(2) (D 2 A A ) c 1 2 2 A 0 2 tA 2 ( 0 J ( A 0 A t 0) c 1 t 2 ( t0) 2 A t0 J ) 0tA
2 c 1 2 2 t2 t( A c 1 2 t) 1 0
(x ,t)410Q(t rr/c)
—— 是点源的势
若点电荷不在原点 r = 0 处,而在 x’ 处,则rxx'
(x,t)410rQ(x',
tr) c
推迟势
在 x’ 处的点电荷的势
(x,t)410rQ(x',
tr) c
连续分布电荷的势
同样可得矢势
A ((x x ,, tt)) 4 4 0 1 r0 J r(x '(,x t', tc r )d c rV )d'V'
向外传播 向球心汇聚
参照 静电场: Q 4 0r
可设: f(tr) 1 Q(tr)
c 40 c
推迟势
验证在 r = 0 处, = f / r 是否满足原方程:
2c122t2 10Q(t)(r)
以原点为球心,作一小球面,半径 0,考察积分
V(2c12 t22)410Q(t rr/c)dV
0 ( 2c 1 2 t2 2)410Q (t rr/c)4r2dr
'A '
t
t
AA
对应同样的
E和B
t t
t
规范变换: (A,)
(A',')
一种规范 另一种规范
规范不变性:在规范变换下, E和B不变
3. D’Alembert 方程
(1) H B J ( D t A ) ( ( 真 A ) D 2A 0 E 空 ,0 JB 00 H 0 E ) t