x 、y ∈R ,0xy =是220x y +=的必要不充分条件.分析:要证明必要不充分条件,就是要证明两个,一个是必要条件,另一个是不充分条件必要性:对于x 、y ∈R ,如果220x y +=则0x =,0y = 即0xy =故0xy =是220x y +=的必要条件不充分性:对于x 、y ∈R ,如果0xy =,如0x =,1y =,此时220x y +≠故0xy =是220x y +=的不充分条件综上所述:对于x 、y ∈R ,0xy =是220x y +=的必要不充分条件.例5:p :210x -≤≤;q :()110m x m m -≤≤+>.若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围. 解:由于p ⌝是q ⌝的必要不充分条件,则p 是q 的充分不必要条件于是有12101m m -≤-⎧⎨≤+⎩9m ∴≥ 三、练习:1.若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,那么:命题丁是命题甲的什么条件.(必要不充分的条件)2.对于实数x 、y ,判断“x+y ≠8”是“x ≠2或y ≠6”的什么条件.(充分不必要条件)3.已知0ab ≠,求证:1a b +=的充要条件是:33220a b ab a b ++--=.。
§1-2充分条件与必要条件【学习目标】1•理解充分条件、必要条件、充要条件的泄义∙2.会求某些简单问题成立的充分条件、必要条件、充要条件.3•能够利用命题之间的关系判左充要关系或进行充要条件的证明. 知识梳理梳理教材夯实圧础知识点一充分条件与必要条件知识点二充要条件如果既有P=q,又有q*就记作P仝q∙此时,我们说,"是§的充分必要条件,简称充要条件.特别提醒:命题按条件和结论的充分性、必要性可分为四类(1)充分必要条件(充要条件),即Paq且曲:(2)充分不必要条件,即Paq且q≠>p;(3)必要不充分条件,即p≠>q且(4)既不充分也不必要条件,即]τ≠>q且c{Ψ>p.■思考辨析判断正误-- -----------------------------------------------------------1.若“是q的充分条件,则P是唯一的.(× )2.“若P ,则g”是真命题,而“若「则“”是假命题,则"是"的充分不必要条件.(√)3. 4不是"的必要条件时Jgq”成立.(J )4.若卩是q的充分不必要条件,则締P是締q的必要不充分条件.(√)题型探究探究重点索养提升------------------------ % -------一、充分、必要' 充要条件的判断例1指出下列各题中,"是g的什么条件(在''充分不必要条件”"必要不充分条件”“充要条件”''既不充分也不必要条件”中选出一个作答).(1)在AABC中,p: A>B, q: BC>AC;(2)对非空集合A, B, p:x≡AUB, q:Λ∈B;(3)在Z∖ABC 中,p:Sin Λ>sin B, q:tanΛ>tan Bi(4)已知x, y∈R, p:仗一I)?+©—2)2=0, q: (X — l)(y—2)=0.解(1)在Z∖ABC中,显然有A>B^BC>AC I所以P是g的充要条件.⑵显然x∈AU B≠>X≡B ,但X∈B=>A∈A UB ,所以"是g的必要不充分条件•⑶取A二120。
1.2 充分条件和必要条件(1) 【教学目标】1.从不同角度帮助学生理解充分条件、必要条件与充要条件的意义;2.结合具体命题,初步认识命题条件的充分性、必要性的判断方法;3.培养学生的抽象概括和逻辑推理的意识. 【教学重点】构建充分条件、必要条件的数学意义;【教学难点】命题条件的充分性、必要性的判断.【教学过程】一、复习回顾1.命题:可以判断真假的语句,可写成:若p 则q .2.四种命题及相互关系:3.请判断下列命题的真假:(1)若x y =,则22x y =; (2)若22x y =,则x y =;(3)若1x >,则21x >; (4)若21x >,则1x >二、讲授新课1.推断符号“⇒”的含义:一般地,如果“若p ,则q ”为真, 即如果p 成立,那么q 一定成立,记作:“p q ⇒”; 如果“若p ,则q ”为假, 即如果p 成立,那么q 不一定成立,记作:“p q ⇒/”. 用推断符号“⇒和⇒/”写出下列命题:⑴若a b >,则ac bc >;⑵若a b >,则a c b c +>+;2.充分条件与必要条件一般地,如果p q ⇒,那么称p 是q 的充分条件;同时称q 是p 的必要条件. 如何理解充分条件与必要条件中的“充分”和“必要”呢?由上述定义知“p q ⇒”表示有p 必有q ,所以p 是q 的充分条件,这点容易理解.但同时说q 是p 的必要条件是为什么呢?q 是p 的必要条件说明没有q 就没有p ,q 是p 成立的必不可少的条件,但有q 未必一定有p . 充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.它符合上述的“若p 则q ”为真(即p q ⇒)的形式.“有之必成立,无之未必不成立”.必要性:必要就是必须,必不可少.它满足上述的“若非q 则非p ”为真(即q p ⌝⇒⌝)的形式.“有之未必成立,无之必不成立”.命题按条件和结论的充分性、必要性可分为四类:(1)充分必要条件(充要条件),即 p q ⇒且q p ⇒;(2)充分不必要条件,即p q ⇒且q p ⇒/; (3)必要不充分条件,即p q ⇒/且q p ⇒;(4)既不充分又不必要条件,即p q ⇒/且q p ⇒/.3.从不同角度理解充分条件、必要条件的意义(1)借助“子集概念”理解充分条件与必要条件。
充分条件与必要条件知识点充分条件与必要条件是高中数学的重要概念,因其抽象而成为学生难于理解的内容,下面是高一数学充分条件与必要条件的知识点.(一)充分条件、必要条件和充要条件1.充分条件:如果A成立,那么B成立,即A⇒B,则条件A是B成立的充分条件;2.必要条件:如果A成立,那么B成立,即A⇒B,这时B是A的必然结果,则条件B是A成立的必要条件;3.充要条件:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件,简称充要条件.简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件;反之,如果有事物情况B,则必然有事物情况A;如果没有事物情况B,则必然没有事物情况A,B就是A的充分必要条件,简称充要条件.简单地说,满足B,必然A;不满足B,必然不A,则B是A的充分必要条件.即A可以推导出B,且B也可以推导出A.或者说,如果A既是B成立的充分条件,又是B成立的必要条件,即A⇔B,则A是B成立的充要条件;同时B也是A成立的充要条件.(二)充分条件、必要条件与充要条件的判断命题“若…,则…”,其条件与结论之间的逻辑关系如下,其中符号“⇒”叫做推出,符号“”叫做推不出或叫做不能推出,符号“⇔”叫做互相推出.1.若A⇒B且B A成立,则A是B成立的充分条件,B是A成立的必要条件;2.若A⇒B且B A成立,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件;3. 若A B且B⇒A成立,则B是A成立的充分条件,A是B成立的必要条件;4.若A⇒B且B⇒A成立,即A⇔B成立,则A、B互为充要条件.证明A是B的充要条件,分两步:①充分性:把A当作已知条件,结合命题的前提条件推出B;②必要性:把B当作已知条件,结合命题的前提条件推出A.5. 若A B且B A成立,则A是B的既不充分也不必要条件.6. 若B A且A B成立,则B是A的既不充分也不必要条件.即:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件;能由结论推出条件,但由条件推不出结论;此条件为必要条件;既能由结论推出条件,又能有条件推出结论,此条件为充要条件;由条件推不出结论,由结论推不出这个条件,这个条件就是即不充分也不必要条件;充分条件、必要条件的常用判断法1.定义法:判断B是A的条件,实际上就是判断B⇒A或者A⇒B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可.2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断.3.集合法在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:若A⊆B,则p是q的充分条件,q是p的必要条件;若A⊇B,则p是q的必要条件,q是p的充分条件;若A=B,则p是q的充要条件;若A不包含于B,且B不包含于A,则p是q的既不充分也不必要条件.从集合与集合间的关系看,若p:x∈A,q:x∈B.①若A⊆B,则p是q的充分条件, q是p 的必要条件;②若A是B的真子集,则p是q的充分不必要条件;③若A=B,则p、q互为充要条件;④若A不是B的子集且B不是A的子集,则p是q的既不充分也不必要条件.4.充分必要条件的常见集合表示:设A、B是两个集合.①如果A是B的充分条件,那么满足A的必然满足B,表示为A⊆B;②如果A是B的必要条件,那么满足B的必然满足A,表示为B⊆A,或A⊇B;③如果A是B的充分不必要条件,那么A是B的真子集;④如果A是B的必要不充分条件,那么B是A的真子集;⑤如果A是B的充分必要条件,那么A、B等价,表示为A=B.5.充分条件与必要条件的判断通常有四种结论:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.判断方法通常按以下步骤进行:①确定哪是条件,哪是结论;②尝试用条件推结论,③再尝试用结论推条件,④最后判断条件是结论的什么条件.充分条件与必要条件的内涵.1.充分条件:指根据提供的现有条件可以直接判断事物的运行发展结果.充分条件是事物运行发展的必然性条件,体现必然性的内涵.如母亲与女儿的关系属于亲情关系吗?答案是必然属于.2.必要性条件:事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行.如亲情关系与母女关系,亲情关系符合母女关系的一种现象表达,但不能推出亲情关系属于母女关系.题型解释充分条件与必要条件相关知识例1:(1)A“三角形三条边相等”;B=“三角形三个角相等”;(2)A“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”;(3)A“付了足够的钱”;B=“能买到商店里的东西”.解:A都是B的充分必要条件:其一,A必然导致B;其二,A是B发生必需的.例2:(1)A.天下雨了,B.地面一定湿;(2)A.地面一定湿,B.天下雨了解:天下雨地面一定湿,但是地面湿不一定是下雨造成的,即A⇒B且B A成立,所以A是B充分条件;(2)天下雨地面一定湿,但是地面湿不一定是下雨造成的,即A B且B⇒A成立,以B是A必要条件;例3:已知P:x1,x2是方程x2+5x-6=0的两根,Q:x1+x2=-5,则P是Q的( )A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件解:∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5,故选A.例4:P是Q的充要条件的是( )A.P:3x+2>5,Q:-2x-3>-5B.P:a>2,b<2,Q:a>bC.P:四边形的两条对角线互相垂直平分,Q:四边形是正方形D.P:a≠0,Q:关于x的方程ax=1有唯一解解:对于A,P:3x+2>5⇒x>1,Q:-2x-3>-5⇒x<1,∴P推不出Q,Q推不出P,P是Q既不充分也不必要条件;对于B,P:a>2,b<2⇒Q:a>b;但Q推不出P,故P是Q的充分不必要条件;对于C,若“两条对角线互相垂直平分”成立“四边形是正方形”;反之,若“四边形是正方形”成立⇒“两条对角线互相垂直平分”成立,故P是Q的必要条件;对于D,P:a≠0⇔Q:关于x的方程ax=1有唯一解,故P是Q的充分必要条件;故选D.例5:若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A 成立的( ) A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件解:∵A是B的充分条件,∴A⇒B ①,∵D是C成立的必要条件,∴C⇒D ②,C⇔B ③,由①③得A⇒C ④,由②④得A⇒D,∴D是A成立的必要条件,故选B.例6:设命题甲为:0<x<5,命题乙为:|x-2|<3,那么甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:解不等式|x-2|<3,得-1<x<5,∵0<x<5,-1<x<5,但-1<x<5,0<x<5,∴甲是乙的充分不必要条件,故选A.说明:一般情况下,如果条件甲为x∈A,条件乙为x∈B.当且仅当A=B时,甲为乙的充要条件.例7:给出下列各组条件:(1)P:ab=0,Q:a2+b2=0;(2)P:xy≥0,Q:|x|+|y|=|x+y|;(3)P:m>0,Q:方程x2-x-m=0有实根;(4)P:|x-1|>2,Q:x<-1.其中P是Q的充要条件的有( )A.1组B.2组C.3组D.4组解:(1)P是Q的必要条件;(2)P是Q充要条件;(3)P是Q的充分条件;(4)P是Q的必要条件,故选A.。