2复化求积
- 格式:ppt
- 大小:462.50 KB
- 文档页数:8
复化求积公式复化求积公式是计算定积分的一种常用方法。
它的基本思想是将区间分成多个小区间,用每个小区间上的函数近似代替原函数,然后将这些小区间的近似结果相加得到总的近似结果。
这个方法的优点是能够适用于各种函数类型,而且在计算机上也可以很方便地实现。
具体来说,我们可以将区间[a, b]均匀地分成n个小区间,每个小区间的长度都为Δx = (b-a)/n。
然后我们在每个小区间上选择一个点xi(可以是小区间的左端点、右端点、中点等)作为代表,然后计算这些小区间上的函数值f(xi)。
这样我们就得到了n个高度为f(xi)的矩形,它们的面积就是Δx * f(xi)。
将这n个矩形的面积相加,就得到了近似的定积分的结果。
单个小区间的近似结果可以表示为Δx * f(xi)。
为了得到更精确的结果,我们可以进一步增加小区间的数量,即取n趋向于无穷大的极限。
这样,我们就可以得到复化求积公式的一般形式:∫[a, b] f(x) dx ≈ Δx/2 * [f(x0) + 2f(x1) + 2f(x2) + ... + 2f(x(n-1)) + f(xn)]其中,Δx = (b-a)/n,x0 = a,xn = b,xi 是每个小区间上的代表点。
复化求积公式的精确度与小区间的数量n有关,通常情况下,n越大,近似结果越精确。
但是同时也需要注意,小区间的数量过大会导致计算量过大,需要更多的时间和计算资源。
复化求积公式在实际应用中有很重要的作用,特别是在数值计算和科学工程领域。
通过这个方法,我们可以近似地计算各种复杂的函数的定积分,例如概率密度函数、信号处理中的卷积运算等。
同时,复化求积公式也为数值积分提供了一种计算机实现的思路,可以通过编程语言实现自动计算定积分的功能。
总之,复化求积公式是计算定积分的一种重要方法,通过将区间分成多个小区间,用每个小区间上的函数近似代替原函数,并将这些小区间结果相加,从而获得近似结果。
它在实际应用中具有广泛的适用性和指导意义,为求解各种复杂问题提供了一种有效的数值计算方法。
复化求积公式的算法及其应用复化求积公式是数值计算方法中重要的一种技术,用于近似计算函数的积分值。
该方法通过将积分区间等分为多个小区间,并在每个小区间上使用求积公式来估计函数在该区间上的积分值。
本文将介绍复化求积公式的算法及其应用。
一、复化求积公式算法1.复化梯形求积公式复化梯形求积公式是复化求积公式中最简单的一种,其基本思想是将积分区间等分为若干个小区间,然后在每个小区间上使用梯形求积公式计算积分值,最后将所有小区间的积分值相加得到最终的积分值。
算法步骤:1)将积分区间[a,b]等分为n个小区间,每个小区间的长度为h=(b-a)/n。
2) 在每个小区间上使用梯形求积公式计算积分值,即Ii=h/2*(f(xi)+f(xi+1)),其中xi=a+i*h,i=0,1,2,...,n-13)将所有小区间的积分值相加得到最终的积分值,即I≈I0+I1+I2+...+In-12. 复化Simpson求积公式复化Simpson求积公式是一种更为精确的复化求积公式,它通过在每个小区间上使用Simpson求积公式来计算积分值,从而提高了计算精度。
算法步骤:1)将积分区间[a,b]等分为n个小区间,每个小区间的长度为h=(b-a)/n。
2) 在每个小区间上使用Simpson求积公式计算积分值,即Ii=h/6*(f(xi)+4f(xi+h/2)+f(xi+h)),其中xi=a+i*h,i=0,1,2,...,n-13)将所有小区间的积分值相加得到最终的积分值,即I≈I0+I1+I2+...+In-1二、复化求积公式应用1.数学分析中的数值积分计算,用于计算函数的定积分值。
2.物理学中的积分计算,用于计算物理量的平均值或总量。
3.统计学中的积分计算,用于计算概率密度函数的面积值。
4.工程学中的积分计算,用于计算工程问题中的各种积分量。
5.金融学中的积分计算,用于计算金融衍生品的价格或价值。
总结:复化求积公式是一种重要的数值计算方法,在数学、物理、统计、工程、金融等领域中有广泛的应用。
现代科学工程计算基础课后答案《现代科学与工程计算基础》较为详细地介绍了科学与工程计算中常用的数值计算方法、基本概念及有关的理论和应用。
全书共分八章,主要内容有误差分析,函数的插值与逼近,数值积分与数值微分,线性代数方程组的直接解法与迭代解法,非线性方程及非线性方程组的数值解法,矩阵特征值和特征向量的数值解法,以及常微分方程初、边值问题的数值解法等。
使用对象为高等院校工科类研究生及理工科类非“信息与计算科学”专业本科生,也可供从事科学与工程计算的科技工作者参考。
《现代科学与工程计算基础》讲授由浅人深,通俗易懂,具备高等数学、线性代数知识者均可学习。
基本信息出版社: 四川大学出版社; 第1版 (2003年9月1日)平装: 378页语种:简体中文开本: 32ISBN: 7561426879条形码: 9787561426876商品尺寸: 20 x 13.8 x 1.6 cm商品重量: 399 g品牌: 四川大学出版社ASIN: B004XLDT8C《研究生系列教材:现代科学与工程计算基础》是我们在长期从事数值分析教学和研究工作的基础上,根据多年的教学经验和实际计算经验编写而成。
其目的是使大学生和研究生了解数值计算的重要性及其基本内容,熟悉基本算法并能在计算机上实现,掌握如何构造、评估、选取、甚至改进算法的数学理论依据,培养和提高读者独立解决数值计算问题的能力。
目录第一章绪论§1 研究对象§2 误差的来源及其基本概念2.1 误差的来源2.2 误差的基本概念2.3 和、差、积、商的误差§3 数值计算中几点注意事项习题第二章函数的插值与逼近§1 引言1.1 多项式插值1.2 最佳逼近1.3 曲线拟合§2 Lagrange插值2.1 线性插值与抛物插值2.2 n次Lagrange插值多项式2.3 插值余项§3 迭代插值§4 Newton插值4.1 Newton均差插值公式4.2 Newton差分插值公式§5 Hermite插值§6 分段多项式插值6.1 分段线性插值6.2 分段三次Hermite插值§7 样条插值7.1 三次样条插值函数的定义7.2 插值函数的构造7.3 三次样条插值的算法7.4 三次样条插值的收敛性§8 最小二乘曲线拟合8.1 问题的引入及最小二乘原理8.2 一般情形的最小二乘曲线拟合8.3 用关于点集的正交函数系作最小二乘拟合8.4 多变量的最小二乘拟合§9 连续函数的量佳平方逼近9.1 利用多项式作平方逼近9.2 利用正交函数组作平方逼近§10 富利叶变换及快速富利叶变换10.1 最佳平方三角逼近与离散富利叶变换10.2 快速富利叶变换习题第三章数值积分与数值微分§1 数值积分的基本概念1.1 数值求积的基本思想1.2 代数精度的概念1.3 插值型求积公式§2 等距节点求积公式2.1 Newton—CoteS公式2.2 复化求积法及其收敛性2.3 求积步长的自适应选取§3 Romberg 求积法3.1 Romberg求积公式3.2 Richardson外推加速技术§4 Gauss型求积公式4.1 Gauss型求积公式的一般理论4.2几种常见的Gauss型求积公式§5 奇异积分和振荡函数积分的计算5.1 奇异积分的计算5.2 振荡函数积分的计算§6 多重积分的计算6.1 基本思想6.2 复化求积公式6.3 Gauss型求积公式§7 数值微分7.1 Taylor级数展开法7.2 插值型求导公式习题第四章解线性代数方程组的直接法§1 Gauss消去法§2 主元素消去法2.1 全主元素消去法2.2 列主元素消去法§3 矩阵三角分解法3.1 Doolittle分解法(或LU分解)3.2 列主元素三角分解法3.3 平方根法3.4 三对角方程组的追赶法§4 向量范数、矩阵范数及条件数4.1 向量和矩阵的范数4.2 矩阵条件数及方程组性态习题第五章解线性代数方程组的迭代法§1 Jacobi迭代法§2 Gauss-Seidel迭代法§3 超松弛迭代法§4 共轭梯度法习题第六章非线性方程求根§1 逐步搜索法及二分法1.1 逐步搜索法1.2 二分法§2 迭代法2.1 迭代法的算法2.2 迭代法的基本理论2.3 局部收敛性及收敛阶§3 迭代收敛的加速3.1 松弛法3.2 Aitken方法§4 New-ton迭代法4.1 Newton迭代法及收敛性4.2 Newton迭代法的修正4.3 重根的处理§5 弦割法与抛物线法5.1 弦割法5.2 抛物线法§6 代数方程求根6.1 多项式方程求根的Newton法6.2 劈因子法§7 解非线性方程组的Newton迭代法习题……第七章矩阵特征值和特征向量的计算第八章常微方分程数值解法附录参考文献欢迎下载,资料仅供参考!!!资料仅供参考!!!资料仅供参考!!!。
§3 复化求积公式● 复化求积法的基本思想:将积分区间],[b a n 等分,可得到1+n 个求积节点:kh a x k +=,),,1,0(n k Λ=,其中nab h -=,对积分111()()k kn n bx k axk k I f x dx f x dx I +--=====∑∑⎰⎰在每一个小区间1[,]k k x x +上利用n 阶牛顿-柯特斯公式计算,然后对每个区间的近似积分值求和,用所得的值近似代替原积分值。
如此得到的求积公式称为复化求积公式。
● 复化梯形公式:(每个小区间上利用梯形公式求积)111110()()(()())2k kn bx ax k n k kk k k I f x dx f x dxx x f x f x +-=-++===-≈+∑⎰⎰∑求和展开得:0112111(()())(()())2(()())(()2()())2n n n n k k hT f x f x f x f x f x f x hf a f x f b --==++++++=++∑L其中,na b h -=复化辛甫生公式: (每个小区间上用辛甫生公式求积) 1、公式:112101110()()(()4()())6k kn bxax k n k kk k k k I f x dx f x dxx x f x f x f x +-=-+++===-≈++∑⎰⎰∑ 12k x +表示为区间1[,]k k x x +的中点。
求和展开得:13221201121((()4()())(()4()6())(()4()())n n n n hS f x f x f x f x f x f x f x f x f x --=+++++++++L121101(()4()2()())6n n k k k k hf a f x f x f b --+===+++∑∑ 其中:na b h -=。
复化柯特斯公式:(每个小区间上用柯特斯公式求积)1141324101101()()(7()32()9012()32()7())k kn bxax k n k kk k k k k k I f x dx f x dxx x f x f x f x f x f x +-=-++=+++==-≈++++∑⎰⎰∑ 12k x +为1[,]k k x x +的中点,14k x +,34k x +为1[,]k k x x +的四分之一分点。