3.2 自然推理系统P
- 格式:ppt
- 大小:179.00 KB
- 文档页数:27
论自然推理系统P的三种证明方法刘亚婷 兴义民族师范学院数学科学学院摘要:自然推理系统P是逻辑学中很好的一个推理规则,它可以用来解决日常生活、科学领域、社会活动等逻辑推理,它主要有三种证明方法:直接证明法、附加前提证明法和归谬证明法。
用这三种方法推出的结论,都是有效结论,当他的前提条件成立时,结论一定成立。
关键词:自然推理系统;证明;方法 中图分类号:O141 文献识别码:A 文章编号:1001-828X(2017)030-0389-02在数理逻辑中,最重要的就是用数学的方法研究推理。
所谓推理,就是通过一系列已知的命题公式,应用所给的推理规则推出命题公式的过程。
推理又分为公理推理和自然推理,在我们的日常生活中,经常用自然推理来解决一些实际问题。
自然推理是形式系统中的推理之一,我们常称为自然推理系统P。
现将自然推理系统P 定义如下:1.字母表(1)命题变项的符号: p, q, r, …(2) 联结词的符号: ┐,∧,∨, →, ↔(3)逗号与括号: ,, ( )2.合式公式(1) 单个的命题变项和命题常项是合式公式, 称作原子命题公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(AB), (AB),(AB), (AB)也是合式公式(4) 有限次地应用(1) --(3)组成的符号串也是合式公式3. 推理规则(1)前提引入: 在证明的任何步骤上都可引入已知前提;(2) 结论引入: 在证明的任何步骤上所得到的结论都可作为后续证明的前提。
(3) 置换规则:在证明的任何步骤上,命题公式都可以用与之等值的公式来置换。
(4)假言推理 (5)附加规则 (6)化简规则A→B A A∧B_ _A__ ∴A∨B ∴A∴ B(7)拒绝式 (8)假言三段论A→B A→B┐B B→C∴┐A ∴A→C(9)析取三段论 (10)构造性二难A∨B A→B┐B C→D∴ A A∨C∴B∨D(11)破坏性二难 (12)合取引入规则A→B AC→D B┐B∨┐D ∴A∧B∴┐A∨┐C那么如何在自然推理系统P中进行证明呢?步骤如下:(1)将原子命题符号化(2)将实际问题的前提A1, A2, …, A k写出来(3)将实际问题的结论B写出来(4)根据自然推理系统P中的推理规则进行判断在自然推理系统P中构造证明时,将形式构造成:前提:A1, A2, …, A k结论:B然后利用直接证明法、附加前提证明法和归谬证明法进行证明。
论自然推理系统p的三种证明方法
自然推理系统p是一种建立在特定领域知识框架上的代表性推理技术,主要利
用规则和相关知识把已知信息推断出与其关联的未知信息。
本文针对自然推理系统
p的三种证据方法作了深入探讨。
第一种证据方法是证明树(Proof Tree),也称为论证树(Completion)。
它
将定理拆分为多个子式,并且每个子式有不同的证据。
每个子式都有自己的可信度,从而构成一棵证据树。
有了这棵证据树,就可以得到原始定理可信度的决定,从而证明其提出的结论正确。
第二种证据方法是逆向推理(Backward Reasoning),即根据已有的知识推断
出新知识的证明方法,也称为约束推理(Constraint Reasoning)。
根据已知的基本规则,可以推断出新的定理或约束条件。
遵循这些新编定规则,可以推断出结论,从而得到验证证据。
最后一种证据方法是前向推理(Forward Reasoning),即根据推理规则,从
已知的结论向已知的规则推断出新的结论。
这种方法可以根据一组规则,从另一组规则中推断出新的结论,这样,它就可以根据指定的结论,去搜索满足这一约束条件的新结论,并可以获得该新结论的证据。
通过以上介绍,可以了解自然推理系统P有三种证据方法,它们分别是证明树,逆向推理和前向推理。
它们各具特色,有助于从不同方面验证和支持结论的正确性。
因此,在很多研究和开发的过程中,自然推理系统P的三种证据方法可以作为推理基础,证明研究成果的有效性和可行性。
离散数学自然推理系统p
离散数学中的自然推理系统P是一种基于命题逻辑的证明系统。
该系统包含两个部分:公理和规则。
其中,公理是一些已经被证明的命题,而规则则是推导新命题的方法。
自然推理系统P包含以下规则:
1. 假言规则:如果已知命题A蕴含命题B,那么可以通过假定命题A成立,推导命题B成立。
2. 水平规则:如果已知命题A成立,同时已知命题A蕴含命题B,那么可以推导出命题B成立。
3. 消去规则:如果已知命题A蕴含命题B,且已知命题A或者命题非B成立,那么可以推导出命题非A或者命题B成立。
4. 拆分规则:如果已知命题A并且命题B成立,那么可以推导出命题A且命题B成立。
在自然推理系统P中,证明的过程是通过应用这些规则逐步推导出新的命题,直到能够得出所要证明的命题。
要注意的是,在每一步推导过程中都需要遵循推导规则,并保证逻辑上的正确性。
以上是对离散数学中自然推理系统P的简要介绍。
该证明系统在数学、计算机科学等领域有着广泛的应用。
在自然推理系统中,通常使用一组推理规则来进行推理和推断。
这些规则是根据逻辑和语义原理建立的,用于推导出新的命题或得出结论。
以下是一些常见的推理规则:消解规则(Resolution Rule):消解规则是一种用于证明逻辑否定的规则。
它基于逻辑上的否定关系,通过将两个命题的互补部分进行消解,得出新的结论。
假言推理规则(Modus Ponens):假言推理规则是一种常见的推理形式,用于从一个条件命题(前提)和其导出的结论中得出新的结论。
如果前提命题是"A如果B",且已经证明了"A"为真,那么可以得出结论"B"为真。
全称量化引入规则(Universal Instantiation Rule):这个规则用于从一个全称量化命题中得出特定个体的结论。
如果一个命题声称“对于所有X,条件P成立”,那么可以通过将X替换为特定的个体来得出一个新的结论。
全称量化消去规则(Universal Generalization Rule):这个规则与全称量化引入规则相反,它允许我们从特定个体的结论推导出一个全称量化命题。
如果我们可以证明一个命题对于特定个体成立,那么我们可以得出结论它对于所有个体都成立。
存在量化引入规则(Existential Instantiation Rule):这个规则用于从一个存在量化命题中得出一个特定个体的结论。
如果一个命题声称“存在X,使得条件P成立”,那么可以通过引入一个特定的个体来得出一个新的结论。
存在量化消去规则(Existential Generalization Rule):这个规则与存在量化引入规则相反,它允许我们从一个特定个体的结论推导出一个存在量化命题。
如果我们可以证明一个命题对于特定个体成立,那么我们可以得出结论存在一个个体使得该命题成立。
以上只是自然推理系统中的一些常见推理规则,实际系统可能会使用更多的规则或变种。
这些规则是构建自然推理系统的基础,它们帮助我们推导和推断命题的真假以及它们之间的关系。
离散数学推理的三要素1.推理的形式结构(1)定义3.1:设A1,A2,A3...AK和B都是命题公式,若对于A1,A2,A3...AK和B中出现的命题变项的任意一组赋值,或者A1,A2,A3...AK为假,或者当A1,A2,A3...AK为真是,B也为真,则称由前提A1,A2,A3...AK推出结论B的推理是有效的或正确的,并称B是有效的结论。
由上面的推论可知,推理正确的并不能保证结论B一定成立,因为前提可能就不成立。
这与我们通常理解的推理是不同的。
通常只能认为在正确的前提下推出正确的结论才是正确的推理,而在这里,如果前提不正确,不论结论正确与否,都说推理正确。
(2)定理3.1:命题公式A1,A2……AK推导B的推理正确当且仅当A1,A2……AK>B为重言式。
要把推理的形式写成:前提:A1,A2……AK结论:B2自然推理系统P本节由前提A1,A2……,AK推B的正确推理的证明给出严格的形式描述。
“证明”是一个描述推理过程的命题公式序列,其中的每个公式或者是已知前提,或者是由前面的公式应用推理规则得到的结论(中间结论或推理中的结论)。
(1)定义3.2:一个形式系统I由下面4个部分组成:非空的字母表A(I);A(I)中符号构造的合式公式集E(I)E(I)中一些特殊的公式组成的公理集Ax(I)推理规则R(I)将I记为四元组<A(I),E(I),Ax(I),R(I)>.其中<A(I),E (I)>是I的形式语言系统,而<Ax(I),R(I)>为I的形式演算系统。
形式系统一般分为两类:一类是自然推理系统,它的特点是从任意给定的前提出发,应用系统中的推理规则进行推理演算,最后得到的命题公式是推理的结论(它是有效的结论,尔肯那个是重言式,也可能不是重言式)。
另一类是公理推理系统,他只能从若干条给定的公里出发,应用系统中的推理规则进行推理演算,得到的结论是系统中的重言式,成为系统中的定理。