等腰三角形和直角三角形专项练习题
- 格式:doc
- 大小:194.06 KB
- 文档页数:3
四年级三角形的练习题及答案一、填空1、一个三角形,其中两个角分别是40°和60°,这个三角形是三角形。
2、一个三角形最多可以画条高。
3、一个等腰三角形,从它的顶点向对边作垂线,分成的每个小三角形的内角和是。
4、由三条围成的图形叫三角形。
5、一个等腰三角形,其中一个角是40°,它的另个两个角可能是和,也可能是和。
6、三角形按角可分为三角形、三角形、三角形。
7、在三角形ABC中,已知∠A=∠B=36°,那么∠C =,这是一个三角形,也是一个三角形。
8、二、小小评判家1、用三根分别长13厘米、20厘米和6厘米的小木棒,一定能摆出一个三角形。
2、等腰三角形一定是锐角的三角形。
3、一个三角形中,最大的角是锐角,那么,这个三角形一定是锐角三角形。
4、一个三角形至少有两个内角是锐角。
5、直角三角形中只能有一个角是直角。
三、选择题1、修凳子时常在旁边加固成三角形是运用了三角形的。
A、三条边的特性B、易变形的特性 C 、稳定不变形的特性2、有一个角是600的三角形,一定是正三角形。
A、任意B、直角C、等腰3、所有的等边三角形都是。
A、直角三角形B、钝角三角形C、锐角三角形4、三角形越大,内角和A.越大B.不变C.越小四、操作题1、下列哪些线段能组成三角形?能的打“√”,不能的打“×”。
2、分别画出每个三角形中的其中一条高。
并标出相应的底。
3、求出下面图形中的角的度数。
五、解决问题1、如右图。
小明家到少年宫有几条路线?其中最近的是哪条?有多远?2、爸爸做了一个等腰三角形的架子,它的顶角是40°,它的底角是多少度?六、挑战奥数1、是由一个七巧板拼成一个正方形,已知这个正方形的面积是32平方厘米,求图形1和图形2的面积和。
答案:一、1、钝角2、33、180°4、线段5、70°0°40°100°6、钝角直角锐角7、108° 钝角等腰8、60°0°二、错错对对对三、1、C2、C3、C4、B四、 1、√ × × ×2、略3、60 °145°0°100°五、1、3小明家→街心公园→少年宫,这条最近,390米。
中考数学总复习《等腰三角形》专项检测卷及答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是( )A.60°B.65°C.75°D.80°2.如图,等边三角形ABC,B点在坐标原点,C点的坐标为(4,0),则点A的坐标为( )A.(2,3)B.(2,2√3)C.(2√3,2)D.(2,2√2),则BC的长是( )3.(2024·临夏州)如图,在△ABC中,AB=AC=5,sin B=45A.3B.6C.8D.94.(2024·深圳模拟)春游有着悠久的历史,其源自远古农耕祭祀的迎春习俗,《尚书·大传》曰:“春,出也,万物之出也.”小丽和家人到公园踏春,帐篷撑起后如图1,为更好地将帐篷固定,需在4个角分别另加一根固定绳(DE),其主视图如图2所示,测得α=125°,CD=CE,则∠DEC=( )A.37.5°B.27.5°C.22.5°D.17.5°5.(2024·自贡)如图,等边△ABC钢架的立柱CD⊥AB于点D,AB长12 m.现将钢架立柱缩短成DE,∠BED=60°.则新钢架减少用钢( )A.(24-12√3)mB.(24-8√3)mC.(24-6√3)mD.(24-4√3)m6.如图,OA,OB是☉O的半径,点C在☉O上,∠AOB=30°,∠OBC=40°,则∠OAC=.7(2024·自贡)如图,在△ABC中,DE∥BC,∠EDF=∠C.(1)求证:∠BDF=∠A;(2)若∠A=45°,DF平分∠BDE,请直接写出△ABC的形状.【B层·能力提升】8.如图,在▱ABCD中,∠D=60°.以点B为圆心,以BA的长为半径作弧交边BC于点AE的长为半径作弧,两弧交于点P,作射E,连接AE.分别以点A,E为圆心,以大于12的值为.线BP交AE于点O,交边AD于点F,则OFOE9.如图,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC 于点P,连接AP,则∠BAP的度数是.10.腰长为5,高为4的等腰三角形的底边长为.11.(2024·广州模拟)如图,在等腰△ABC中,AB=AC,延长边AB到点D,延长边CA到点E,连接DE,若AD=BC=CE=DE,则∠BAC=.12.在四边形ABCD中,已知AB=AD=8,∠A=60°,BC=10,CD=6.(1)连接BD,试判断△ABD的形状,并说明理由;(2)求∠ADC的度数.【C层·素养挑战】13.(2024·烟台)在等腰直角△ABC中,∠ACB=90°,AC=BC,D为直线BC上任意一点,连接AD.将线段AD绕点D按顺时针方向旋转90°得线段ED,连接BE.【尝试发现】(1)如图1,当点D在线段BC上时,线段BE与CD的数量关系为;【类比探究】(2)当点D在线段BC的延长线上时,先在图2中补全图形,再探究线段BE与CD 的数量关系并证明;【联系拓广】(3)若AC=BC=1,CD=2,请直接写出sin∠ECD的值.参考答案【A层·基础过关】1.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是(D)A.60°B.65°C.75°D.80°2.如图,等边三角形ABC,B点在坐标原点,C点的坐标为(4,0),则点A的坐标为(B)A.(2,3)B.(2,2√3)C.(2√3,2)D.(2,2√2)3.(2024·临夏州)如图,在△ABC中,AB=AC=5,sin B=4,则BC的长是(B)5A.3B.6C.8D.94.(2024·深圳模拟)春游有着悠久的历史,其源自远古农耕祭祀的迎春习俗,《尚书·大传》曰:“春,出也,万物之出也.”小丽和家人到公园踏春,帐篷撑起后如图1,为更好地将帐篷固定,需在4个角分别另加一根固定绳(DE),其主视图如图2所示,测得α=125°,CD=CE,则∠DEC=(D)A.37.5°B.27.5°C.22.5°D.17.5°5.(2024·自贡)如图,等边△ABC钢架的立柱CD⊥AB于点D,AB长12 m.现将钢架立柱缩短成DE,∠BED=60°.则新钢架减少用钢(D)A.(24-12√3)mB.(24-8√3)mC.(24-6√3)mD.(24-4√3)m6.如图,OA,OB是☉O的半径,点C在☉O上,∠AOB=30°,∠OBC=40°,则∠OAC= 25°.7(2024·自贡)如图,在△ABC中,DE∥BC,∠EDF=∠C.(1)求证:∠BDF=∠A;(2)若∠A=45°,DF平分∠BDE,请直接写出△ABC的形状.【解析】(1)∵DE∥BC,∴∠C=∠AED∵∠EDF=∠C,∴∠AED=∠EDF∴DF∥AC,∴∠BDF=∠A;(2)∵∠A=45°∴∠BDF=45°∵DF平分∠BDE∴∠BDE=2∠BDF=90°∵DE∥BC∴∠B=90°∴△ABC是等腰直角三角形.【B层·能力提升】8.如图,在▱ABCD中,∠D=60°.以点B为圆心,以BA的长为半径作弧交边BC于点AE的长为半径作弧,两弧交于点P,作射E,连接AE.分别以点A,E为圆心,以大于12的值为√3.线BP交AE于点O,交边AD于点F,则OFOE9.如图,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC 于点P,连接AP,则∠BAP的度数是15°或75°.10.腰长为5,高为4的等腰三角形的底边长为6或2√5或4√5.11.(2024·广州模拟)如图,在等腰△ABC中,AB=AC,延长边AB到点D,延长边CA到点E,连接DE,若AD=BC=CE=DE,则∠BAC=100°.12.在四边形ABCD中,已知AB=AD=8,∠A=60°,BC=10,CD=6.(1)连接BD,试判断△ABD的形状,并说明理由;(2)求∠ADC的度数.【解析】(1)△ABD是等边三角形.∵AB=AD,∠BAD=60°∴△ABD是等边三角形.(2)∵△ABD是等边三角形∴∠ADB=60°,BD=AB=8在△BCD中,CD2+BD2=62+82=100BC2=102=100∴CD2+BD2=BC2,∴∠BDC=90°∴∠ADC=∠BDC+∠ADB=90°+60°=150°.【C层·素养挑战】13.(2024·烟台)在等腰直角△ABC中,∠ACB=90°,AC=BC,D为直线BC上任意一点,连接AD.将线段AD绕点D按顺时针方向旋转90°得线段ED,连接BE.【尝试发现】(1)如图1,当点D在线段BC上时,线段BE与CD的数量关系为BE=√2CD;【类比探究】(2)当点D在线段BC的延长线上时,先在图2中补全图形,再探究线段BE与CD 的数量关系并证明;【联系拓广】(3)若AC=BC=1,CD=2,请直接写出sin∠ECD的值.【解析】(1)如图,过点E作EM⊥CB延长线于点M由旋转得AD=DE,∠ADE=90°∴∠ADC+∠EDM=90°∵∠ACB=90°∴∠ACD=∠DME,∠ADC+∠CAD=90°∴∠CAD=∠EDM∴△ACD≌△DME(AAS)∴CD=EM,AC=DM∵AC=BC,∴BM=DM-BD=AC-BD=BC-BD=CD,∴BM=EM∵EM⊥CB,∴BE=√2EM=√2CD.(2)补全图形如图,BE=√2CD,理由如下:过点E作EM⊥BC于点M,由旋转得AD=DE,∠ADE=90°∴∠ADC+∠EDM=90°∵∠ACB=90°∴∠ACD=∠DME,∠ADC+∠CAD=90°∴∠CAD=∠EDM∴△ACD≌△DME(AAS)∴CD=EM,AC=DM∵AC=BC∴DM=BC∴DM-CM=BC-CM∴CD=BM,∴EM=BM∵EM⊥CB∴BE=√2EM=√2CD;(3)如图,过点E作EM⊥CB延长线于点M由(2)得DM=AC=1,EM=CD=2,∴CM=CD+DM=3,∴CE=√CM2+EM2=√13∴sin∠ECD=EMCE =√13=2√1313.当点D在BC延长线上时,过点E作EM⊥CB于点M同理可得△ACD≌△DME∴DM=AC=1,ME=CD=2∴CM=2-1=1第 11 页 共 11 页 ∴CE =√22+12=√5 ∴sin ∠ECD =EM CE =√5=2√55 综上,sin ∠ECD =2√1313或2√55.。
课时26 等腰三角形与直角三角形课前热身1.等腰三角形的一个角为50°,那么它的一个底角为______.2.如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.如图,在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD.•则∠A等于()A.30° B.36° C.45° D.72°4.(06怀化)同学们都玩过跷跷板的游戏.如图所示,是一跷跷板的示意图,立柱OC与地面垂直,OA=OB.当跷跷板的一头A着地时,∠OAC=25°,则当跷跷板的另一头B 着地时,∠AOA′等于()A.25° B.50° C.60° D.130°(第2题图)(第3题图)(第4题图)知识整理1.等腰三角形的性质与判定:(1)等腰三角形的两底角__________;(2)等腰三角形底边上的高,底边上的________,顶角的_______,三线合一;(3)有两个角相等的三角形是_________.2.等边三角形的性质与判定:(1)等边三角形每个角都等于_______,同样具有“三线合一”的性质;(2)三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.3.直角三角形的性质与判定:(1)直角三角形两锐角________;(2)直角三角形中30°所对的直角边等于斜边的________.(3)直角三角形中,斜边的中线等于斜边的______;(4)勾股定理:a2+b2=c2.(5)有一个角等于90°的三角形是直角三角形;(6)勾股定理的逆定理:若c2=a2+b2,则∠C=90°例题讲解例1.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2.(06常德)如图,P 是等边三角形ABC 内的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.例3.(06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O ”,•测得该车从北偏西60°的A 点行驶到北偏西30°的B 点,所用时间为1.5秒.(1)试求该车从A 点到B 的平均速度;(2)试说明该车是否超过限速.(例1图) (例2图)P D C BA课堂练习1.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB•的长度为80米,那么点B 离水平面的高度BC 的长为________米.2.如图,四边形ABCD 是一张矩形纸片,AD=2AB ,若沿过点D 的折痕DE 将A 角翻折,使点A 落在BC 上的A 处,则∠EAB=_________度.3.如图,电线杆AB 的中点C 处有一标志物,在地面D 点处测得标志物的仰角为45°,若点D 到电线杆底部点B 的距离为a ,则电线杆AB 的长可表示为( )A .aB .2aC .32aD .52a(第1题图) (第2题图) (第3题图)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D .⑴若∠BAC=30°,求证:AD=BD ;⑵若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.(选做题)已知如图△ABC 是等边三角形,BD 是AC 边上的高,延长BC 到E 使CE=CD .•试判断DB 与DE 之间的大小关系,并说明理由.。
【2022春北师大版八下数学压轴题突破专练】专题01 等腰三角形与直角三角形一、选择题1.(2022八下·长兴开学考)如图,在△ABC 中,AB=AC ,BE=CD ,BD=CF ,若∠A=40°,则∠EDF 等于( )A .40°B .50°C .60°D .70°2.(2021八上·海曙期末)如图,在 Rt ABC 中, AC BC = , 90C ∠= , D 为 AB 边的中点, 90EDF ︒∠= , EDF ∠ 绕 D 点旋转,它的两边分别交 AC 和 CB 的延长线于 E , F ,当点 E 在 AC 延长线上时, DEFS, CEFS,ABCS的关系为( )A .DEF CEF S S- =ABC1S 2B .DEFCEFS S - = ABC SC .DEFCEFSS+ = ABC 2SD .ABCCEF SS+ =DEFS3.(2021八上·鄞州期末)如图,在Rt△ABC 中,∠ACB=90°,AC =5,BC =12,将△ABC 绕点B 顺时针旋转60°,得到△BDE,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为( )A.44 B.43 C.42 D.41 4.(2021八上·开化期末)如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD等于()A.36°B.46°C.54°D.72°5.(2022八下·)如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=84°,则∠FEG等于()A.32°B.38°C.64°D.30°6.(2021八上·瓯海月考)在平面直角坐标系中,已知点A(3,﹣3),在坐标轴上确定一点B,使△AOB为等腰三角形,则符合条件的点B共有()个A.5 B.6 C.7 D.8 7.(2021八上·衢江月考)如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A .50B .C .100D .8.(2021八上·如皋期末)如图,在 ABC 中, AC BC = , 30B ∠=︒ ,D 为AB 的中点,P 为 CD 上一点,E 为 BC 延长线上一点,且 .PA PE = 有下列结论:①30PAD PEC ∠+∠=︒ ;②PAE 为等边三角形;③PD CE CP =- ;④.ABCAECP S S=四边形 其中正确的结论是( )A .①②③④B .①②C .①②④D .③④9.(2021八上·盐湖期中)有一题目:“如图,∠ABC =40°,BD 平分∠ABC ,过点D 作DE ∥AB 交BC 于点E ,若点F 在AB 上,且满足DF =DE ,求∠DFB 的度数.”小贤的解答:以D 为圆心,DE 长为半径画圆交AB 于点F ,连接DF ,则DE =DF ,由图形的对称性可得∠DFB =∠DEB .结合平行线的性质可求得∠DFB =140°.而小军说:“小贤考虑的不周全,∠DFB 还应有另一个不同的值”.下列判断正确的是( )A .小军说的对,且∠DFB 的另一个值是40° B .小军说的不对,∠DFB 只有140°一个值C.小贤求的结果不对,∠DFB应该是20°D.两人都不对,∠DFB应有3个不同值10.(2021八上·龙沙期中)如图,已知∠MON=30°,点A1、A2、A3…在射线N上,点B1、B2、B3……在射线OM上;△A1B1A2、△A2B2A3、△A3B3A4……均为等边三角形若OA1=1,则△A2020B2020A2021的边长()A.22019B.4040 C.4038 D.22020二、填空题11.等腰三角形的一边长是2cm,另一边长是4cm,则底边长为cm. 12.(2021八上·鄞州期末)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>CD),△AED与△ACD关于直线AD轴对称,点C的对称点是点E,AE交BC于点F,连结BE,CE.当DE⊥BC时,∠ADE的度数为,CE的长为.13.(2022八下·)在ABCD中,AD=BD,BE是AD边上的高,∠EBD=28°,则∠A的度数为。
三角形的分类与性质练习题练习一:判断三角形类型1. 已知三角形的三边长度分别为5cm、6cm和8cm,判断该三角形的类型。
2. 已知三角形的三边长度分别为4cm、4cm和4cm,判断该三角形的类型。
3. 已知三角形的三边长度分别为7cm、9cm和12cm,判断该三角形的类型。
练习二:判断是否为等腰三角形1. 判断以下三角形是否为等腰三角形:2. 判断以下三角形是否为等腰三角形:3. 判断以下三角形是否为等腰三角形:练习三:判断是否为等边三角形1. 判断以下三角形是否为等边三角形:2. 判断以下三角形是否为等边三角形:3. 判断以下三角形是否为等边三角形:练习四:判断是否为直角三角形1. 判断以下三角形是否为直角三角形:2. 判断以下三角形是否为直角三角形:3. 判断以下三角形是否为直角三角形:练习五:判断是否为锐角三角形1. 判断以下三角形是否为锐角三角形:2. 判断以下三角形是否为锐角三角形:3. 判断以下三角形是否为锐角三角形:练习六:判断是否为钝角三角形1. 判断以下三角形是否为钝角三角形:2. 判断以下三角形是否为钝角三角形:3. 判断以下三角形是否为钝角三角形:练习七:判断是否为等腰直角三角形1. 判断以下三角形是否为等腰直角三角形:2. 判断以下三角形是否为等腰直角三角形:3. 判断以下三角形是否为等腰直角三角形:练习八:判断是否为等腰钝角三角形1. 判断以下三角形是否为等腰钝角三角形:2. 判断以下三角形是否为等腰钝角三角形:3. 判断以下三角形是否为等腰钝角三角形:练习九:判断是否为等腰锐角三角形1. 判断以下三角形是否为等腰锐角三角形:2. 判断以下三角形是否为等腰锐角三角形:3. 判断以下三角形是否为等腰锐角三角形:练习十:判断是否为等腰钝角三角形1. 判断以下三角形是否为等腰钝角三角形:2. 判断以下三角形是否为等腰钝角三角形:3. 判断以下三角形是否为等腰钝角三角形:以上是关于三角形分类与性质的练习题,希望能够帮助你巩固对三角形的了解与应用。
完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。
1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。
解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。
2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。
解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。
解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。
4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。
解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。
2021年中考数学真题分项汇编【全国通用】(第01期)专题17等腰三角形与直角三角形(共42题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列命题是真命题的是( ).A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形2.(2021·江苏扬州市·中考真题)如图,在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .53.(2021·浙江宁波市·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,3BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .33B 3C .1D .624.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心5.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinC a c b R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π6.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+7.(2021·四川凉山彝族自治州·中考真题)如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .748.(2021·陕西中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD 的值为( )A .12B .22C .32D .339.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+10.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32B .3C .2D .5211.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .20712.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,613.(2021·云南中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .8014.(2021·浙江金华市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,以该三角形的三条边为边向形外作正方形,正方形的顶点,,,,,E F G H M N 都在同一个圆上.记该圆面积为1S ,ABC 面积为2S ,则12S S 的值是( )A .52πB .3πC .5πD .112π 15.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D 作DF 的垂线交小正方形对角线EF 的延长线于点G ,连结CG ,延长BE 交CG 于点H .若2AE BE =,则CG BH的值为( )A .32B .2C .3107D .35516.(2021·四川南充市·中考真题)如图,在矩形ABCD 中,15AB =,20BC =,把边AB 沿对角线BD 平移,点'A ,'B 分别对应点A ,B .给出下列结论:∠顺次连接点'A ,'B ,C ,D 的图形是平行四边形;∠点C 到它关于直线'AA 的对称点的距离为48;∠''A C B C -的最大值为15;∠''A C B C +的最小值为917.其中正确结论的个数是( )A .1个B .2个C .3个D .4个17.(2021·四川广元市·中考真题)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A .32B .1C .2D .3218.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( )A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形二、填空题19.(2021·浙江绍兴市·中考真题)如图,在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.20.(2021·四川广安市·中考真题)如图,将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,3DE =,则BC 的长为_______.21.(2021·江苏苏州市·中考真题)如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.22.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.23.(2021·江苏扬州市·中考真题)如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.24.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.25.(2021·江苏南京市·中考真题)如图,在四边形ABCD 中,AB BC BD ==.设ABC α∠=,则ADC ∠=______(用含α的代数式表示).26.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB 剪开,再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒,则OBA∠的度数为______.27.(2021·浙江金华市·中考真题)如图,菱形ABCD的边长为6cm,60∠=︒,将该菱形沿AC方向BAD'''',A D''交CD于点E,则点E到AC的距离为____________cm.平移23cm得到四边形A B C D△在同一平面内,点C,D不重合,28.(2021·浙江绍兴市·中考真题)已知ABC与ABD∠=∠=︒,430ABC ABDAB=,22==CD长为_______.AC AD29.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC的边长为4,C3P为AB边上一动点,过点P作C的切线PQ,切点为Q,则PQ的最小值为________.30.(2021·浙江丽水市·中考真题)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中2FM EM =,则“奔跑者”两脚之间的跨度,即,AB CD 之间的距离是__________.31.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.32.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形∠的边BC 及四边形∠的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是___________.33.(2021·江苏宿迁市·中考真题)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图,则水深为__尺.三、解答题34.(2021·浙江温州市·中考真题)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形. (2)选一个合适的三角形,将它的各边长扩大到原来的5倍,画在图3中.35.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC . (2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.36.(2021·浙江绍兴市·中考真题)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.37.(2021·四川眉山市·中考真题)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)38.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.39.(2021·重庆中考真题)在等边ABC 中,6AB =,BD AC ⊥ ,垂足为D ,点E 为AB 边上一点,点F 为直线BD 上一点,连接EF .图1 图2 图3(1)将线段EF 绕点E 逆时针旋转60°得到线段EG ,连接FG .∠如图1,当点E 与点B 重合,且GF 的延长线过点C 时,连接DG ,求线段DG 的长;∠如图2,点E 不与点A ,B 重合,GF 的延长线交BC 边于点H ,连接EH ,求证:3BE BH BF +=; (2)如图3,当点E 为AB 中点时,点M 为BE 中点,点N 在边AC 上,且2DN NC =,点F 从BD 中点Q 沿射线QD 运动,将线段EF 绕点E 顺时针旋转60°得到线段EP ,连接FP ,当12NP MP +最小时,直接写出DPN △的面积.40.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.41.(2021·江苏连云港市·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC 是边长为3的等边三角形,E 是边AC 上的一个动点,小亮以BE 为边作等边三角形BEF ,如图2,在点E 从点C 到点A 的运动过程中,求点F 所经过的路径长;(3)ABC 是边长为3的等边三角形,M 是高CD 上的一个动点,小亮以BM 为边作等边三角形BMN ,如图3,在点M 从点C 到点D 的运动过程中,求点N 所经过的路径长;(4)正方形ABCD 的边长为3,E 是边CB 上的一个动点,在点E 从点C 到点B 的运动过程中,小亮以B 为顶点作正方形BFGH ,其中点F 、G 都在直线AE 上,如图4,当点E 到达点B 时,点F 、G 、H 与点B 重合.则点H 所经过的路径长为______,点G 所经过的路径长为______.42.(2021·湖北随州市·中考真题)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)∠如图1,P 是边长为a 的正ABC 内任意一点,点O 为ABC 的中心,设点P 到ABC 各边距离分别为1h ,2h ,3h ,连接AP ,BP ,CP ,由等面积法,易知()123123ABC OAB h h h S a S ++==△△,可得123h h h ++=_____;(结果用含a 的式子表示)∠如图2,P 是边长为a 的正五边形ABCDE 内任意一点,设点P 到五边形ABCDE 各边距离分别为1h ,2h ,3h ,4h ,5h ,参照∠的探索过程,试用含a 的式子表示12345h h h h h ++++的值.(参考数据:8tan 3611≈°,11tan 548≈°)(3)∠如图3,已知O 的半径为2,点A 为O 外一点,4OA =,AB 切O 于点B ,弦//BC OA ,连接AC ,则图中阴影部分的面积为______;(结果保留π)∠如图4,现有六边形花坛ABCDEF ,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形ABCDG ,其中点G 在AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点G 的位置,并说明理由.。
中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。
课时4 等腰三角形与直角三角形一、基础巩固1.(2019·山西)如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是(C)A .30°B .35°C .40°D .45°第1题图 第2题图 2.在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是(C)A .BC =ECB .EC =BE C .BC =BED .AE =EC3.若等腰△ABC 的周长是50 cm ,一腰长为x cm ,底边长为y cm ,则y 与x 的函数关系式及自变量x 的取值范围是(C)A .y =50-2x (0<x <50)B .y =12(50-2x )(0<x <50)C .y =50-2x ⎝ ⎛⎭⎪⎫252<x <25 D .y =12(50-2x )⎝ ⎛⎭⎪⎫252<x <254.(2019·成都)如图,在△ABC中,AB=AC,点D,E都在边BC 上,∠BAD=∠CAE,若BD=9,则CE的长为__9__.第4题图第5题图5.(2019·攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.二、能力提升6.若(a -1)2+|b -2|=0,则以a 、b 为边长的等腰三角形的周长为(A)A .5B .4C .3D .4或57.(2019·台湾)如图,△ABC 中,AC =BC <AB .若∠1、∠2分别为∠ABC 、∠ACB 的外角,则下列角度关系正确的是(C)A .∠1<∠2B .∠1=∠2C .∠A +∠2<180°D .∠A +∠1>180°第7题图 第8题图 8.(2019·大连)如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .若AB =2,则AD 的长为 23 .【笔记】∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°, ∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,∴∠BAD =90°,∴AD =AB tan 30°=233=2 3. 9.如图,在△ABC 中,点D 在AB 上,且CD =CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF =12AC ;(2)若∠BAC =45°,求线段AM 、DM 、BC 之间的数量关系. 解:(1)∵CD =CB ,E 为BD 的中点;∴CE ⊥BD ,∴∠AEC =90°.又∵F 为AC 的中点,∴EF =12AC .(2)∵∠BAC =45°,∠AEC =90°,∴∠ACE =∠BAC =45°,∴AE =CE .又∵F 为AC 的中点,∴EF ⊥AC ,∴EF 为AC 的垂直平分线,∴AM =CM ,∴AM +DM =CM +DM =CD .又∵CD =CB ,∴AM +DM =BC .三、应用拓展10.(2019·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__2或2.5__.【笔记】如图∵AB =2,AD =7,∴BD =BC +CD =5,∵BC 作为腰的等腰三角形,∴BC =AB 或BC =CD ,∴BC =2或2.5.11.(2019·武汉模拟)如图,△ABC 中,AB =AC ,D 为BC 上一点,AD =BD ,BE ⊥AD 于点E ,则AE BC 的值为12.解图解:过A 作AN ⊥BC 于N ,则BN =CN ,∵AD =BD ,∴∠DAB =∠DBA ,∵BE ⊥AD ,∴∠E =∠ANB =90°,在△ABN 与△BAE 中,⎩⎪⎨⎪⎧ ∠E=∠ANB ∠BAE =∠ABNAB =BA ,∴△ABN ≌△BAE (AAS),∴AE =BN ,∴AE =BN =12BC ,∴AE BC =12.12.如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α,D 是△ABC 外一点,且△BOC ≌△ADC ,连接OD .(1)△COD 是什么三角形?说明理由;(2)当α为多少度时,△AOD 是直角三角形?(3)当α为多少度时,△AOD 是等腰三角形?解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO =CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°-110°-90°-60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°-∠AOB-∠COD-α=360°-100°-60°-α=200°-α,∠ADO=α-60°,∴200°-α=α-60°,∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°-α,∠ADO=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)=40°,∴α-60°=40°,∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°-α=40°,∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,100°,150°或160°时,△AOD是等腰三角形.四、权威预测13.(2019·邢台二模)我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形,(1)如图,在△ABC中,∠A=25°,∠ABC=105°,过B作一直线交AC于D,若BD把△ABC分割成两个等腰三角形,则∠BDA的度数是__130°__.(2)已知在△ABC中,AB=AC,过顶点和顶点对边上一点的直线,把△ABC分割成两个等腰三角形,则∠A的最小度数为180°7.【笔记】(1)根据题意得DA=DB,∴∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为130°;(2)如图所示:AB=AC,AD=BD,BC=CD,∵AD=BD,∴∠ABD=∠A,∵BC=CD,∴∠CBD=∠CDB=2∠A,∴∠ABC=∠ABD+∠CBD=3∠A,∵AB=AC,∴∠C=∠ABC=3∠A,∵∠A+∠ABC+∠C=180°,∴7∠A=180°,∴∠A=180°7.。
特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。
备考2022年中考数学一轮复习-图形的性质_三角形_等腰直角三角形-综合题专训及答案等腰直角三角形综合题专训1、(2019丹东.中考真卷) 已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF;②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.2、(2012本溪.中考真卷) 已知,在△ABC中,AB=AC.过A点的直线a从与边AC 重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为△;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.3、(2018扬州.中考真卷) 问题呈现如图1,在边长为1的正方形网格中,连接格点、和、,与相交于点,求的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点、,可得,则,连接,那么就变换到中.问题解决(1)直接写出图1中的值为;(2)如图2,在边长为1的正方形网格中,与相交于点,求的值;(3)如图3,,,点在上,且,延长到,使,连接交的延长线于点,用上述方法构造网格求的度数.4、(2017山西.中考模拟) 如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点,(点A在点B的左侧),与直线AC交于点C(2,3),直线AC与抛物线的对称轴l相交于点D,连接BD.(1)求抛物线的函数表达式,并求出点D的坐标;(2)如图2,若点M、N同时从点D出发,均以每秒1个单位长度的速度分别沿DA、DB运动,连接MN,将△DMN沿MN翻折,得到△D′MN,判断四边形DMD′N的形状,并说明理由,当运动时间t为何值时,点D′恰好落在x轴上?(3)在平面内,是否存在点P(异于A点),使得以P、B、D为顶点的三角形与△ABD 相似(全等除外)?若存在,请直接写出点P的坐标,若不存在,请说明理由.5、(2017开江.中考模拟) 如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.6、(2019长春.中考模拟) 已知,,直线经过点,作,垂足为,连接.(1)【感知】如图①,点、在同侧,且点在右侧,在射线上截取,连接,可证,从而得出,,进而得出度.(2)【探究】如图②,当点、在异侧时,(感知)得出的的大小是否改变?若不改变,给出证明;若改变,请求出的大小.(3)【应用】在直线绕点旋转的过程中,当,时,直接写出的长.7、(2017哈尔滨.中考模拟) 图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形的顶点上),使△ABC是等腰三角形且△ABC为钝角三角形;(2)在图b中画出△ABD(点D在小正方形的顶点上),使△ABD是等腰三角形,且tan∠ABD=1.8、(2017宿迁.中考模拟) 如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.(1)求证:△BCD≌△ACE;(2)若AE=12,DE=15,求AB的长度.9、(2019鄞州.中考模拟) 如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F。
2021年八上数学同步练习-图形的性质_三角形_等腰直角三角形-综合题专训及答案2021八上数学同步练习-图形的性质_三角形_等腰直角三角形-综合题-专训1、(2019大连.八上期末) 在中,垂足为,点在上,连接并延长交于点,连接 .(1)求证:(2)求证:2、(2018大石桥.八上期末) 综合题(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE 边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.3、(2018商水.八上期末) 如图,在△ABC中,AB=BC,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD,连接AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.4、(2019梁子湖.八上期末) 已知,在平面直角坐标系中,A(a,0)、B(0,b),a、b满足 +|a−3 |=0.C为A B的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求∠OAB的度数;(2)设AB=6,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值;(3)设AB=6,若∠OPD=45°,求点D的坐标.5、(2019南岸.八上期末) 如图,▱ABCD中,E为平行四边形内部一点,连接AE,BE,CE.(1)如图1,AE⊥BC交BC于点F,已知∠EBC=45°,∠BAF=∠ECF,AB=,EF=1,求AD的长;(2)如图2,AE⊥CD交CD于点F,AE=CF且∠BEC=90°,G为AB上一点,作GP⊥BE且GP=CE,并以BG为斜边作等腰Rt△BGH,连接EP、EH.求证:EP= EH.6、(2020湖州.八上期中) 在等腰Rt△ABC中,∠BAC=90°,AB=AC,在△ABC外作∠ACM= ∠ABC,点D为直线BC 上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)①当点D在线段BC上时,如图1所示,求∠EDC的度数②探究线段DF与EC的数量关系,并证明;(2)当点D运动到CB延长线上时,请你画出图形,并证明此时DF与EC的数量关系.7、(2020江阴.八上期中) 如图,在四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求四边形ABCD的对角线BD的长.8、(2019东台.八上期中) 如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=2,求EF的长.9、(2020恩施土家族苗族自治州.八上期中) 如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,(1)请判断线段AE和BD的数量关系和位置关系,并证明;(2)若已知∠AED=135°,设∠AEC=α,当△BDE为等腰三角形时,求α的度数.10、(2019南宁.八上期中) 如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD的长度;(2) G为AC中点,连接GF,求证:∠AFG+∠BEF=∠GFE.11、(2020重庆.八上期中) 如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;并用含α的式子表示∠AMB的度数;(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.12、(2020息.八上期末) 如图,在平面直角坐标系中,直线分别交轴、轴于点和点,且,满足.(1), .(2)点在直线的右侧,且:①若点在轴上,则点的坐标为;②若为直角三角形,求点的坐标.13、(2020江汉.八上期末) 在平面直角坐标系中,已知点,与坐标原点O在同一直线上,且AO=BO,其中m,n满足 .(1)求点A,B的坐标;(2)如图1,若点M,P分别是x轴正半轴和y轴正半轴上的点,点P的纵坐标不等于2,点N在第一象限内,且,PA⊥PN,,求证:BM⊥MN;(3)如图2,作AC⊥y轴于点C,AD⊥x轴于点D,在CA延长线上取一点E,使,连结BE交AD于点F,恰好有,点G是CB上一点,且,连结FG,求证: .14、(2020长兴.八上期末) 如图(1)一节数学课上,老师提出了这样一个问题:如图1,点P是等腰Rt△ABC内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察,分析,思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连结P′P,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连结P′P,求出∠APB的度数。
2021年中考数学真题分项汇编【全国通用】(第01期)专题17等腰三角形与直角三角形(共42题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列命题是真命题的是( ).A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形【答案】B【分析】根据多边形外角和、正多边形内角和、等边三角形、矩形的性质,对各个选项逐个分析,即可得到答案.【详解】正六边形的外角和,和正五边形的外角和相等,均为360︒∴选项A 不符合题意;正六边形的内角和为:()62180720-⨯︒=︒∴每一个内角为7201206︒=︒,即选项B 正确; 三个角均为60︒的三角形是等边三角形∴选项C 不符合题意;对角线相等的平行四边形是矩形∴选项D 不正确;故选:B .【点睛】本题考查了多边形外角和、正多边形内角和、等边三角形、矩形的知识;解题的关键是熟练掌握多边形外角和、正多边形内角和、等边三角形、矩形的性质,从而完成求解.2.(2021·江苏扬州市·中考真题)如图,在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .5【答案】B【分析】 根据题意,结合图形,分两种情况讨论:∴AB 为等腰直角∴ABC 底边;∴AB 为等腰直角∴ABC 其中的一条腰.【详解】解:如图:分情况讨论:∴AB 为等腰直角∴ABC 底边时,符合条件的C 点有0个;∴AB 为等腰直角∴ABC 其中的一条腰时,符合条件的C 点有3个.故共有3个点,故选:B .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.3.(2021·浙江宁波市·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A 3B 3C .1D 6【答案】C【分析】根据条件可知∴ABD 为等腰直角三角形,则BD =AD ,∴ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。
等腰三角形、直角三角形以及轴对称图形同步练习一、选择题:*1、等腰三角形的周长为13,其中一边长为3,则该等腰三角形底边长为( ).(A ) 7 (B ) 3 (C )7或3 (D )52、如下图,在△ABC 中,AB=AC ,∠A=50°,P 是△ABC 内一点,∠PCB=∠PCA ,且∠PBC=∠PBA ,则∠BPC 的度数为( ). PAC B(A )115° (B )100° (C )130° (D )140°3、至少有两边相等的三角形是( ).(A )等边三角形 (B )等腰三角形(C )等腰直角三角形 (D )锐角三角形4、在线段、角、等腰三角形、正三角形中,是轴对称图形的有( ).(A )1个 (B )2个 (C )3个 (D )4个*5、下列说法中正确的是( )(A )角是轴对称图形,它的平分线就是对称轴(B )等腰三角形的内角的平分线,中线和高三线合一(C )直角三角形不是轴对称图形(D )等边三角形有三条对称轴6、等腰三角形的一个内角是50°,那么其它两个内角分别是( )(A )50°和80° (B )65°和65°(C )50°和80°或65°和65° (D )无法确定*7、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( ).(A )42° (B )60° (C )36° (D )46°*8、如下图,△ABC 中,AD ⊥BC ,AB=AC ,∠BAD=30°,且AD=AE ,则∠EDC 等于() D B AEC(A )10° (B )° (C )15° (D )20°*9、如下图,PM=PN ,MQ 为△PMN 的角平分线,若∠MQN=72°,则∠P 的度数是( ).PQM N(A )18° (B )36° (C )48° (D )60°**10、已知△ABC 中,AB=AC ,AD ⊥BC 于D ,△ABC 的周长为36cm ,△ADC 的周长为30cm ,那么AD 等于( ).(A )6cm (B )8cm (C )12cm (D )20cm*11、如下图,在△ABC 中,AB=AC , ∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的平分线,则图中等腰三角形的个数为( ). AD EC B O(A )12 (B )10 (C )9 (D )812、如果三角形一边的中线和这边上的高重合,那么这个三角形是( ).(A )等边三角形 (B )等腰三角形 (C )锐角三角形 (D )钝角三角形*13、在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④三个外角都相等的三角形是等边三角形.其中正确的是( ).(A )4个 (B )3个 (C )2个 (D )1个14、在△ABC 中,∠B=∠C=40°,D 、E 是BC 上的两点,且∠ADE=∠AED=80°,则图中共有( )等腰三角形. AC B E D(A )6个 (B )5个 (C )4个 (D )3个二、填空题:1、在△ABC 中, ∠A=∠B=∠C ,则△ABC 是_____三角形;2、在△ABC 中, ∠ABC=∠ACB , ∠ABC 与∠ACB 的平分线交于点D ,过D 作EF ∥BC ,交AB 于E ,交AC 于F ,则图中的等腰三角形有____个,分别是______. F AD C B E3、等腰三角形的对称轴是_____,等边三角形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴.4、等边三角形的两条中线相交所成的钝角的度数是_____.三、解答题:1、在△ABC 中,AD 是∠BAC 的平分线,过C 作CE ∥AD 交BA 的延长线于点E ,则线段E D C B A AE 与AC 是否相等,为什么A E2、△ABC 是等腰三角形,AB=AC ,D 为底边BC 上一点,DE ∥AB 且交AC 于E ,请判断△EDC 是什么三角形并说明理由.AC B E D3、如图所示,△ABC 中,∠ABC 与∠ACB 的角平分线相交于点O ,过O 作EF 平行于BC ,写出图中的所有等腰三角形 一、选择题:1.若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形2. 已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .33.下列命题中,错误的是( )A.三角形两边之差小于第三边B.三角形的外角和是360°C.三角形的一条中线能将三角形分成面积相等的两部分D.等边三角形既是轴对称图形,又是中心对称图形4.如图,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( )A .5个 个 个 个二、填空题:5.如图,在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,则DE = .6.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __ __度.7.数学活动课上,老师在黑板上画直线平行于射线AN (如图),让同学们在直线l 和射线AN 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形.这样的三角形最多能画 个.A E ABCDE (第4题图) (第5题图) (第6题图)A B C DE F G 8.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 .9.如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE= .10.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________.11.已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .(第10题图)12.如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在AB AC 、上,将ABC △沿着DE 折叠压平,A 与A '重合,若70A ∠=°,则12∠+∠= .三、解答题:13.有一块直角三角形的绿地,量得两直角边长分别为6m m ,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.14.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90o ,∠E=∠ABC=30o ,AB=DE=4.(1)求证:△EGB 是等腰三角形;(2)若△DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED 为底的梯形(如图(2)).求此梯形的高.(第8题图) (第7题图) (第9题图) 1 (第11题图) 第14题图(1) A B C E FF B (D )G G A E D 第14题图(2)。
等腰三角形和直角三角形专项练习题
一、选择题
1.等腰三角形一底角为30°,底边上的高为9cm,则腰长为( )cm.
A.3 B.18 C.9 D.39
2.已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( )
A.5 B.6 C.7 D.8
3.如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC
于M,连接CD.下列结论:①AC+CE=AB;②CD=21 AE;③∠CDA=45°;④AMABAC =
定值.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4.等腰三角形的一个角等于20°, 则它的另外两个角等于:( )
A.20°、140° B.20°、140°或80°、80° C.80°、80° D.20°、80°
5.如图,BE和AD是△ABC的高,F是AB的中点,则图中的三角形一定是等腰三角形的有( )
A.2个 B.3个 C.4个 D.5个
6.下列命题正确的是( )
A.等腰三角形只有一条对称轴 B.直线不是轴对称图形
C.直角三角形都不是轴对称图形 D.任何一角都是轴对称图形
7.等腰三角形两边分别为35厘米和22厘米,则它的第三边长为( )
A.35cm B.22cm C.35cm或22cm D.15cm
8.下列条件不可以判定两个直角三角形全等的是( )
A.两条直角边对应相等 B.有两条边对应相等
C.一条边和一锐角对应相等 D.一条边和一个角对应相等
9.等腰三角形中,AB长是BC长2倍,三角形的周长是40,则AB的长为( )
A.20 B.16 C.20或16 D.18
10.如图已知:AB=AC=BD,那么∠1与∠2之间的关系满足( )
A.∠1=2∠2 B.2∠1+∠2=180°
C.∠1+3∠2=180° D.3∠1-∠2=180°
二、填空题
1. 等腰三角形的腰长是底边的43,底边等于12cm,则三角形的周长为______ cm.
2. 等腰三角形的底角是65°,顶角为________.
3. 等腰三角形的一个内角为100°,则它的其余各角的度数分别为_______.
4. 等腰三角形的顶角等于一个底角的4倍时, 则顶角为_________度.
5. 已知如图,A、D、C在一条直线上AB=BD=CD, ∠C=40°,则∠ABD=_______
6. 如图, ∠P=25°, 又PA=AB=BC=CD, 则∠DCM=_______度.
第7题
第5题 第6题
7. 如图已知∠ACB=90°, BD=BC, AE=AC, 则∠DCE=__________度
8. △ABC中,∠C=90°,AB=10,∠A=30°,则BC= ______ ,AC=_________
9. 已知Rt△ABC中,斜边AB=10cm,则斜边上的中线的长为______
10.如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需
要加条件____________或_______________; 若利用“HL”证明△ABC≌△ABD,则需要加
条件___________或_______________ .
三、几何题
1. 如图,在△ABC 中,已知AB = 10,BD = 6, AD = 8,AC = 17.
(1)求DC的长.
(2)判断△ABC是否是直角三角形?
2.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使得CE=CD.连接DE
(1)∠E等于多少度?
(2)△DBE是什么三角形?
3. 如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若
两次日照的光线互相垂直,求树的高度
4. 如图,在等腰三角形ABC中,已知AB=AC=13cm,BC=10cm,AD⊥BC于点D.
(1)求BC边上的高AD的长
(2)求AC边上的高的长
5.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于
点F.求证:DF=EF.
6. 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.
90
0
90
0
7. 如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交
于点F.
(1)线段AD与BE有什么关系?试证明你的结论
(2)求∠BFD的度数
8. 如图,在△ABC中,AB=BC,∠ABC= ,OA=OB,在△EOF中,∠EOF= ,OE=OF,连接AE、
BF.问线段AE与BF之间的关系?请说明理由
9.如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F.求证:△AEF为等腰
三角形.
10.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东
60°方向;40min后,渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛
C为中心,周围10海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?