2011年中高考上海卷考试手册-数学科
- 格式:doc
- 大小:130.50 KB
- 文档页数:6
2 0 1 1 年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海 数学试卷(文史类)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚的填写姓名、准考证号,并将核对后的条形码 贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个 空格填对得4分,否则一律得零分. 1. 若全集UR =,集合{1}A x x =≥,则U C A =2. 计算3lim(1)3n nn →∞-+=3. 若函数()21f x x =+的反函数为1()f x -,则1(2)f --= 4. 函数2sin cos y x x =-的最大值为5. 若直线l 过点(3,4),且(1,2)是它的一个法向量,则直线l 的方程为6. 不等式11x<的解为7. 若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为8. 在相距2千米的,A B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则,A C 两点之间的距离是 千米 9. 若变量,x y 满足条件30350x y x y -≤⎧⎨-+≥⎩,则z x y =+的最大值为10. 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为 11. 行列式(,,,{1,1,2}a b a b c d c d∈-所有可能的值中,最大的是12. 在正三角形ABC 中,D 是边BC 上的点,若3,1AB BD ==,则AB AD ⋅=13. 随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为 (默认每个月的天数相同,结果精确到0.001)14. 设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[0,1]上的值域为[2,5]-,则()f x 在区间[0,3]上的值域为二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分15.下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( ) (A )2y x -= (B )1y x -= (C )2y x = (D )13y x =16.若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( ) (A )222a b ab +> (B)a b +≥ (C)11a b +> (D )2b a a b +≥17.若三角方程sin 0x =与sin 20x =的解集分别为,E F ,则( )ABDCA 1B 1C 1D 1(A )F E ≠⊂ (B )F E ≠⊃ (C )EF = (D )E F =∅18.设1234,,,A A A A 是平面上给定的4个不同点,则使12340MA MA MA MA +++=成立的点M 的个数为( )(A )0 (B )1 (C )2 (D )4三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出 必要的步骤.19.(本题满分12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,且12z z ⋅是实数,求2z20.(本题满分14分,第1小题7分,第2小题7分)已知1111ABCD A B C D -是底面边长为1的正四棱柱,高12AA =,求 (1)异面直线BD 与1AB 所成角的大小(结果用反三角函数值表示); (2)四面体11AB D C 的体积.21.(本题满分14分,第1小题6分,第2小题8分) 已知函数()23xxf x a b =⋅+⋅,其中常数,a b 满足0a b ⋅≠ (1)若0a b ⋅>,判断函数()f x 的单调性;(2)若0a b ⋅<,求(1)()f x f x +>时的x 的取值范围.22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)已知椭圆222:1x C y m+=(常数1m >),P 是曲线C 上的动点,M 是曲线C 上的右顶点,定点A 的坐标为(2,0)(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若3m =,求PA 的最大值与最小值;(3)若PA 的最小值为MA ,求实数m 的取值范围.23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*)n N ∈.将集合{,*}{,*}n n x x a n N x x b n N =∈=∈中的元素从小到大依次排列,构成数列123,,,,,n c c c c(1)求三个最小的数,使它们既是数列{}n a 中的项,又是数列{}n b 中的项; (2)数列12340,,,,c c c c 中有多少项不是数列{}n b 中的项?请说明理由;(3)求数列{}n c 的前4n 项和4(*)n S n N ∈.上海 数学试卷(文史类) 参考答案一、填空题(第1题至第14题)1. {|1}x x <2.2-3. 32-4.5. 2110x y +-=6. {}10|><x x x 或 7. 3π8.9.5210.211.6 12.15213. 0.985 14. [2,7]- 二、选择题(第15题至第18题) 15. A 16. D17.A18.B三、解答题(第19题至第23题) 19.[解]由已知1(2)(1)1z i i -+=-,得12z i =-设22,z a i a R =+∈,则12(2)(2)(22)(4)z z i a i a a i =-+=++- ∵ 12z z R ∈,∴ 4=a ,即 242z i =+20. [解]⑴ 连1111,,,BD AB B D AD ,∵ 1111//,BD B D AB AD = ∴ 异面直线BD 与1AB 所成角为11AB D ∠,记11AB D θ∠=,2221111111cos 2AB B D AD AB B D θ+-==⨯ ∴ 异面直线BD 与1AB所成角为arccos 10。
BAC20750602011年上海高考试题逐题解析一、填空题: 1、函数1()2f x x =-的反函数为1()f x -= 。
2、若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。
3、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4、不等式13x x+<的解为 。
5、在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6、在相距2千米的A 、B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。
.7、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8、函数sin()cos()26y x x ππ=+-的最大值为 。
9、马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
(文科)若变量x 、y 满足条件30350x y x y -≤⎧⎨-+≥⎩,则z x y =+的最大值为 。
10、行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
(文科)课题组进行城市农空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8若用分层抽样抽取6个城市,则丙组中应抽取的城市数为 。
11、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=。
12、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
2011年上海市高考数学试题(理科)一、填空题(56分) 1、函数1()2f x x =-的反函数为1()f x -= 。
2、若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。
3、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4、不等式13x x+<的解为 。
5、在极坐标系中,直线(2cos sin )2ρθθ+=与直线c o s 1ρθ=的夹角大小为 。
6、在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。
7、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8、函数sin()cos()26y x x ππ=+-的最大值为 。
9、马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10、行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=。
12、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
14、已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点?!?321P(ε=x )x12,,,,n P P P ,则0lim ||n n Q P→∞= 。
2011年上海高考理科数学试卷一、填空题:每题4分,共14题56分。
1.函数1()2f x x =-的反函数为1()f x -=.2. 若全集U R=,集合{|1}{|0}A x x x x =≥≤U ,则U C A =.3. 设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = . 4.不等式13x x+<的解为 .5. 在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 .6. 在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是千米.7. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 . 8.函数sin()cos()26y x x ππ=+-的最大值为 .9. 马老师从课本上抄录一个随机变量ε的概率分布律如下表:?!?321P(ε=x )x请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E ε= .10. 行列式ab cd(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 .11. 在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=u u u r u u u r .12. 随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).13. 设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 .14. 已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记0Q R 的中点为1P ,取01Q P 和1P R 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,nP P P L L ,则0lim ||nn Q P →∞= .二、选择题:本大题满分20分.本大题共有4题,每题5分15. 若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A.222a b ab +> B.2a b ab+≥C.11a bab+> D.2b aa b+≥ 16. 下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( )A.1ln||y x = B.3y x =C.||2x y = D.cos y x =17. 设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=u u u u r u u u u r u u u u r u u u u r u u u u r r 成立的点M 的个数为( )A.0B.1C.5D.1018. 设{}na 是各项为正数的无穷数列,iA 是边长为1,i i a a +的矩形面积(1,2,i =L ),则{}nA 为等比数列的充要条件为( ) A.{}na 是等比数列B.1321,,,,n a a a-L L 或242,,,,na a aL L 是等比数列 C.1321,,,,n a a a -L L 和242,,,,na a a L L 均是等比数列 D.1321,,,,n a a a-L L和242,,,,na a aL L均是等比数列,且公比相同三、解答题:本大题满分74分.本大题共有5题,解答应写出文字说明、证明过程或演算步骤.19.(本题满分12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z .20.(本题满分12分)已知函数()23xxf x a b =⋅+⋅,其中常数,a b 满足0ab ≠.(1)若0ab >,判断函数()f x 的单调性; ⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围.21.(本题满分14分)已知1111ABCD A B C D -是底面边长为1的正四棱柱,1O 是11A C 和11B D 的交点.⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β.求证:tan 2βα=;DCBA⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A B C D 的高.22.(本题满分18分)已知数列{}na 和{}nb 的通项公式分别为36nan =+,27n b n =+(*n N ∈),将集合**{|,}{|,}nnx x a n N x x b n N =∈=∈U 中的元素从小到大依次排列,构成数列123,,,,,nc c c c L L .⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}nc 中、但不在数列{}nb 中的项恰为242,,,,na a aL L;⑶ 求数列{}nc 的通项公式.23.(本题满分18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; ⑵ 设l 是长为2的线段,求点集{|(,)1}D P d P l =≤所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,lAB l CD==,,,,A B C D是下列三组点中的一组。
2011年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(共14小题,每小题4分,满分56分)1.(4分)(2011•上海)若全集U=R,集合A={x|x≥1},则∁U A={x|x<1}.【考点】补集及其运算.【专题】计算题.【分析】由补集的含义即可写出答案.【解答】解:∵全集U=R,集合A={x|x≥1},∴C U A={x|x<1}.故答案为:{x|x<1}.【点评】本题考查补集的含义.2.(4分)(2011•上海)计算=﹣2.【考点】极限及其运算.【专题】计算题.【分析】根据题意,对于,变形可得,分析可得,当n→∞时,有的极限为3;进而可得答案.【解答】解:对于,变形可得,当n→∞时,有→3;则原式=﹣2;故答案为:﹣2.【点评】本题考查极限的计算,需要牢记常见的极限的化简方法.3.(4分)(2011•上海)若函数f(x)=2x+1的反函数为f﹣1(x),则f﹣1(﹣2)=.【考点】反函数.【专题】计算题.【分析】问题可转化为已知f(x0)=﹣2,求x0的值,解方程即可【解答】解:设f(x0)=﹣2,即2x0+1=﹣2,解得故答案为【点评】本题考查反函数的定义,利用对应法则互逆可以避免求解析式,简化运算.4.(4分)(2011•上海)函数y=2sinx﹣cosx的最大值为.【考点】三角函数的最值.【专题】计算题.【分析】利用辅角公式对函数解析式化简整理,利用正弦函数的性质求得其最大值.【解答】解:y=2sinx﹣cosx=sin(x+φ)≤故答案为:【点评】本题主要考查了三角函数的最值.要求能对辅角公式能熟练应用.5.(4分)(2011•上海)若直线l过点(3,4),且(1,2)是它的一个法向量,则直线l的方程为x+2y﹣11=0.【考点】直线的点斜式方程;向量在几何中的应用.【专题】直线与圆.【分析】根据直线的法向量求出方向向量,求出直线的斜率,然后利用点斜式方程求出直线方程.【解答】解:直线的法向量是(1,2),直线的方向向量为:(﹣2,1),所以直线的斜率为:﹣,所以直线的方程为:y﹣4=﹣(x﹣3),所以直线方程为:x+2y﹣11=0.故答案为:x+2y﹣11=0.【点评】本题是基础题,考查直线的法向量,方向向量以及直线的斜率的求法,考查计算能力.6.(4分)(2011•上海)不等式的解为{x|x>1或x<0}.【考点】其他不等式的解法.【专题】计算题.【分析】通过移项、通分;利用两个数的商小于0等价于它们的积小于0;转化为二次不等式,通过解二次不等式求出解集.【解答】解:即即x(x﹣1)>0解得x>1或x<0故答案为{x|x>1或x<0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出7.(4分)(2011•上海)若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为3π.【考点】由三视图求面积、体积.【专题】计算题.【分析】根据圆锥的主视图是边长为3,3,2的三角形,得到圆锥的母线长是3,底面直径是2,代入圆锥的侧面积公式,得到结果.【解答】解:∵圆锥的主视图是边长为3,3,2的三角形,∴圆锥的母线长是3,底面直径是2,∴圆锥的侧面积是πrl=π×1×3=3π,故答案为:3π【点评】本题考查由三视图求表面积和体积,考查圆锥的三视图,这是比较特殊的一个图形,它的主视图与侧视图相同,本题是一个基础题.8.(4分)(2011•上海)在相距2千米的A、B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离为千米.【考点】解三角形的实际应用.【专题】解三角形.【分析】先由A点向BC作垂线,垂足为D,设AC=x,利用三角形内角和求得∠ACB,进而表示出AD,进而在Rt△ABD中,表示出AB和AD的关系求得x.【解答】解:由A点向BC作垂线,垂足为D,设AC=x,∵∠CAB=75°,∠CBA=60°,∴∠ACB=180°﹣75°﹣60°=45°∴AD=x∴在Rt△ABD中,AB•sin60°=xx=(千米)答:A、C两点之间的距离为千米.故答案为:下由正弦定理求解:∵∠CAB=75°,∠CBA=60°,∴∠ACB=180°﹣75°﹣60°=45°又相距2千米的A、B两点∴,解得AC=答:A、C两点之间的距离为千米.故答案为:【点评】本题主要考查了解三角形的实际应用.主要是利用了三角形中45°和60°这两个特殊角,建立方程求得AC.9.(4分)(2011•上海)若变量x,y 满足条件,则z=x+y得最大值为.【考点】简单线性规划.【专题】计算题.【分析】先画出满足约束条件的平面区域,然后求出目标函数z=x+y取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.【解答】解:满足约束条件的平面区域如下图所示:由图分析,当x=,y=时,z=x+y取最大值,故答案为.【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.10.(4分)(2011•上海)课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为2.【考点】分层抽样方法.【专题】计算题.【分析】根据本市的甲、乙、丙三组的数目,做出全市共有组的数目,因为要抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,得到结果.【解答】解:∵某城市有甲、乙、丙三组,对应的城市数分别为4,12,8.本市共有城市数24,∵用分层抽样的方法从中抽取一个容量为6的样本∴每个个体被抽到的概率是,∵丙组中对应的城市数8,∴则丙组中应抽取的城市数为×8=2,故答案为2.【点评】本题考查分层抽样,是一个基础题,解题的关键是理解在抽样过程中每个个体被抽到的概率相等,做出一种情况的概率,问题可以解决.11.(4分)(2011•上海)行列式(a,b,c,d∈{﹣1,1,2})所有可能的值中,最大的是6.【考点】二阶行列式的定义.【专题】计算题.【分析】先按照行列式的运算法则,直接展开化简得ad﹣bc,再根据条件a,b,c,d∈{﹣1,1,2}进行分析计算,比较可得其最大值.【解答】解:,∵a,b,c,d∈{﹣1,1,2}∴ad的最大值是:2×2=4,bc的最小值是:﹣1×2=﹣2,∴ad﹣bc的最大值是:6.故答案为:6.【点评】本题考查二阶行列式的定义、行列式运算法则,是基础题.12.(4分)(2011•上海)在正三角形ABC中,D是BC上的点.若AB=3,BD=1,则=.【考点】向量在几何中的应用.【专题】计算题;数形结合;转化思想.【分析】根据AB=3,BD=1,确定点D在正三角形ABC中的位置,根据向量加法满足三角形法则,把用表示出来,利用向量的数量积的运算法则和定义式即可求得的值.【解答】解:∵AB=3,BD=1,∴D是BC上的三等分点,∴,∴===9﹣=,故答案为.【点评】此题是个中档题.考查向量的加法和数量积的运算法则和定义,体现了数形结合和转化的思想.13.(4分)(2011•上海)随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为0.985(默认每个月的天数相同,结果精确到0.001)【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数129,至少有2位同学在同一个月出生的对立事件是没有人生日在同一个月,共有A129种结果,根据对立事件和古典概型的概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数129,至少有2位同学在同一个月出生的对立事件是没有人生日在同一个月,共有A129种结果,∴要求的事件的概率是1﹣=1﹣≈0.985,故答案为:0.985【点评】本题考查古典概型及其概率计算公式,考查对立事件的概率,是一个基础题,也是一个易错题,注意本题的运算不要出错.14.(4分)(2011•上海)设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[0,1]上的值域为[﹣2,5],则f(x)在区间[0,3]上的值域为[﹣2,7].【考点】函数的值域;函数的周期性.【专题】计算题;压轴题.【分析】先根据g(x)是定义在R 上,以1为周期的函数,令x+1=t进而可求函数在[1,2]时的值域,再令x+2=t 可求函数在[2,3]时的值域,最后求出它们的并集即得(x)在区间[0,3]上的值域.【解答】解:g(x)为R上周期为1的函数,则g(x)=g(x+1)函数f(x)=x+g(x)在区间[0,1](正好是一个周期区间长度)的值域是[﹣2,5] (1)令x+1=t,当x∈[0,1]时,t=x+1∈[1,2]此时,f(t)=t+g(t)=(x+1)+g(x+1)=(x+1)+g(x)=[x+g(x)]+1所以,在t∈[1,2]时,f(t)∈[﹣1,6] (2)同理,令x+2=t,在当x∈[0,1]时,t=x+2∈[2,3]此时,f(t)=t+g(t)=(x+2)+g(x+2)=(x+2)+g(x)=[x+g(x)]+2所以,当t∈[2,3]时,f(t)∈[0,7] (3)由已知条件及(1)(2)(3)得到,f(x)在区间[0,3]上的值域为[﹣2,7]故答案为:[﹣2,7].【点评】本题主要考查了函数的值域、函数的周期性.考查函数的性质和应用,解题时要认真审题,仔细解答.二、选择题(共4小题,每小题5分,满分20分)15.(5分)(2011•上海)下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是()A.y=x﹣2B.y=x﹣1C.y=x2D.【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】计算题.【分析】根据幂函数奇偶性与单调性与指数部分的关系,我们逐一分析四个答案中幂函数的性质,即可得到答案.【解答】解:函数y=x﹣2,既是偶函数,在区间(0,+∞)上单调递减,故A正确;函数y=x﹣1,是奇函数,在区间(0,+∞)上单调递减,故B错误;函数y=x2,是偶函数,但在区间(0,+∞)上单调递增,故C错误;函数,是奇函数,在区间(0,+∞)上单调递增,故D错误;故选A.【点评】本题考查的知识点是函数的单调性的判断与证明,函数奇偶性的判断,其中指数部分也幂函数性质的关系是解答本题的关键.16.(5分)(2011•上海)若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.C.D.【考点】基本不等式.【专题】综合题.【分析】利用基本不等式需注意:各数必须是正数.不等式a2+b2≥2ab的使用条件是a,b∈R.【解答】解:对于A;a2+b2≥2ab所以A错对于B,C,虽然ab>0,只能说明a,b同号,若a,b都小于0时,所以B,C错∵ab>0∴故选:D【点评】本题考查利用基本不等式求函数的最值时,必须注意满足的条件:已知、二定、三相等.17.(5分)(2011•上海)若三角方程sinx=0与sin2x=0的解集分别为E,F,则()A.E⊊F B.E⊋F C.E=F D.E∩F=∅【考点】正弦函数的定义域和值域;集合的包含关系判断及应用.【专题】计算题;压轴题.【分析】利用正弦函数的零点进行转化求解是解决本题的关键,注意整体思想的运用,结合集合的包含关系进行判断验证.【解答】解:由题意E={x|x=kπ,k∈Z},由2x=kπ,得出x=,k∈Z.故F={x|x=,k∈Z},∀x∈E,可以得出x∈F,反之不成立,故E是F的真子集,A符合.故选A.【点评】本题考查正弦函数零点的确定,考查集合包含关系的判定,考查学生的整体思想和转化与化归思想,考查学生的推理能力,属于三角方程的基本题型.18.(5分)(2011•上海)设A1,A2,A3,A4是平面上给定的4个不同点,则使成立的点M的个数为()A.0 B.1 C.2 D.4【考点】向量的加法及其几何意义.【专题】计算题;压轴题.【分析】根据所给的四个固定的点,和以这四个点为终点的向量的和是一个零向量,根据向量加法法则,知这样的点是一个唯一确定的点.【解答】解:根据所给的四个向量的和是一个零向量,则,即,所以.当A1,A2,A3,A4是平面上给定的4个不同点确定以后,则也是确定的,所以满足条件的M只有一个,故选B.【点评】本题考查向量的加法及其几何意义,考查向量的和的意义,本题是一个基础题,没有具体的运算,是一个概念题目.三、解答题(共5小题,满分74分)19.(12分)(2011•上海)已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.【考点】复数代数形式的混合运算.【专题】计算题.【分析】利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.【解答】解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1•z2是实数∴4﹣a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.20.(14分)(2011•上海)已知ABCD﹣A1B1C1D1是底面边长为1的正四棱柱,高AA1=2,求(1)异面直线BD与AB1所成角的大小(结果用反三角函数值表示);(2)四面体AB1D1C的体积.【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积.【专题】计算题;数形结合;分类讨论.【分析】(1)根据题意知DC1∥AB1∴∠BDC1就是异面直线BD 与AB1所成角,解三角形即可求得结果.(2)V A﹣B1D1C=V ABCD﹣A1B1C1D1﹣V B1﹣ABC﹣V D1﹣ACD﹣V DA1C1D1﹣V B﹣A1B1C1,而V ABCD﹣A1B1C1D1﹣V B1﹣ABC﹣V D1﹣ACD﹣V DA1C1D1﹣V B﹣A1B1C1易求,即可求得四面体AB1D1C 的体积.【解答】解:(1)连接DC1,BC1,易知DC1∥AB1,∴∠BDC1就是异面直线BD 与AB1所成角,在△BDC1中,DC1=BC1=,BD=,∴cos∠BDC1=,∴∠BDC1=arccos.(2)V A﹣B1D1C=V ABCD﹣A1B1C1D1﹣V B1﹣ABC﹣V D1﹣ACD﹣V DA1C1D1﹣V B﹣A1B1C1而V ABCD﹣A1B1C1D1=S ABCD•AA1=1×2=2,V B1﹣ABC=V D1﹣ACD=V DA1C1D1=V B﹣A1B1C1=∴V A﹣B1D1C=2﹣4×=.【点评】此题是个基础题.考查异面直线所成角和棱锥的体积问题,求解方法一般是平移法,转化为平面角问题来解决,和利用割补法求棱锥的体积问题,体现了数形结合和转化的思想.21.(14分)(2011•上海)已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a•b<0,求f(x+1)>f(x)时的x的取值范围.【考点】指数函数单调性的应用;指数函数的单调性与特殊点.【专题】计算题.【分析】(1)先把a•b>0分为a>0,b>0与a<0,b<0两种情况;然后根据指数函数的单调性即可作出判断.(2)把a•b<0分为a>0,b<0与a<0,b>0两种情况;然后由f(x+1)>f(x)化简得a•2x>﹣2b•3x,再根据a的正负性得>或<;最后由指数函数的单调性求出x的取值范围.【解答】解:(1)①若a>0,b>0,则y=a•2x与y=b•3x均为增函数,所以f(x)=a•2x+b•3x在R上为增函数;②若a<0,b<0,则y=a•2x与y=b•3x均为减函数,所以f(x)=a•2x+b•3x在R上为减函数.(2)①若a>0,b<0,由f(x+1)>f(x)得a•2x+1+b•3x+1>a•2x+b•3x,化简得a•2x>﹣2b•3x,即>,解得x<;②若a<0,b>0,由f(x+1)>f(x)可得<,解得x>.【点评】本题主要考查指数函数的单调性及分类讨论的方法.22.(16分)(2011•上海)已知椭圆C:=1 (常数m>1),P是曲线C上的动点,M是曲线C上的右顶点,定点A的坐标为(2,0)(1)若M与A重合,求曲线C的焦点坐标;(2)若m=3,求|PA|的最大值与最小值;(3)若|PA|的最小值为|MA|,求实数m的取值范围.【考点】椭圆的简单性质.【专题】综合题;压轴题;转化思想.【分析】(1)根据题意,若M与A重合,即椭圆的右顶点的坐标,可得参数a的值,已知b=1,进而可得答案;(2)根据题意,可得椭圆的方程,变形可得y2=1﹣;而|PA|2=(x﹣2)2+y2,将y2=1﹣代入可得,|PA|2=﹣4x+5,根据二次函数的性质,又由x的范围,分析可得,|PA|2的最大与最小值;进而可得答案;(3)设动点P(x,y),类似与(2)的方法,化简可得|PA|2=(x﹣)2++5,且﹣m≤x≤m;根据题意,|PA|的最小值为|MA|,即当x=m时,|PA|取得最小值,根据二次函数的性质,分析可得,≥m,且m>1;解可得答案.【解答】解:(1)根据题意,若M与A重合,即椭圆的右顶点的坐标为(2,0);则m=2;椭圆的焦点在x轴上;则c=;则椭圆焦点的坐标为(,0),(﹣,0);(2)若m=3,则椭圆的方程为+y2=1;变形可得y2=1﹣,|PA|2=(x﹣2)2+y2=x2﹣4x+4+y2=﹣4x+5;又由﹣3≤x≤3,根据二次函数的性质,分析可得,x=﹣3时,|PA|2=﹣4x+5取得最大值,且最大值为25;x=时,|PA|2=﹣4x+5取得最小值,且最小值为;则|PA|的最大值为5,|PA|的最小值为;(3)设动点P(x,y),则|PA|2=(x﹣2)2+y2=x2﹣4x+4+y2=(x﹣)2﹣+5,且﹣m≤x≤m;当x=m时,|PA|取得最小值,且>0,则≥m,且m>1;解得1<m≤1+.【点评】本题考查椭圆的基本性质,解题时要结合二次函数的性质进行分析,注意换元法的运用即可.23.(18分)(2011•上海)已知数列{a n} 和{b n} 的通项公式分别为a n=3n+6,b n=2n+7 (n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,…(1)求三个最小的数,使它们既是数列{a n} 中的项,又是数列{b n}中的项;(2)数列c1,c2,c3,…,c40中有多少项不是数列{b n}中的项?请说明理由;(3)求数列{c n}的前4n 项和S4n(n∈N*).【考点】等差数列的性质.【专题】计算题;压轴题.【分析】(1)分别由数列{a n} 和{b n} 的通项公式分别为a n和b n列举出各项,即可找出既是数列{a n} 中的项,又是数列{b n}中的项的三个最小的数;(2)根据题意列举出数列{c n}的40项,找出不是数列{b n}中的项即可;(3)表示出数列{b n}中的第3k﹣2,3k﹣1及3k项,表示出数列{a n} 中的第2k﹣1,及2k项,把各项按从小到大的顺序排列,即可得到数列{c n}的通项公式,并求出数列{c n}的第4k﹣3,4k﹣2,4k﹣1及4k项的和,把数列{c n}的前4n项和每四项结合,利用等差数列的前n项和的公式即可求出数列{c n}的前4n项和S4n.【解答】解:(1)因为数列{a n} 和{b n} 的通项公式分别为a n=3n+6,b n=2n+7,所以数列{a n}的项为:9,12,15,18,21,24,…;数列{b n} 的项为:9,11,13,15,17,19,21,23,…,则既是数列{a n} 中的项,又是数列{b n}中的项的三个最小的数为:9,15,21;(2)数列c1,c2,c3,…,c40的项分别为:9,11,12,13,15,17,18,19,21,23,24,25,27,29,30,31,33,35,36,37,39,41,42,43,45,47,48,49,51,53,54,55,57,59,60,61,63,65,66,67,则不是数列{b n}中的项有12,18,24,30,36,42,48,54,60,66共10项;(3)b3k﹣2=2(3k﹣2)+7=6k+3=a2k﹣1,b3k﹣1=6k+5,a2k=6k+6,b3k=6k+7,∵6k+3<6k+5<6k+6<6k+7,∴c n=,k∈N+,c4k﹣3+c4k﹣2+c4k﹣1+c k=24k+21,则S4n=(c1+c2+c3+c4)+…+(c4n﹣3+c4n﹣2+c4n﹣1+c4n)=24×+21n=12n2+33n.【点评】此题考查学生掌握等差数列的性质,灵活运用等差数列的前n项和的公式化简求值,是一道中档题.。
一、考试性质和命题指导思想上海市初中毕业数学科统一考试是义务教育阶段的终结性考试。
他的指导思想是有利于推进中小学实施素质教育、有利于推进中小学课程改革,有利于初中教育教学改革,有利于切实减轻中学过重的学业负担,有利于培养学生的创新精神和实践能力,有利于促进学生全面和谐、富有个性的发展,有利于学生在高中阶段的可持续性发展。
考试结果既是衡量初中学生是否达到毕业标准的重要依据,也是高中阶段各类学校招生的重要依据。
考试对象为2011年完成上海全日制九年义务教育学业的九年级的学生。
二、考试目标本考试考查考生的数学基础知识和基本技能;考察学生的逻辑推理能力、运算能力、空间观念;考察学生解决简单问题的能力。
依据上海市教育委员会《上海市中小学数学课程标准(试行稿)》(2004年10月版)规定的初中阶段(六至九年级)课程目标,确定以下考试目标。
1.基本知识和基本技能A知道、理解或掌握“数与运算”、“方程与代数”、“图形与几何”、“函数与分析”和“数据整理与概率统计”的相关知识。
B 领会字母表示数的思想、华贵思想、方程思想、数形结合思想、分类讨论思想、分解与组合思想等基本数学思想;;掌握待定系数法、消元法、换元法、配方法等基本数学方法。
C 能按照一定的规则和步骤进行计算、画图和推理。
2.逻辑推理能力A 知道进行数学证明的重要性,掌握演绎推理的基本规则和方法。
B能简明和有条理地演绎推理过程,合理解释推理演绎的正确性。
3.运算能力A知道有关算理B能根据问题条件,寻找和设计合理、有效的运算途径。
C能通过运算进行推理和探求。
4.空间观念A能根据条件画简单平面图形和空间图形B能进行几何图形的基本运动和变化。
C能够从复杂的图形中区分基本图形,并能分析其中的基本元素及其关系。
D能由基本图形的性质导出复杂图形的性质。
5.解决简单问题的能力A能对文字语言、图形语言、符号语言进行相互转译B知道一些基本的数学模型,并通过运用,解决一些简单的实际问题。
2011年上海高考数学答案(文科)一、填空题1、{|1}x x <;2、2-;3、32-;4;5、2110x y +-=;6、0x <或1x >;7、3π; 8;9、52;10、2;11、6;12、152;13、0.985;14、[2,7]-。
二、选择题15、A ;16、D ;17、A ;18、B 。
三、解答题19、解: 1(2)(1)1z i i -+=-⇒12z i =-………………(4分)设22,z a i a R =+∈,则12(2)(2)(22)(4)z z i a i a a i =-+=++-,………………(12分) ∵ 12z z R ∈,∴ 242z i =+ ………………(12分)20、解:⑴ 连1111,,,BD AB B D AD ,∵ 1111//,B D B D A B A D=, ∴ 异面直线BD 与1AB 所成角为11AB D ∠,记11AB D θ∠=,2221111111cos 2AB B D AD AB B D θ+-==⨯ ∴ 异面直线BD 与1AB所成角为。
⑵ 连11,,AC CB CD ,则所求四面体的体积11111111242433ABCD A B C D C B C D V V V --=-⨯=-⨯=。
21、解:⑴ 当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x x f x f x a b -=-+-∵ 121222,0(22)0xxxxa a <>⇒-<,121233,0(33)0xxxxb b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数。
当0,0a b <<时,同理,函数()f x 在R 上是减函数。
⑵ (1)()223xx f x f x a b +-=⋅+⋅>DBD 11B当0,0a b <>时,3()22x a b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-。
2011年高考理科数学(上海卷)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2011年高考理科数学(上海卷)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2011年高考理科数学(上海卷)(word版可编辑修改)的全部内容。
2011年上海市高考数学试题(理科)一、填空题(56分)1、函数1()2f x x =-的反函数为1()f x -= 。
2、若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = .3、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4、不等式13x x+<的解为 。
5、在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6、在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。
7、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 .8、函数sin()cos()26y x x ππ=+-9、马老师从课本上抄录一个随机变量ε请小牛同学计算ε的数学期望,尽管“!"处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= . 10、行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅= 。
12、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
2011年上海市高考数学试题(理科)一、填空题(56分) 1、函数1()2f x x =-的反函数为1()f x -= 。
2、若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。
3、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4、不等式13x x+<的解为 。
5、在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6、在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。
7、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8、函数sin()cos()26y x x ππ=+-的最大值为 。
9、马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10、行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅= 。
12、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
14、已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得?!?321P(ε=x )x到点12,,,,n P P P ,则0lim ||n n Q P →∞= 。
2011年上海市高考数学试题(文科 2011-6-7)一、填空题(56分)1、若全集U R =,集合{|1}A x x =≥,则U C A = 。
2、3lim(1)3n nn →∞-=+ 。
3、若函数()21f x x =+的反函数为1()f x -,则1(2)f --= 。
4、函数2sin cos y x x =-的最大值为 。
5、若直线l 过点(3,4),且(1,2)是它的一个法向量,则l 的方程为6、不等式11x<的解为 。
7、若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积是 。
8、在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。
9、若变量x 、y 满足条件30350x y x y -≤⎧⎨-+≥⎩,则z x y =+的最大值为 。
10、课题组进行城市农空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8。
若用分层抽样抽取6个城市,则丙组中应抽取的城市数为 。
11、行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
12、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=。
13、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
14、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[0,1]上的值域为[2,5]-,则()f x 在区间[0,3]上的值域为 。
二、选择题(20分)15、下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为〖答〗( ) A 2y x -= B 1y x -= C 2y x = D 13y x = 16、若,a b R ∈,且0ab >,则下列不等式中,恒成立的是〖答〗( )A 222a b ab +> Ba b +≥ C11a b +>D 2b a a b +≥ 17、若三角方程sin 0x =与sin 20x =的解集分别为E 和F ,则〖答〗( )A E F ØB E F ÙC E F =DEF =∅18、设1234,,,A A A A 是平面上给定的4个不同的点,则使12340MA MA MA MA +++=成立的点M 的个数为〖答〗( )A 0B 1C 2D 4 三、解答题(74分)19、(12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z 。
2010年中考上海卷考试手册-数学科
一.考试性质
上海市初中毕业数学科统一学业考试是义务教育阶段的终结性考试。
它的指导思想是有利于推进中小学实施素质教育,有利于推进中小学课程改革,有利于促进初中教育教学改革,有利于切实减轻中学生过重的学业负担,有利于培养学生的创新精神和实践能力,有利于促进学生全面和谐、富有个性的发展,有利于学生在高中教育阶段的可持续发展。
考试结果既是衡量初中学生是否达到毕业标准的重要依据,也是高中阶段各类学校招生的重要依据。
考试对象为2010年完成上海市全日制九年制义务教育学业的九年级学生。
二.考试目标
本考试考查学生的数学基本知识和基本技能;考查学生的逻辑推理能力、运算能力、空间观念;考查学生解决简单问题的能力。
同时依据<<上海市中小学数学课程标准(试行稿)>>(2004年10月版)规定的初中阶段(六至九年级)课程目标,确定如下具体考试目标。
1.基础知识和基本技能
A.知道、理解和掌握“数与运算”、“方程与代数”、“图形与几何”、“函数与分析”、“数据整理与概率统计”中的相关知识。
B.领会字母表达数的思想、化归思想、方程思想、函数思想、数形结合思想、分类讨论思想、分解与组合思想等基本数学思想;掌握待定系数法、消元法、换元法、配方法等基本数学方法。
C.能按照一定的规则和步骤进行计算、画图和推理。
2.逻辑推理能力
A.知道进行数学证明的重要性,掌握演绎推理的基本规制和方法。
B.能简明和有条理地表述演绎推理过程,合理解释推理演绎的正确性。
3.运算能力
A.知道有关算理。
B.能根据问题条件,寻找和设计合理、有效地运算途径。
C.通过运算进行推理和探求。
4.空间观念
A.能根据条件画简单平面图形和空间图形。
B.能进行几何图形的基本运动和变化。
C.能够从复杂的图形中区分基本图形,并能分析其中的基本元素及其关系。
D.能由基本图形的性质导出复杂图形的性质。
5.解决简单问题的能力
A.能对文字语言、图形语言、符号语言进行相互转译。
B.知道一些基本的数学模型,并通过运用,解决一些简单的实际问题。
C.初步掌握观察、操作、比较、类比、化归的方法;懂得“从特殊到一般”、“从一般到特殊”及“转化”
等思维策略。
D.初步会对问题进行多方面的分析,对问题解决的结果进行合理解释。
E.会用已有的知识经验,解决新情境中的数学问题。
三.考试内容
依据上海市<<上海市中小学数学课程标准(试行稿)>>(2004年10月版)规定的初中阶段(六至九年级)的内容与要求,就相关知识与技能,明确相应考试内容及要求。
(一)考试内容水平层次、基本特征及其表述中所涉及的行为动词如下表所示:
(二)具体的考试内容及要求如下:
数与运算
方程与代数
函数与分析
数据整理和概率统计
图形与几何
四.试卷结构
1.“图形与几何”部分占全卷分值的40%左右,其他部分占全卷分值的60%左右。
2.客观题与主观题所占分值比约为12:13。
五.考试细则
1.试题难度分布控制在1:1:8左右。
2.试卷总分:150分。
3.考试时间:100分钟。
4.考试形式:闭卷书面考试,分为试卷与答题纸两部分,考生必须将答案全部作在答题纸上。
5.基本题型:选择题、填空题、解答题。