3.4实际问题与一元一次方程(销售问题)
- 格式:ppt
- 大小:2.58 MB
- 文档页数:26
人教版七年级上册数学3.4 实际问题与一元一次方程 销售盈亏问题一、单选题1.一件衣服按成本价提高40%后标价,再打8折(标价的80%)销售,售价为224元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是( ) A .x ·40%×80%=224 B .x ·40%=224×80% C .224×40%×80%=xD .x (1+40%)×80%=2242.某甜品铺子正在热销一种“脏脏面包”,其标价为每个12元,打8折销售后每个可获利3元,该面包的进价为( ) A .6.4元B .6.5元C .6.6元D .6.7元3.某商品进价为1530元,按商品标价的九折出售时,利润率是12%,若设商品的标价为x 元,可列方程得( ) A .()91530112%x =+ B .0.9153012%x =⨯ C .()0.915300.9112%x =⨯+D .()0.91530112%x =+4.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后又打八折,现售价为n 元,那么该电脑的原售价为( ) A .45n m ⎛⎫+ ⎪⎝⎭元B .54n m ⎛⎫+ ⎪⎝⎭元C .45m n ⎛⎫+ ⎪⎝⎭元D .54m n ⎛⎫+ ⎪⎝⎭元5.一件商品的进价为80元,七折售出仍可获利5%,若标价为x 元,则可列方程为( )A .80×(1+5%)=0.7xB .80×0.7×(1+5%)=xC .(1+5%)=0.7xD .80×5%=0.7x6.某新上市的农产品每千克的售价是a 元,由于供不应求,提价25%出售,后来该农产品大量入市,欲恢复原价出售,应降价( ) A .15%B .20%C .25%D .30%7.某网络书店销售两种不同类型的数学绘本各一套,已知它们的售价都是120元/套,其中一套盈利25%,另一套亏本25%.则在这次买卖中,该网络书店的盈亏情况是( ) A .亏损16元B .盈利16元C .盈利40元D .不盈不亏8.一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是()A.2400元B.2200元C.2000元D.1800元二、填空题9.某种商品的进价为300元,售价为450元.后来由于该商品积压,商店准备打折销售,若要保证利润率为20%,则该商品应打_____折.10.枣庄购物中心将某种商品按原价的8折出售,此时商品的利润率是15%.已知这种商品的进价为2000元,那么这种商品的原价是________元.11.某商场前三个季度共销售电脑910台,第一季度的销量是第二季度的2倍,第三季度的销量是第一季度的2倍,设第二季度销售电脑x台,则根据题意可列方程_________.12.某商品因换季准备打折出售,若按定价的七折出售将亏本25元,若按定价的九折出售将盈利35元,则这种商品定价是_______________元.13.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件______元.14.某商店以每件800元购进一种商品,如果将该商品按标价的打八折出售,那么该商品的利润率为15%.设这种商品的标价是x元,则可列方程为___________.15.某种商品的价格标签已经看不清,售货员只知道这种商品的进价为1000元,打八折售出后,仍可获利20%,请帮助售货员重新填好价格标签应_____元.16.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的八五折出售,将盈利10元,则该商品的原售价为______元.三、解答题17.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?18.元旦期间,某商场将甲种商品降价40%,乙种商品降价20%开展优惠促价活动.已知甲、乙两种商品的原销售单价之和为1200元,小敏的妈妈参加活动购买甲、乙两种商品各一件,共付800元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中销售甲种商品800件,销售乙种商品1500件,共获利99000元,已知每件甲种商品的利润比乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?19.某校同学经过“种植”项目化学习后,收获一批蔬菜,经过调查发现:若这种蔬菜加工后出售,单价可提高40%,但重量只有加工前的80%.现有未加工的这种蔬菜50千克,加工后可以比不加工多卖60元.(1)若设加工前每千克卖x元,请填写下表:(2)求这种蔬菜加工后的单价.20.某超市第一次以4450元购进甲、乙两种商品,其中乙商品的件数是甲商品件数的2倍多15件,甲、乙两种商品的进价和售价如下表:(注:利润=售价-进价)(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中乙商品的件数不变,甲商品的件数是第一次的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样,求第二次甲商品是按原价打几折销售?参考答案:1.D2.C3.D4.B5.A6.B7.A8.C9.810.287511.2x+x+4x=91012.30013.1514.0.8x-800=800×15%15.150016.35017.(1)42元(2)40台18.(1)甲、乙两种商品原销售单价分别是800元和400元(2)甲、乙两种商品每件的进价分别是450元和270元19.(1)见解析(2)这种水果加工后的单价为14元20.(1)甲50件,乙115件(2)9折答案第1页,共1页。
3.3一元一次方程的应用——销售问题【教学目标】能熟练地找出销售问题中的相等关系列方程解应用题【复习引入】1.一种药品现在售价56.10元,比原来降低了15%,问原售价为__56.10×(1+1 5%)=64.515__元.2.“五一”黄金周期间,为了促销商品,甲、乙两个商店都采取优惠措施,甲店推出八折后再打八折,乙店则一次性六折优惠,若同样价格的商品,下列结论正确的是( B )A.甲比乙优惠B.乙比甲优惠C.两店优惠条件相同D.不能进行比较【知识点梳理】销售问题中常用的关系式:(1)利润=进价×利润率,(2)利润=售价-进价.【应用举例】例1某种商品的进价为100元,若要使利润率达20%,则该商品的销售价格应为多少元?此时每件商品可获利润多少元?分析:若设售价x元,则利润为_20 元或用x表示为x-100元,可列方程为__ x-100 =__20 ,解之得x=_120_.针对性练习某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈利20%,乙种成衣卖价也是120元但亏损20%,问该商店在本次销售中实际上是盈还是亏,盈或亏多少钱?答案:解:设甲种成衣的进价为x元,乙种成衣的进价为y元。
则由题意的x x-120=20%=-yy120-20%解得x=100 解得y=150甲种成衣盈利=120-100=20元乙种成衣亏损=150-120=30元该次销售实际是亏损=30-20=10元例2某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元?分析:若设标价为每枝x元,则售价为_80%x__元,利润为_3_元,用x表示为80%x-5元,可列方程为_80%x-5 =3_ _,解之得x=_10__.针对性练习1.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?答案:解:设这种商品的定价是x元。
由题意得75%x+25=90%x-20移项合并同类项得,-0.15x=45系数化为1得,x=300答:这种商品的定价为300元。
§ 3.4实际问题与一元一次方程(知识要点)一、销售问题在生活中,人们购买商品和销售商品时,经常会遇到进价、原价(标价)、售价、打折等概念,在了解这些概念后,还必须熟悉销售问题中的两个基本关系式:① 利润=售价-进价; ② 利润率=进价利润×100%. 在①式中若等式左边的“利润”为正,就是盈利;若为负,就是亏损;由①和②式可以得到:利润=售价-进价=利润率×进价。
【例1】 某商店将某种服装按进价提高30%作为标价,又以九折优惠卖出,结果仍可获利17元,则这种服装每件进价是多少元?分析:此题要用的等量关系是:利润=售价-进价,如果把进价设为x 元,则标价为(1+30%)x ,打九折后售价为0.9×(1+30%)x ,再减去进价x 元得到的就是利润17元。
解:设这种服装每件的进价为x 元,依题意列方程为:0.9×(1+30%)x -x =17解得x =100答:这种服装的进价是100元。
练习:某商店对一种商品进行调价,按原价的八折出售,打折后利润率是20%,已知商品的原价是63元,求该商品的进价?二、行程问题1、相遇问题:主要是指两车(戓人)从两地同时相向而行。
其基本等量关系为两车(戓人)所行的路程这和恰好等于两地的距离;两车(或人)人开始行驶到相遇所用的时间相等。
2、追赶问题:主要是指甲、乙同向而行,快者追慢者称为追赶问题。
① 基本公式:速度差×追赶时间=被追赶的路程;② 对于同向同地不同时出发的问题有相等关系:追赶者行进路程=被追赶者行进路程; ③ 对于同时同向不同地出发的问题有等量关系:追赶者的行驶时间=被追赶者的行驶时间。
3、航行问题:基本公式:顺水速度=静水速度+水速,逆水速度=静水速度-水速 顺风速度=无风速度+风速,逆风速度=无风速度-风速 符号公式:v 顺水=v 静水+v 水 v 顺风=v 无风+v 风v 逆水=v 静水-v 水 v 逆风=v 无风-v 风 4、行程问题一般都能通过画线段示意图来分析,通过线段示意图,等量关系就能直观地显示出来,进而用方程表示出来。