基于VSC的轻型直流输电
- 格式:pdf
- 大小:88.99 KB
- 文档页数:2
柔性直流输电工程技术研究、应用及发展一、本文概述随着能源结构的优化和电网技术的发展,柔性直流输电(VSC-HVDC)技术以其独特的优势,在电力系统中的应用越来越广泛。
本文旨在全面概述柔性直流输电工程的技术研究、应用现状以及未来的发展趋势。
我们将从柔性直流输电的基本原理出发,深入探讨其关键技术和设备,包括换流器、控制系统、保护策略等。
我们还将分析柔性直流输电在新能源接入、电网互联、城市电网建设等领域的应用案例,评估其在实际运行中的性能表现。
我们将展望柔性直流输电技术的发展前景,探讨其在构建清洁、高效、智能的电力系统中发挥的重要作用。
通过本文的阐述,我们希望能够为从事柔性直流输电技术研究和应用的同行提供有益的参考和启示。
二、柔性直流输电技术原理柔性直流输电技术,又称为电压源换流器直流输电(VSC-HVDC),是近年来直流输电领域的一项重大技术革新。
与传统的基于电网换相换流器(LCC)的直流输电技术不同,柔性直流输电技术采用基于可关断器件的电压源换流器(VSC),这使得它在新能源接入、城市电网增容和孤岛供电等方面具有独特的优势。
柔性直流输电技术的核心在于电压源换流器(VSC)。
VSC采用可关断的电力电子器件(如绝缘栅双极晶体管IGBT),通过脉宽调制(PWM)技术实现对交流侧电压和电流的有效控制。
VSC既可以作为有功功率的源,也可以作为无功功率的源,因此它具有更好的控制灵活性和响应速度。
在柔性直流输电系统中,VSC通常与直流电容器和滤波器并联,以维持直流电压的稳定和滤除谐波。
VSC通过改变其输出电压的幅值和相位,可以独立地控制有功功率和无功功率的传输,从而实现对交流电网的灵活支撑。
柔性直流输电技术还采用了先进的控制系统,包括换流器控制、直流电压控制、功率控制等,以确保系统的稳定运行和电能质量。
这些控制系统可以根据系统的运行状态和实际需求,对VSC的输出进行实时调整,从而实现对交流电网的精准控制。
柔性直流输电技术以其独特的电压源换流器和先进的控制系统,实现了对交流电网的灵活支撑和精准控制。
轻型直流输电的应用【摘要】本文主要阐述的是轻型直流输电的应用。
先概述了轻型直流输电的特点及优势,然后介绍了其对应的各种应用场合。
选取了其中一种应用,vsc-hvdc应用于清洁能源(以海上风电为例),进行了详细的阐述。
最后介绍了轻型直流输电在我国的应用前景。
【关键词】轻型直流输电;应用;海上风电;应用前景1 轻型直流输电应用概述1.1轻型直流输电特点轻型直流输电技术是一种基于可关断电力电子器件电压源换流器(vsc)和脉宽调制技术的直流输电技术。
轻型直流输电的特点和优势主要有:①控制灵活,可以独立的控制有功功率和无功功率;②可以工作在无源逆变方式,受端可以使无源网络;可以灵活控制潮流方向;不增加系统短路功率;通过模块化设计使hvdc light的设计、生产、安装和调试周期的缩短,换流站占地面积更小;⑥每个站可以独立控制,易于实现无人值守。
1.2轻型直流输电的应用场合基于以上提到的hvdc light的特点和优势,轻型直流输电的主要应用场合有:(1)清洁能源发电。
受环境条件限制,清洁能源发电一般装机容量小、供电质量不高并且远离主网,如中小型水电厂、风力发电站(含海上风力发电站)、潮汐电站、太阳能电站等,由于其运营成本很高以及交流线路输送能力偏低等原因使采用交流互联方案在经济和技术上均难以满足要求,利用轻型直流输电与主网实现互联是充分利用可再生能源的最佳方式,有利于保护环境。
(2)提高配电网电能质量。
非线性负荷和冲击性负荷使配电网产生电能质量问题,如谐波污染、电压间断、电压凹陷、突起以及波形闪变等问题,使一些敏感设备如工业过程控制装置、现代化办公设备、电子安全系统等失灵,造成很大的经济损失,轻型直流输电可分别快速控制有功、无功的能力并能够保持电压基本不变,使电压、电流满足电能质量标准要求,将是未来改善配网电能质量的有效措施。
(3)异步连接。
比邻两交流系统异步运行时不能交换功率,无法相互提供多余的发电容量,须各有独立的调峰电厂。
柔性直流输电技术介绍1引言柔性直流输电技术(Voltage Sourced Converter,VSC)是一种以电压源变流器、可关断器件(如门极可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT))和脉宽调制(PWM)技术为基础的新型直流输电技术。
国外学术界将此项输电技术称为VSC-HVDC,国内学术界将此项输电技术称为柔性直流输电,制造厂商ABB 公司与西门子公司分别将该项输电技术命名为HVDC Light和HVDC Plus。
与传统基于晶闸管的电流源型直流输电技术相比,柔性直流输电技术具有可控性高、设计施工方便环保、占地小及换流站间无需通信等优点,在可再生能源并网、分布式发电并网、孤岛供电、城市电网供电等方面具有明显的优势。
随着大功率全控型电力电子器件的迅速发展,柔性直流输电技术在高压直流输电领域受到越来越广泛的关注及应用。
传统的低电平VSC具有开关频率高、输出电压谐波大、电压等级低、需要无源滤波器等缺点,而且存在串联器件的动态均压问题;多电平变流器提供了一种新的VSC实现方案。
它通过电平叠加输出高电压,逼近理想正弦波,输出电压谐波含量少,无需滤波设备。
自1997年赫尔斯扬试验工程投入运行以来,柔性直流输电技术迅速发展,目前已有13项工程投入商业运行,最高电压等级已达±200kV,最大工程容量达到400MW,最长输电距离为970km。
通过各个领域专家的不断创新和工程建设运行经验的不断积累,柔性直流输电技术作为一种先进的输电技术已具备大规模应用的条件。
图1两端VSC-HVDC系统典型结构图2008年12月,“柔性直流输电关键技术研究与示范工程”作为国家电网公司的重大科技专项正式启动。
该工程联接上海南汇风电场与书院变电站,用于上海南汇风电网并网,是中国首条柔性直流输电示范工程。
该工程由中国电力科学研究院开发,负责接入系统设计、设备供货及工程实施等工作。
2柔性直流输电技术的研究现状2.1高压大容量电压源变流器技术2.2.1模块化多电平变流器(Modular Multilevel Converter,MMC)模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图2所示。
柔性直流输电技术应用、进步与期望一、概述随着全球能源结构的转型和电力电子技术的飞速发展,柔性直流输电技术(VSCHVDC)作为一种新型的输电方式,正逐渐受到广泛关注和应用。
柔性直流输电技术以其独特的优势,如可独立控制有功和无功功率、无需交流系统提供换相电压支撑、易于构成多端直流系统等,在新能源接入、城市电网供电、海岛供电、分布式发电并网等领域展现出广阔的应用前景。
自20世纪90年代以来,柔性直流输电技术经历了从理论研究到工程实践的发展历程。
随着电力电子器件的不断进步和控制策略的优化,柔性直流输电系统的容量和电压等级不断提升,系统效率和可靠性也得到了显著提高。
目前,柔性直流输电技术已成为解决新能源大规模并网、提高电网智能化水平、推动能源互联网发展的重要技术手段。
尽管柔性直流输电技术取得了显著的进步,但仍面临一些挑战和期望。
一方面,随着应用领域的不断拓展,对柔性直流输电系统的性能要求也越来越高,如更高的容量、更低的损耗、更快的响应速度等。
另一方面,随着可再生能源的大规模开发和利用,电网的复杂性和不确定性也在增加,这对柔性直流输电技术的稳定性和可靠性提出了更高的要求。
1. 简述柔性直流输电技术的背景和重要性随着全球能源需求的日益增长,传统直流输电技术在面对能源紧缺、环境压力以及现代科技发展的挑战时,已显得力不从心。
在这样的背景下,柔性直流输电技术应运而生,成为了一种顺应社会发展的新型输电技术。
从能源角度来看,随着城市化进程的加快和工业化水平的提高,能源需求呈现出爆炸式增长。
传统的直流输电技术,虽然在一定程度上能够满足能源传输的需求,但在面对大规模、远距离的电能输送时,其局限性逐渐显现。
同时,随着可再生能源的快速发展,如风能、太阳能等,这些能源具有分散性、远离负荷中心以及小型化的特点,传统的直流输电技术难以满足这些新能源的接入和调度需求。
柔性直流输电技术的出现,正好弥补了这一技术短板,使得大规模、远距离的电能输送以及新能源的接入和调度成为可能。
海上风电场轻型直流输电低电压穿越研究摘要:轻型直流输电技术解决了海上风电场传统交流并网方式下需要大量无功补偿的问题,但是轻型直流输电能够否满足风电场并网的要求是一个新的课题。
风电场并网运行过程中要求其满足低电压穿越能力,本文将以双馈风力发电机为例,研究其通过轻型直流输电技术并网情况下的低电压穿越能力。
文章通过对双馈风电机组及轻型直流输电系统进行数学模型分析的基础上,研究了其控制策略,通过内、外环pid控制策略实现了海上风电场并网。
通过仿真分析,内外环pid控制策略能够满足海上风电场低电压穿越能力要求。
关键词:海上风电场,轻型直流输电技术,低电压穿越abstract: vsc-hvdc technology solve the problem that the wind farm connecting with grid through ac system need a lot of reactive power compensation. but a new topic whether the vsc-hvdc can meet the requirements of wind farms connecting with grid.圀椀渀搀 farms connecting with grid need to meet the requirements that low voltage ride through capability. as an example the double-fed machine, this paper studies the low voltage ride through capability of wind farm connecting with grid through hvdc.based on the analysis of mathematical models of double-fed wind turbine and hvdc system, this article studies the control strategy, through inner and outerpid control strategy to achieve the offshore wind farm connecting with grid.吀栀爀漀甀最栀 simulation analysis, inside and outside the loop pid control strategy can meet the requirements in case of low voltage ride through capability.keywords: offshore wind farm, hvdc light technology, low voltage ride through前言双馈电机(dfig)的变速恒频风力发电技术具有提高发电效率、风力机捕获功率损耗低,改善电能质量等优点,有着广泛的发展前景。
轻型高压直流输电技术楼书氢摘要:本文简要介绍了轻型高压直流输电(HVDC )的原理及技术特点, 比较了轻型HVDC 与传统HVDC 之间的区别, 介绍了国外的一些工程应用,展望了其发展前景。
关键词:轻型高压直流输电,电压源换流器,1.引言自1954年世界上第1条高压直流输电(HVDC )联络线投入商业运行以来, HVDC 作为一项日趋成熟的技术在远距离大功率输电、海底电缆送电、两个交流系统之间的非同步联络等方面得到了广泛应用。
到目前为止,全世界总共有70多个HVDC 输电工程,其中,大部分电压等级超过400kV ,输送功率大于1000MW 或线路长度大于600km 。
然而,由于技术和经济的原因, HVDC 在近距离小容量的输电场合却难以应用。
同时,风力、太阳能等新型能源发电在世界范围内逐步扩展,地理条件与发电规模的制约使得利用现有交流输电技术将这些“孤岛”电源与电网连接经济性差、环保压力大。
另外, 用电负荷的不断增加要求电网规模与传输容量保持持续发展, 而增加输电走廊又面临越来越多的经济与环保限制, 尤其在城市负荷中心, 增加传统的架空交流输电线几乎是不可能的[1]。
因此, 需要一种经济、灵活、高质量的输电方式来解决上述问题。
近年来国外发展了以电压源换流器(VSC ) 和绝缘栅双极晶体管(IGBT )为基础的轻型高压直流输电(HVDC ),把HVDC 的容量延伸到了只有几MW 到几十MW [2],除具有传统HVDC 的优点外,还可直接向小型孤立的远距离负荷供电, 更经济地向市中心送电, 方便地连接分散电源, 运行控制方式灵活多变,减少输电线路的电压降落和电压闪变, 从而进一步提高电能质量[3][4],因而具有很好的应用前景。
2.轻型HVDC 的基本原理及技术特点其基本原理如图1所示。
设送端和受端换流器均采用VSC ,则两个换流器具有相同的结构。
换流器由换流桥、换流电抗器、直流电容器和交流滤波器组成。