高二数学充分必要充要条件
- 格式:ppt
- 大小:715.00 KB
- 文档页数:15
充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q Þ,(2)充分条件与必要条件:如果条件,p q 满足p q Þ,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。
所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q Û,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。
例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q Þ,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。
在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。
以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。
高二数学复习讲义(1) ——《常用逻辑用语》<知识点>1. 四种命题,(原命题、否命题、逆命题、逆否命题)(1)四种命题的关系,(2)等价关系(互为逆否命题的等价性) (a )原命题与其逆否命题同真、同假。
(b )否命题与逆命题同真、同假。
2. 充分条件、必要条件、充要条件(1)定义:若p 成立,则q 成立,即q p ⇒时,p 是q 的充分条件。
同时q 是p 的必要条件。
若p 成立,则q 成立,且q 成立,则p 成立 ,即q p ⇒且p q ⇒,则p 与q 互为充要条件。
(2)判断方法: (i )定义法,(ii )集合法:设使p 成立的条件组成的集合是A ,使q 成立的条件组成的集合为B ,若B A ⊆ 则p 是q 的充分条件。
同时q 是p 的必要条件。
若A=B ,则p 与q 互为充要条件。
(iii )命题法:假设命题:“若p 则q ”。
当原命题为真时,p 是q 的充分条件。
当其逆命题也为真时,p 与q 互为充要条件。
注意:充分条件与充分非必要条件的区别:用集合法判断看,前者:集合A 是集合B 的子集;后者:集合A 是集合B 的真子集。
3. 全称命题、特称命题(含有全称量词的命题叫全称命题,含有存在量词的命题叫特称命题)(1)关系:全称命题的否定是特称命题,特称命题的否定是全称命题。
4. 逻辑连结词“或”,“且”,“非”。
(1)构造复合命题的方式:简单命题+逻辑连结词(或、且、非)+简单命题。
注意:“命题的否定”与“否命题”是两个不同的概念:前者只否定结论,后者结论与条件共同否定。
<练习题>一、填空题1.命题:“若ab =0,则a =0或b =0”的逆否命题是________. 2.⎩⎪⎨⎪⎧x 1>3x 2>3,是⎩⎨⎧x 1+x 2>6,x 1x 2>9成立的________条件. 3.命题“若x 2≥1,则x ≥1或x ≤-1”的逆否命题是________. 4.下列四个命题中,是真命题的序号是________.①“若x +y =0,则x ,y 互为相反数”的否命题;②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2-x -6>0”的否命题;④“对顶角相等”的逆命题.5.下列命题是真命题的是________(填序号).①∀x ∈R ,x 2+x +1<0;②∀x ∈R ,x 2+x +1>0;③∃x ∈Z ,x 2=2;④∃x ∈R ,x 2=2.6.设M 、N 是两个集合,则“M ∪N ≠∅”是“M ∩N ≠∅”的________条件.7.“p 或q 为真命题”是“p 且q 为真命题”的________条件.8.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若 p 是 q 的充分条件,则实数a 的取值范围是________.9.命题“偶数能被2整除”的否定形式是________. 10.下列命题中,假命题是________. ①∃α、β∈R ,使sin(α-β)=sin α-sin β; ②∀a 、b ∈R ,方程ax +b =0恰有一个解;③∀x 、y ∈R ,x +y2≥xy ;④点(3,4)不在圆x 2+y 2-2x +4y +3=0上.11.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是____________.12.给出下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题;③“若b ≤-1,则x 2-2bx +b 2+b =0有实数根”的逆否命题; ④若sin α+cos α>1,则α必定是锐角.其中真命题的序号是________(请把所有真命题的序号都填上). 13.已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”,若上述两个命题都是真命题,则实数a 的取值范围为________.14.已知“关于x 的不等式x 2-ax +2x 2-x +1<3对于∀x ∈R 恒成立”的充要条件是“a ∈(a 1,a 2)”,则a 1+a 2=________.二、解答题(解答时应写出必要的文字说明、证明过程或演算步骤)15.把下列各命题作为原命题,分别写出它们的逆命题、否命题和逆否命题.(1)若α=β,则sinα=sinβ;(2)若对角线相等,则梯形为等腰梯形;(3)已知a,b,c,d都是实数,若a=b,c=d,则a+c=b+d.16.写出下列命题的否定,并判断真假.(1)正方形都是菱形;(2)∃x∈R,使4x-3>x;(3)∀x∈R,有x+1=2x;(4)集合A是集合A∩B或集合A∪B的子集.17.命题甲:a∈R,关于x的方程|x|=ax+1(a>0)有两个非零实数解,命题乙:a∈R,关于x的不等式(a2-1)x2+(a-1)x-2>0的解集为空集.当甲、乙中有且仅有一个为真命题时,求实数a的取值范围.18.求证:关于x的方程x2+2ax+b=0有实数根,且两根均小于2的充分不必要条件是a≥2且|b|≤4.19.(1)设集合M={x|x>2},P={x|x<3},则“x∈M或x∈P”是“x∈(M∩P)”的什么条件?(2)求使不等式4mx2-2mx-1<0恒成立的充要条件.20.设命题p:实数x满足x2-4ax+3a2<0(a<0);命题q:实数x满足x2-x -6≤0或x2+2x-8>0.且p是q的必要不充分条件,求a的取值范围.参考答案一.填空题1.答案:若a ≠0且b ≠0,则ab ≠02.解析:由⎩⎪⎨⎪⎧ x 1+x 2>6x 1·x 2>9,可知,当⎩⎪⎨⎪⎧ x 1=8x 2=2,时,不等式组成立,但不满足⎩⎪⎨⎪⎧x 1>3,x 2>3,所以必要性不成立. 答案:充分不必要3.解析:命题的条件为“x 2≥1”,结果为“x ≥1或x ≤-1”,否定结果作条件,否定条件作结果,即为其逆否命题. 答案:若-1<x <1,则x 2<14.解析:①“若x +y ≠0,则x ,y 不互为相反数”是真命题;②“若a 2≤b 2,则a ≤b ”,取a =1,b =-5,因此a 2≤b 2,但a >b ,故②是假命题;③“若x >-3,则x 2-x -6≤0”,解不等式x 2-x -6≤0可得-2≤x ≤3,而x =4>-3不是不等式的解,故是假命题;④“相等的角是对顶角”是假命题. 答案:① 5.答案:②④6.解析:由Venn 图易知“M ∪N ≠∅” “M ∩N ≠∅”,而“M ∩N ≠∅”⇒“M ∪N ≠∅”. 答案:必要不充分7.解析:“p 且q ”为真⇒p 真且q 真⇒“p 或q ”为真,反之不成立. 答案:必要不充分 8.解析:p :-4<x -a <4⇔a -4<x <a +4,q :(x -2)(3-x )>0⇔2<x <3.又 p 是 q 的充分条件,即 p ⇒ q ,它的等价命题是q ⇒p ,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.答案:-1≤a ≤69.答案:存在一个偶数不能被2整除 10.答案:②③11.解析:因为p (1)是假命题,所以1+2-m ≤0,即m ≥3.又因为p (2)是真命题,所以4+4-m >0,即m <8.故实数m 的取值范围是3≤m <8. 答案:3≤m <812.解析:①“若xy =1,则x ,y 互为倒数”的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②“相似三角形的周长相等”的否命题为“两个三角形不相似,则周长不相等”,显然是假命题;③∵b ≤-1,∴Δ=4b 2-4(b 2+b )=-4b ≥4>0,∴“若b ≤-1,则x 2-2bx +b 2+b =0有实数根”为真命题,∴其逆否命题也是真命题;④∵当α=7π3时,sin α+cos α>1成立,∴此命题是假命题.答案:①③13.解析:由∀x ∈[0,1],a ≥e x ,得a ≥e;由∃x ∈R ,x 2+4x +a =0,得Δ=42-4a ≥0,解得a ≤4,从而a 的取值范围为[e,4]. 答案:[e,4]14.解析:∵x 2-x +1>0,∴原不等式化为x 2-ax +2<3x 2-3x +3,即2x 2+(a -3)x +1>0.∵∀x ∈R 时,2x 2+(a -3)x +1>0恒成立,∴Δ=(a -3)2-8<0. ∴3-22<a <3+22, ∴a 1+a 2=6. 答案:6 二.解答题15.解:(1)逆命题:若sin α=sin β,则α=β; 否命题:若α≠β,则sin α≠sin β; 逆否命题:若sin α≠sin β,则α≠β.(2)逆命题:若梯形为等腰梯形,则它的对角线相等; 否命题:若梯形的对角线不相等,则梯形不是等腰梯形; 逆否命题:若梯形不是等腰梯形,则它的对角线不相等.(3)逆命题:已知a ,b ,c ,d 都是实数,若a +c =b +d ,则a =b ,c =d ; 否命题:已知a ,b ,c ,d 都是实数,若a ≠b 或c ≠d ,则a +c ≠b +d ; 逆否命题:已知a ,b ,c ,d 都是实数,若a +c ≠b +d ,则a ≠b 或c ≠d . 16.解:(1)命题的否定:正方形不都是菱形,是假命题.(2)命题的否定:∀x ∈R ,有4x -3≤x .因为当x =2时,4×2-3=5>2,所以“∀x ∈R ,有4x -3≤x ”是假命题.(3)命题的否定:∃x ∈R ,使x +1≠2x .因为当x =2时,x +1=2+1=3≠2×2,所以“∃x ∈R ,使x +1≠2x ”是真命题.(4)命题的否定:集合A 既不是集合A ∩B 的子集也不是集合A ∪B 的子集,是假命题. 17.解:当甲为真时,设y =|x |和y =ax +1(a >0),即两函数图象有两个交点,则0<a <1;当乙为真时,a =1或⎩⎪⎨⎪⎧a 2-1<0Δ≤0,则-79≤a ≤1,∴当甲、乙中有且仅有一个为真命题时,有⎩⎪⎨⎪⎧0<a <1a >1或a <-79或⎩⎪⎨⎪⎧a ≥1或a ≤0-79≤a ≤1,∴a ∈[-79,0]∪{1}.18.证明:先证明条件的充分性: ∵⎩⎪⎨⎪⎧a ≥2b ≤4⇒a 2≥4≥b , ∴Δ=4(a 2-b )≥0,∴方程有实数根.① ∵⎩⎪⎨⎪⎧ a ≥2b ≥-4⇒⎩⎪⎨⎪⎧-2a ≤-4,b ≥-4. ∴(x 1-2)+(x 2-2)=(x 1+x 2)-4=-2a -4≤-4-4=-8<0.而(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=b +4a +4≥-4+8+4=8>0,∴⎩⎪⎨⎪⎧x 1-2+x 2-2<0x 1-2x 2-2>0⇒⎩⎪⎨⎪⎧x 1-2<0x 2-2<0⇒⎩⎪⎨⎪⎧x 1<2,x 2<2.②由①②,知“a ≥2,且|b |≤4”⇒“方程x 2+2ax +b =0有实数根,且两根均小于2”.再验证条件的不必要性:∵方程x 2-x =0的两根为x 1=0,x 2=1,则方程的两根均小于2,而a =-12<2,∴“方程x 2+2ax +b =0的两根小于2” “a ≥2且|b |≤4”.综上,a ≥2且|b |≤4是方程x 2+2ax +b =0有实数根且两根均小于2的充分不必要条件. 19.解:(1)x ∈M 或x ∈P ⇒x ∈R ,x ∈(M ∩P )⇔x ∈(2,3),因为x ∈M 或x ∈P x ∈(M ∩P ),但x ∈(M ∩P )⇒x ∈M 或x ∈P .故“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的必要不充分条件.(2)当m ≠0时,不等式4mx 2-2mx -1<0恒成立⇒⎩⎪⎨⎪⎧4m <0,Δ=4m 2+16m <0,⇔-4<m <0.又当m =0时,不等式4mx 2-2mx -1<0,对x ∈R 恒成立.故使不等式4mx 2-2mx -1<0恒成立的充要条件是-4<m ≤0.20.解:命题p :3a <x <a ;命题q :x <-4或x ≥-2. ∵ p ⇐ q , ∴p ⇒q ,由数轴可知a ≤-4或3a ≥-2,即a ≤-4或a ≥-23.又∵a <0,∴a ≤-4或-23≤a <0,即a 的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫-23,0.。
►基础梳理1.充分条件和必要条件. 一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p ⇒q ,并且说p 是q 的充分条件,q 是p 的必要条件.2.充要条件. 一般地,假如既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,此时我们说,p 是q 的充分必要条件,简称充要条件.明显,假如p 是q 的充要条件,那么q 也是p 的充要条件.概括地说,假如p ⇔q ,那么p 与q 互为充要条件.♨思考:如何从集合与集合之间的关系上理解充分条件、必要条件和充要条件?答案:对于集合A ={x |p(x)},B ={x |q (x )},分别是使命题p 和q 为真命题的对象所组成的集合.,►自测自评1.已知集合A ,B ,则“A ⊆B ”是“A ∩B =A ”的(C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件2.“a =1”是“直线x +y =0和直线x -ay =0相互垂直”的(C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的充分不必要条件.解析:由a =2能得到(a -1)(a -2)=0,但由(a -1)·(a -2)=0得到a =1或a =2,而不是a =2,所以a =2是(a -1)(a -2)=0的充分不必要条件.1.在△ABC 中,“A >30°”是“sin A >12”的(B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当A =170°时,sin 170°=sin 10°<12,所以“过不去”;但是在△ABC 中,sin A >12⇒30°<A <150°⇒A >30°,即“回得来”.2.(2022·湛江一模)“x >2”是“(x -1)2>1”的(B ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3.“b 2=ac ”是“ a ,b ,c 成等比数列”的________条件.解析:由于当a =b =c =0时,“b 2=ac ”成立,但是a ,b ,c 不成等比数列; 但是“a ,b ,c 成等比数列”必定有“b 2=ac ”. 答案:必要不充分4.求不等式ax 2+2x +1>0恒成立的充要条件. 解析:当a =0时,2x +1>0不恒成立. 当a ≠0时,ax 2+2x +1>0恒成立⇔⎩⎪⎨⎪⎧a >0,Δ=4-4a <0⇔a >1. ∴不等式ax 2+2x +1>0恒成立的充要条件是a >1.5.已知p :x 2-2(a -1)x +a (a -2)≥0,q :2x 2-3x -2≥0,若p 是q 的必要不充分条件,求实数a 的取值范围.解析:令M ={x |2x -3x -2≥0} ={x |(2x +1)(x -2)≥0}⇒⎩⎨⎧⎭⎬⎫x |x ≤-12或x ≥2 N ={x |x 2-2(a -1)x +a (a -2)≥0}={x |(x -a )[x -(a -2)]≥0}⇒{x |x ≤a -2或x ≥a },已知q ⇒p 且p ⇒/ q ,得M N .所以⎩⎪⎨⎪⎧a -2≥-12,a <2或⎩⎪⎨⎪⎧a -2>-12,a ≤2⇔32≤a <2或32<a ≤2⇔32≤a ≤2.即所求a 的取值范围是⎣⎡⎦⎤32,2.。