全等三角形的判定一
- 格式:doc
- 大小:260.50 KB
- 文档页数:8
全等三角形的判定(一)(人教版)一、单选题(共10道,每道10分)1.如图,AB=AC,添加下列条件,不能使△ABE≌△ACD的是( )A.∠B=∠CB.∠AEB=∠ADCC.AE=ADD.BE=DC答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定2.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定3.能使两个直角三角形全等的条件是( )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定4.下列说法中,正确的个数是( )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定5.下列各组图形中,是全等图形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形答案:B解题思路:试题难度:三颗星知识点:全等三角形的性质6.下列条件一定能推得△ABC与△DEF全等的是( )A.在△ABC与△DEF中,∠A=∠B,∠D=∠E,AB=DEB.在△ABC与△DEF中,AB=AC,∠A=∠F,FD=FEC.在△ABC与△DEF中,,∠B=∠ED.在△ABC与△DEF中,,∠B=∠E答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定7.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定8.如图,在△ABC中,已知AB=AC,BD=DE=EF=FC,则图中全等三角形有( )A.1对B.2对C.3对D.4对答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定9.如图,有三棱锥ABCD和三棱锥EFGH,其中甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.若∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则下列叙述正确的是( )A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等答案:B解题思路:试题难度:三颗星知识点:全等三角形的判定10.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )A.①②B.②③C.①③D.①②③答案:A解题思路:试题难度:三颗星知识点:全等三角形的判定。
三角形全等的判定1_模板课题:全等三角形的判定(一)教学目标:1、知识目标:(1)熟记边角边公理的内容;(2)能应用边角边公理证明两个三角形全等.2、能力目标:(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;(2) 通过观察几何图形,培养学生的识图能力.3、情感目标:(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全等.教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.教学用具:直尺、微机教学方法:自学辅导式教学过程:1、公理的发现(1)画图:(投影显示)教师点拨,学生边学边画图.(2)实验让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)这里一定要让学生动手操作.(3)公理启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)作用:是证明两个三角形全等的依据之一.应用格式:强调:1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.3、平面几何中常要证明角相等和线段相等,其证明常用方法:证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.2、公理的应用(1)讲解例1.学生分析完成,教师注重完成后的总结.分析:(设问程序)“SAS”的三个条件是什么?已知条件给出了几个?由图形可以得到几个条件?解:(略)(2)讲解例2投影例2:例2如图2,AE=CF,AD∥BC,AD=CB,求证:学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书.教师强调证明格式:用大括号写出公理的三个条件,最后写出结论.(3)讲解例3(投影)证明:(略)学生分析思路,写出证明过程.(投影展示学生的作业,教师点评)(4)讲解例4(投影)证明:(略)学生口述过程.投影展示证明过程.教师强调证明线段相等的几种常见方法.(5)讲解例5(投影)证明:(略)学生思考、分析、讨论,教师巡视,适当参与讨论.师生共同讨论后,让学生口述证明思路.教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明. 3、课堂小结:(1)判定三角形全等的方法:SAS(2)公理应用的书写格式(3)证明线段、角相等常见的方法有哪些?让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.6、布置作业a书面作业P56#6、7b上交作业P57B组1思考题:板书设计:探究活动如图,A、B两地隔山相望,要测它们之间的距离,可先在平地上取一个可直接到达A 和B的点C,连结AC并延长到D,使CD=CA;连结BC并延长到E,使CE=CB,最后再连结DE,这时量得DE长就是A、B的距离,说明为什么.提示: 利用三角形全等的判定(一)来说明.石佛镇素质教育研讨会教研课教案设计教者:龙秀明教学课题:合比性质和等比性质教学目标:1、掌握合比性质的等比性质,并会用它们进行简单的比例变形2、会将合比性质、等比性质用于比例线段。
证明三角形全等的五种方法
方法一:边边边(SSS)——三条边都对应相等的两个三角形全等。
三角形具有稳定性,三条边都确定了,整个三角形都可以固定下来了。
这样就具有了唯一性,而这样的两个三边都对应相等的三角形,自然就是全等的。
但是需要注意的是三个角都相等的两个三角形不能判定全等。
方法二:边角边(SAS)——两边和它们之间的夹角对应相等的两个三角形全等。
这个判定方式是课本上直接给出的,同一个角度的有很多,但是确定了夹这个角的两条边的长短,这个就被确定下来了,这是举不出反例的。
方法三:角边角(ASA)——两角和它们之间的夹边对应相等的两个三角形全等。
这个判定方式也是课本上直接给出的,一个角的边可以无限延长,两个角的夹边被确定以后,就无法延长了,另外两条边则肯定会有交点,这样肯定也能将三角形确定下来。
方法四:角角边(AAS)——两个角和其中一个角的对边对应相等的两个三角形全等。
这个判定方式是由方法三角边角衍生出来的,只要记住了方法三,这个方法就很好记了。
三角形的内角和是180,如果两个角都确定了的话,另外一个角度也可以确定下来,这样三个角都是固定的了,那条对边无论如何都是夹在其中两个角中间的,所以也就形成了“角边角”。
方法五:斜边直角边(HL)——斜边和一条直角边对应相等的两个三角形全等。
这个判定方式是利用了勾股定理,如果两条边都知道了,那么利用勾股定理很容易就可以确定第三条边了,这样利用方法一边边边,或者是方法二边角边,都是可以得出两个三角形全等的。
但是前提必须是两个直角三角形。
全等三角形的判定【要点梳理】【高清课堂:379110 全等三角形判定二,知识点讲解】要点一、全等三角形判定1——“角边角”全等三角形判定1——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ,∠A =∠,AC = ,则△ABC ≌△.注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB ,=AC ,=BC ,则△ABC≌△.'A ''A B 'B '''A BC ''A B 'A ''A C '''A BC ''A B ''A C ''B C '''A B C要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.一、选择题1.(2015•宁波)如图,口ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DFB.BF=DEC.AE=CFD.∠1=∠22.如图,是的中线,、分别是和延长线上的点,且,连接、,下列说法:①;② 和的面积相等;③;④ ≌,其中正确的有( ).A.1个B.2个C.3个D.4个3. AD 为△ABC 中BC 边上的中线, 若AB =2, AC =4, 则AD 的范围是( )A .AD <6 B. AD >2 C. 2<AD <6 D. 1<AD <34.如图,AB =DC ,AD =BC ,E 、F 是DB 上两点,且BF =DE ,若∠AEB=120°,∠ADB=30°,则∠BCF=( ).A.150°B.40°C.80°D.90°5. 根据下列条件能唯一画出△ABC 的是( )A.AB =3,BC =4,AC =8B.AB =4,BC =3,∠A =30°C.AB =5,AC =6,∠A =45°D. ∠A =30°,∠B =60°,∠C =90°6. 如图,在△ABC 中,∠A =50°,∠B =∠C ,点D ,E ,F 分别在AB ,BC ,AC 上,并且BD=CE ,BE =CF ,则∠DEF 等于( )A.50°B.60°C. 65°D. 70°AD ABC ∆E F AD AD DE DF =BF CE CE BF =ABD ∆ACD ∆//BF CE BDF ∆CDE∆二、填空题7.(2015•齐齐哈尔)如图,点B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥EF ,要使△ABC ≌△DEF ,则只需添加一个适当的条件是 .(只填一个即可)8.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC,再定出BF 的垂线DE ,使A ,C ,E 在同一条直线上,如图8,可以得到,所以ED=AB ,因此测得ED 的长就是AB 的长,判定的理由是 .9. 如图,已知AE =AF ,AB =AC ,若用“SAS ”证明△AEC ≌AFB ,还需要条件 .10. 如图,在四边形ABCD 中,对角线AC 、BD 互相平分,则图中全等三角形共有_____对.EDC ABC ≅EDC ABC≅11. 如图所示,BE⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC=54°,则∠E= °.12. 把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB =5厘米,则槽宽为 厘米.三、解答题13.(2014•房山区二模)如图,已知AB=AD ,AC=AE ,∠1=∠2,求证:△ABC ≌△ADE .14. 如图, ∠B =∠C ,BD =CE ,CD =BF.求证: ∠EDF = 90︒ -∠A15. 已知:如图,BE 、CF 是△ABC 的高,且BP =AC ,CQ =AB ,求证:AP ⊥AQ.一、选择题','AABB 121.如图,∠A=∠D,∠B=∠E,BF=CE,下列结论错误的是()A.△ABC≌△DEFB. BF=ECC.AC∥DED.AC=DF2.如图,AB∥EF,DE∥AC,BD=CF,则图中不是全等三角形的是()A.△BAC≌FEDB. △BDA≌FCEC. △DEC≌CADD. △BAC≌FCE3.如图,AB=BD,∠1=∠2,要用AAS判定△ABC≌△DBE,则添加的条件是() A.AE=EC B.∠D=∠A C.BE=BC D.∠DEB=∠C4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC二、填空题7.(2014春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件________________时,就可得到△ABC≌△FED.(只需填写一个即可)8.如图,点D在AB上,点E在AC上,且∠B=∠C,在条件①AB=AC,②AD=AE,③BE=CD,④∠AEB=∠ADC中,不能使△ABE≌△ACD的是_______.(填序号)9.已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.10.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF的长是___________.12.在△ABC 和△DEF 中(1)AB =DE ;(2)BC =EF ;(3)AC =DF ;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F 从这六个条件中选取三个条件可判定△ABC 与△DEF 全等的方法共有________种.三、解答题13.(2014秋•景洪市校级期中)如图,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行时是否偏离预定航线,请说明理由.14.已知:如图,中,,于,于,与相交于点.求证:.15. 如图,DC∥AB,∠BAD 和∠ADC 的角平分线相交于E ,过E 的直线分别交DC 、AB 于C 、B 两点.求证:AD =AB +DC.ABC △45ABC ∠=°CD AB ⊥D BE AC ⊥E BE CD F BF AC=。
14.2 三角形全等的判定(一)教学目标】知识技能:1、理解并掌握三角形全等的判定方法——“边角边” 。
2 、经历探究“边角边”判定方法的过程,能运用“ SAS”判定方法解决有关问题。
数学思考:经历探究三角形全等的过程,体会分析问题的方法,积累数学活动,学习有条理的思索方式。
问题解决:使学生充分经历探索的过程,进一步培养学生合作交流与自主探究的能力。
情感态度:通过几何证明的学习,培养学生严谨的分析能力,使学生养成尊重客观事实和形成质疑的习惯。
【教学重、难点】1 .应用“边角边”证明两个三角形全等,进而得出线段或角相等(重点)2 .能运用“ SAS”证明简单的三角形全等问题,寻找判定三角形全等的条件(难点)。
【教学准备】1.教师准备:课件2.学生准备:剪刀、白纸、作图工具。
【学情介绍】这节课是探究三角形全等条件的第一课,学生已了解全等三角形的概念及特征,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也具备了利用已知条件作三角形的基本作图能力,这为学生主动参与本节课的操作和探究做好了准备。
“SAS”条件掌握好了,再学习其他条件就不困难了。
【内容分析】教材通过尺规作图作出一个与已知三角形的两边及其夹角对应相等的三角形,发现这两个三角形能够重合,从而归纳出判定三角形全等的第一种方法“ SAS” 。
【教学过程】一、温故知新1.什么叫全等三角形?2、全等三角形的性质是什么?二、探究新知:问题:1、如何判定连个三角形全等?2、三角形中共有几个元素?3、三角形有六个基本元素(三条边和三个角),只给定其中的一个或两个元素,能够确定一个三角形的形状和大小吗?分类讨论、探究:1、只给定一个元素(一边或者一角)学生验证。
2、只给定两个元素(请学生画图验证)①两条边长分别为4cm,5cm;②一条边长为4cm,一个角为45°;③两个角分别为45°,60 °。
教师几何画板演示,得出结论:一个或者两个元素不能判定两个三角形全等。
全等三角形判定一(预习)-CAL-FENGHAI.-(YICAI)-Company One11.什么叫全等三角形2.全等三角形有什么性质探索三角形全等的条件(1)只给定一个条件画三角形①只给一边:画出几个三角形,其中一边长为3cm .②只给一角:画出几个三角形,其中一个内角等于30 .结论:只有一条边或一个角对应相等的两个三角形不一定全等.(2)给出两个条件画三角形①给出两边:画出两个三角形,两边长分别为24cm cm ,.知识回顾探索问题1全等三角形判定②给出两角:画出两个三角形,两个内角分别为4560︒︒,.③给出一边和一角:画出两个三角形,一边长为3cm ,一个内角为60︒.结论:一条边一个角对应相等的两个三角形不一定全等.(3)给出三个条件画三角形①给出三角:画出两个等边三角形.结论:三个角对应相等的两个三角形不一定全等.②给出三边:ABC △三边分别为345cm cm cm ,,你会用刻度尺和圆规画这样的ABC △吗 画法:FE DC BAODCBA1、画线段3AB cm =。
2、以A 为圆心,以4cm 为半径画圆弧;以B 为圆心,以5cm 为半径画圆弧,两弧交于点C3、连结AC BC ,ABC △就是所求的三角形想一想,能画出几个这样的三角形他们全等吗为什么有三边对应相等的两个三角形全等.可以简写成 “边边边” 或“ SSS ” 用 数学语言表述:在ABC △和DEF 中 AB DEAC DF BC EF =⎧⎪=⎨⎪=⎩∴()ABC DEF SSS ≌△△判断两个三角形全等的推理过程,叫做证明三角形全等。
想一想:在下列推理中填写需要补充的条件,使结论成立: 如图,在AOB △和DOC △中(已知) (已知) (已知)∴AOB DOC ≌△△()SSS【例】如图,在ABC △中,AB AC =,AD 是中线求证:ABD ACD ≌△△ 新知学习________AO DO BO CO =⎧⎪⎨⎪=⎩分析:要证明ABD ACD ≌△△,首先看这两个三角形的三条边是否对应相等。
全等三角形的判定题型类型一、全等三角形的判定1——“边边边”例题、已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.类型二、全等三角形的判定2——“边角边”例题、已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ),求证:∠B +∠D =180°.类型三、全等三角形的判定3——“角边角”例题、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.类型四、全等三角形的判定4——“角角边”例题、已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),和AC 不垂直易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.类型五、直角三角形全等的判定——“HL ”下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AH 为第三边上的高,如下图:1、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.2、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.启发:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC在直线距的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所离相等.角的平分线的性质及判定1、 如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC.求证:BE =CF.2、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .启发:观察已知条件中提到的三角形△PAC 与△PBD ,显然与全等无关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定定理可得.跟三角形的高结合的题目,有时候用面积会取得意想不到的效果.3、如图,DC∥AB,∠BAD和∠ADC的平分线相交于E,过E的直线分别交DC、AB于C、B两点. 求证:AD=AB+DC.类型一、全等三角形的性质和判定如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:1、在ΔABC中,AB=AC.求证:∠B=∠C(2).倍长中线法:1、已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.2、若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x<6B.5 <x<7C.2 <x<12D.无法确定(3).作以角平分线为对称轴的翻折变换构造全等三角形:的角平分线,H,G分别在AC,AB上,且HD=如图,AD是ABCBD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.(3).利用截长(或补短)法作构造全等三角形:1、如图,AD是△ABC的角平分线,AB>AC,求证:AB-AC>BD-DC2、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.启发:因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.充分利用角平分线的对称性,截长补短是关键.(4).在角的平分线上取一点向角的两边作垂线段.1、如图所示,已知E为正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF.启发与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD 的距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE=AE.Rt △AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条线段相等的问题.2、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD,求证:BD是∠ABC的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型三、全等三角形动态型问题解决动态几何问题时要善于抓住以下几点:(1)变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2)图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3)几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化1、已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B不重合),如图1,求证:CF=BD(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.2、如图(1),△ABC中,BC=AC,△CDE中,CE=CD,现把两个三角形的C点重合,且使∠BCA=∠ECD,连接BE,AD.求证:BE=AD.若将△DEC绕点C旋转至图(2),(3)所示的情况时,其余条件不变,BE与AD还相等吗?为什么?。
全等三角形的判定【知识归纳总结】要点一、全等三角形判定1——“边角边” 1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角” 全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、全等三角形判定4——“边边边” 全等三角形判定4——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点五、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件 可选择的判定方法 一边一角对应相等 SAS AAS ASA 两角对应相等 ASA AAS 两边对应相等 SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等; (4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点六、全等三角形的证明格式: 在△ ABC 和△ A 'B 'C '中''()='''()AB A B A A AC A C =⎧⎪∠∠⎨⎪=⎩理由(理由)理由 ∴△ ABC ≌△ A ' B 'C '(S.A.S )''BC B C ∴=(全等三角形的对应边相等)'B B ∠=∠(全等三角形的对应角相等)例1、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .练习:如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你 的结论.例2、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .练习:如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.例3、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.例4、已知:如图,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.练习:已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.练习:如图,AB⊥AC,AB=AC,AD⊥AE,AD=AE,求证:BE=CDA BCDE例4 如图,已知等腰△ABC 与△ADE 中,AB=AC ,AD=AE ,且∠BAC=∠DAE ,试说明△ABD ≌△ACE 。
三角形判定全等的方法三角形的全等判定是用来判断两个三角形是否完全相等的方法。
全等的意思是两个三角形的对应的三个边和对应的三个角都相等。
一般来说,我们可以通过以下的判定方法来判断两个三角形是否全等:1. SSS 判定法(边-边-边):SSS 判定法是指当两个三角形的三边分别相等时,可以判断它们是全等的。
2. SAS 判定法(边-角-边):SAS 判定法是指当两个三角形的一个边和与其相邻的两个角分别相等,可以判断它们是全等的。
3. ASA 判定法(角-边-角):ASA 判定法是指当两个三角形的两个角和它们的对边分别相等时,可以判断它们是全等的。
4. RHS 判定法(直角边-斜边-直角边):RHS 判定法是指当两个三角形的一个直角和两个直角边分别相等时,可以判断它们是全等的。
下面我将详细解释每种判定法的原理和具体做法:1. SSS 判定法:当两个三角形的三个边分别相等时,可以判断它们是全等的。
该判定法的原理是根据三角形的性质,如果两个三角形的三个边分别相等,那么它们的对应的三个角也会相等,因此可以判断两个三角形是全等的。
2. SAS 判定法:当两个三角形的一个边和与其相邻的两个角分别相等时,可以判断它们是全等的。
该判定法的原理也是根据三角形的性质,如果两个三角形的一个边和与其相邻的两个角分别相等,那么它们的对应的三个角也会相等,因此可以判断两个三角形是全等的。
3. ASA 判定法:当两个三角形的两个角和它们的对边分别相等时,可以判断它们是全等的。
该判定法的原理是根据三角形的性质,如果两个三角形的两个角和它们的对边分别相等,那么它们的第三个角也会相等,因此可以判断两个三角形是全等的。
4. RHS 判定法:当两个三角形的一个直角和两个直角边分别相等时,可以判断它们是全等的。
该判定法的原理是根据勾股定理,两个直角边分别对应两个直角三角形的两个直角,如果这两个直角边相等,那么两个直角三角形的第三条边也会相等,因此可以判断两个三角形是全等的。
全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS)(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA)(3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS)(4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS)专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是()A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形例题2:如图1,折叠长方形,使顶点与边上的点重合,如果AD=7,DM=5,∠DAM=39°,则=____,=____,= .【仿练1】如图2,已知,,,那么与相等的角是.【仿练2】如图3,,则AB=,∠E=_.若∠BAE=120°,∠BAD=40°,则∠BAC=.、图4EDCBA图2 图3MDN BC图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF∵CM 是△的中线∴_____________()∴____________________ ∴__________() 或 ∵AC=EF∴____________________ ∴__________() AB=AB ()FECACMBA在△ABC和△DEFxx∵∴△ABC≌△DEF()例1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?例2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠CB.AB=ADC.AD∥BCD.AB∥CD2、如图所示,在△ABCxx,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSSB.SASC.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
A B C A ’ B ’ C ’
A B C A ’ B ’ C ’
课题:全等三角形的判定一 知识梳理
1、三角形全等的判定方法一:SSS
三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS ”)。
书写格式:
在△ABC 和△A ’B ’C ’中,
∵⎪⎩⎪⎨⎧===''''''C B BC C A AC B A AB
∴△ABC ≌△A ’B ’C ’(SSS )
规律方法小结:
(1)有的题目可以直接从图中找到全等的条件,而有的题目的条件则隐含在题设或图形之中,我们一定要认真读图,准确地把握题意,找准所需条件。
(2)数形结合思想:将“数”与“形”结合起来进行分析、研究,这是解决问题的一种思想方法。
2、三角形全等的判定方法二:SAS
两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”)。
书写格式:
在△ABC 和△A ’B ’C ’中,
∵⎪⎩⎪⎨⎧=∠=∠='''''C A AC A A B A AB
∴△ABC ≌△A ’B ’C ’(SAS )
知识延伸:“SAS ”中的“A ”必须是两个“S ”所夹的角。
例题解析
SSS
例1.在△ABC 中,AB=AC ,AD 是三角形的中线.
求证:△ABD ≌△ACD
例2.已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,
求证:△ABC ≌△DEF .
B C
E F A
例3.如图,点A,B,C,D在同一直线上,且AD =BC, AE =BF,CE= DF.求证:DF//CE.
例4.如图,已知△ABE≌△ACD,求证:∠l=∠2.
例5.如图,点A,C,B,D在同一条直线上,且AC=BD,AM= CN,BM= DN.求证:AM∥CN,BM∥DN.
例6. 已知:如图,四边形ABCD中,AB = CB,AD= CD,求证:∠A=∠C.
A B C D E A B C D E
例7.如图所示,AB=AE .BC= ED ,CF=FD .AC=AD ,求证:∠BAF= ∠
EAF.
SAS
例1.如图所示,直线AD 、BE 相交于点C ,AC=DC ,BC=EC.
求证:AB=DE
例2:如图,AD ⊥AE ,AB ⊥AC ,AD=AE ,AB=AC 。
求证:△ABD ≌△ACE
规律·方法:证明三角形全等时,一般需要三个条件,如果已知两对边,就试着去找第三对边或这两对边的夹角,利用“SSS ”或“SAS ”来证明两个三角形全等;
例3:如图,C 为BE 上一点,点A ,D 分别在BE 的两侧,AB ∥ED ,AB=CE ,BC=ED 。
求证:AC=CD
例4.如图,已知AB =AC,AD =AE,∠1=∠2.求证:CE =BD.
例5:如图,点E, F在BC上,BE=CF, AB=DC, ∠B=∠C.
求证: ∠A=∠D
例6.如图,BE、CF分别是△ABC的高.P是BE上一点。
且BP =AC,Q是CF延长线上一点,且CQ=AB,求证:AP⊥AQ.
习题训练
SSS
1.如图,若AB =AC,BD= CD,∠B =62º,则∠BAC= 度.
2.如图,已知AB= CD,AD= CB,还有条件,可判定△ABC≌△CDA,其依据是.
3.如图,在△ABD和△ACE中,已知AB =AC,BD = CE,AD =AE,若∠l= 20º,则∠2= .
4.如图,在四边形ABCD中,AC与BD交于点0,且AO= BO,CO =DO,AD= BC,则图中全等三角形有对.
5.如图,已知AB=BC.AD=CD,∠ABC=80º,∠ADC= 50º,则∠A= º,∠C= º.
6.如图,已知AB =AC,点D为BC的中点,下列结论:(1)△ABD≌△ACD;(2) ∠B=∠C;(3)AD 平分∠BAC; (4) AD⊥BC.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
7.下列说法:(1)周长相等的两个等边三角形全等;(2)有三个角对应相等的两个三角形全等;(3)有三边对应相等的两个三角形全等;(4)有底和腰对应相等的两个等腰三角形全等.其中正确说法的个数是( )
A.4个 B.3个 C.2个 D.1个
8.下列命题中正确的是( )
A.有两条边对应相等的两个三角形全等
B.两个等边三角形全等
C.两个等腰直角三角形全等
D.三边对应相等的两个三角形的对应角也相等,
9.如图,已知AB= AC,BD= CD.求证:∠l=∠2.
10.如图,在△ABC中,AB =AC,点D、E分别是BC的三等分点,且AD=AE.求证:△ABD≌△ACE.
11.如图16,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN //AC,CN与BN交于点N,试判断线段∠NBC和∠NCB 数量关系.并证明你的结论.
SAS
1.如图,已知∠l=∠2,AD =AC,则△____≌△,其依据是。
2.如图,∠l=∠2,AB =AC,AE=AD,则△ABD≌△,依据是,由此还可得BD= 。
3.如图,AC =AB,AD平分∠CAB,点E在AD上,则图中全等的三角形有____对,它们是。
4.(天门)如图,已知AE=CF,∠A=∠C,要使△ADF≌△CBE,还需添加一个条件:____ (只需写一个).
5.小明为了测量池塘对岸A,B两点间的距离,作了如下的操作(如图):①取一能够到达A,B两点的点D;②连接AD并延长AD于点E,使AD= ED.连接BD并延长BD至C,使BD= CD;③连接CE.那么要知道AB的长度,应测量线段的长度.
6.如图,已知AD⊥BC于点D,BD=CD,点E在AD上;则图中全等三角形共有( )
A.l对
B.2对
C.3对
D.4对
7.如图有下列四个条件:①BC =B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′其中任取三个为题设,余下的一个为结论,则最多可以构成正确的命题的个数是( )
A.l个 B。
2个 C.3个 D.4个
8.下列命题中错误的是( )
A.有两边对应相等的两个等腰三角形全等
B.有两边和一角对应相等的两个三角形全等
C.有两边和其中一边上的中线对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
9.下列条件中,可以判定△ABC和△A′B′C′全等的是( )
A.BC= BA,B′C′=B′A′,∠B=∠B′
B.∠A=∠B′,AC =A′B′,AB =B′C′
C. ∠A=∠A′,AB= B′C′,AC=A′C′
D.BC=B′C′,AC =A′B′,∠B=∠C′
10.如图,已知AB∥CD,AB= CD,BE =DF,则图中全等三角形的对数有( )
A.3对 B.4对 C.5对 D.6对
11.如图,点A,E,B,D在同一直线上,在△ABC与△DEF中,AB= DE,AC =DF,AC∥DF.
(1)求证:△ABC≌△DEF;
(2)你还可以得到的结论是(写出一个即可,不再添加其他线段,不再标注或使用其他字母).
12.如图13,点C是AB的中点,CD∥BE,且CD=BE,求证:∠D=∠E.。