离散数学27推理的形式结构
- 格式:pdf
- 大小:781.34 KB
- 文档页数:34
作业答案:数理逻辑部分P14:习题一1、下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(3 答:简单命题,真命题。
(9)吸烟请到吸烟室去! 答:不是命题。
(12)8是偶数的充分必要条件是8能被3整除。
答:复合命题,假命题。
14、讲下列命题符号化。
(6)王强与刘威都学过法语。
答::p 王强学过法语;:q 刘威学过法语。
符号化为:p q ∧(10)除非天下大雨,他就乘班车上班。
答::p 天下大雨;:q 他乘班车上班。
符号化为:p q →(13)“2或4是素数,这是不对的”是不对的。
答::p 2是素数;:q 4是素数。
符号化为:(())p q ⌝⌝∨15、设:p 2+3=5. :q 大熊猫产在中国。
:r 太阳从西方升起。
求下列复合命题的真值。
(2)(())r p q p →∧↔⌝(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→ 解答: p 真值为1;q 真值为1;r 真值为0.(2)p q ∧真值为1;()r p q →∧真值为1;p ⌝真值为0;所以(())r p q p →∧↔⌝真值为0.(4)p q r ∧∧⌝真值为1,p q ⌝∨⌝真值为0,()p q r ⌝∨⌝→真值为1;所以()(())p q r p q r ∧∧⌝↔⌝∨⌝→真值为1.19、用真值表判断下列公式的类型。
(4)()()p q q p →→⌝→⌝所以为重言式。
所以为可满足式。
P36:习题二3、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出其成真赋值。
(1)()p q q ⌝∧→ 解答:()(())(())()10p q q p q q p q q p q q ⌝∧→⇔⌝⌝∧∨⇔⌝⌝∨⌝∨⇔⌝⌝∨⌝∨⇔⌝⇔所以为永假式。
(2)(())()p p q p r →∨∨→ 解答:(())()(())()()()1()1p p q p r p p q p r p p q p r p r →∨∨→⇔⌝∨∨∨⌝∨⇔⌝∨∨∨⌝∨⇔∨⌝∨⇔ 所以因为永真式。
离散数学结构第3章命题逻辑的推理理论复习第3章命题逻辑的推理理论主要内容1. 推理的形式结构:①推理的前提②推理的结论③推理正确④有效结论2. 判断推理是否正确的⽅法:①真值表法②等值演算法③主析取范式法3. 对于正确的推理,在⾃然推理系统P中构造证明4. ①⾃然推理系统P的定义②⾃然推理系统P的推理规则:前提引⼊规则、结论引⼊规则、置换规则、假⾔推理规则、附加规则、化简规则、拒取式规则、假⾔三段式规则、构造性⼆难规则、合取引⼊规则。
③附加前提证明法④归谬法学习要求1. 理解并记住推理的形式结构的三种等价形式,即①{A1,A2,…,A k}├B②A1∧A2∧…∧A k→B③前提与结论分开写:前提:A1,A2,…,A k结论:B在判断推理是否正确时,⽤②;在P系统中构造证明时⽤③。
2. 熟练掌握判断推理是否正确的三种⽅法(真值表法,等值演算法,主析取范式法)。
3. 牢记P系统中的各条推理规则。
4. 对于给定的正确推理,要求在P系统中给出严谨的证明序列。
5. 会⽤附加前提证明法和归谬法。
3.1 推理的形式结构定义3.1设A1,A2,…,A k和B都是命题公式,若对于A1,A2,…,A k和B中出现的命题变项的任意⼀组赋值,或者A1∧A2∧…∧A k为假,或者当A1∧A2∧…∧A k为真时,B也为真,则称由前提A1,A2,…,A k推出B的推理是有效的或正确的,并称B是有效结论。
⼆、有效推理的等价定理定理3.1命题公式A1,A2,…,A k推B的推理正确当且仅当(A1∧A2∧…∧A k )→B为重⾔式。
A k为假,或者A1∧A2∧…∧A k和B同时为真,这正符合定义3.1中推理正确的定义。
由此定理知,推理形式:前提:A1,A2,…,A k结论:B是有效的当且仅当(A1∧A2∧…∧A k)→B为重⾔式。
(A1∧A2∧…∧A k)→B称为上述推理的形式结构。
从⽽推理的有效性等价于它的形式结构为永真式。
于是,推理正确{A1,A2,…,A k} B可记为A1∧A2∧…∧A k B其中同⼀样是⼀种元语⾔符号,⽤来表⽰蕴涵式为重⾔式。
1.1.略1.2.略1.3.略1.4.略1.5.略1.6.略1.7.略1.8.略1.9.略1.10.略1.11.略1.12.将下列命题符号化, 并给出各命题的真值:(1)2+2=4 当且仅当3+3=6. (2)2+2=4 的充要条件是3+3≠6. (3)2+2≠4与3+3=6 互为充要条件. (4)若2+2≠4, 则3+3≠6, 反之亦然.(1)p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.(2)p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(3) ⌝p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(4) ⌝p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.1.13.将下列命题符号化, 并给出各命题的真值:(1)若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三.令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三.(1) p→q ⇔ 1.(2) q→p ⇔ 1.(3) p↔q ⇔ 1.(4) p→r 当p ⇔ 0 时为真; p ⇔ 1 时为假.1.14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了.(12)2 与4 都是素数, 这是不对的.(13)“2或4 是素数, 这是不对的”是不对的.(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.12) ⌝ (p∧q)或⌝p∨⌝q, 其中, p: 2 是素数, q: 4 是素数.(13) ⌝⌝ (p∨q)或p∨q, 其中, p: 2 是素数, q: 4 是素数.1.15.设p: 2+3=5.q: 大熊猫产在中国.r: 复旦大学在广州. 求下列复合命题的真值:(1)(p↔q) →r(2)(r→ (p∧q)) ↔ ⌝p(3) ⌝r→ (⌝p∨⌝q∨r)(4)(p∧q∧⌝r) ↔ (( ⌝p∨⌝q) →r)(1)真值为0.(2)真值为0.(3)真值为0.(4)真值为1.注意: p, q 是真命题, r 是假命题.1.16.略1.17.略1.18.略1.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r)(2)(p→⌝q) →⌝q(3) ⌝ (q→r) ∧r(4)(p→q) → (⌝q→⌝p)(5)(p∧r) ↔ ( ⌝p∧⌝q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式.1.20.略1.21.略1.22.略1.23.略1.24.略1.25.略1.26.略1.27.略1.28.略1.29.略1.30.略1.31.将下列命题符号化, 并给出各命题的真值:(1)若3+=4, 则地球是静止不动的.(2)若3+2=4, 则地球是运动不止的. (3)若地球上没有树木, 则人类不能生存.(4)若地球上没有水, 则 3 是无理数.(1)p→q, 其中, p: 2+2=4, q: 地球静止不动, 真值为0.(2)p→q, 其中, p: 2+2=4, q: 地球运动不止, 真值为1.(3) ⌝p→⌝q, 其中, p: 地球上有树木, q: 人类能生存, 真值为1.(4) ⌝p→q, 其中, p: 地球上有水, q: 3 是无理数, 真值为1.习题二2.1. 设公式A = p→q, B = p⌝∧q, 用真值表验证公式A 和B 适合德摩根律:⌝(A∨B) ⇔ ⌝A⌝∧B.p q A =p→q B =p⌝∧q⌝(A∨B)⌝A⌝∧B0 0 1 0 0 00 1 1 0 0 01 0 0 1 0 01 1 1 0 0 0因为⌝(A∨B)和⌝A⌝∧B 的真值表相同, 所以它们等值.2.2. 略2.3. 用等值演算法判断下列公式的类型, 对不是重言式的可满足式, 再用真值表法求出成真赋值.(1) ⌝ (p∧q→q)(2)(p→ (p∨q)) ∨ (p→r)(3)(p∨q) → (p∧r)(1) ⌝ (p∧q→q)⇔ ⌝ (⌝(p∧q) ∨ q) ⇔ ⌝ (⌝p ∨ ⌝q ∨ q) ⇔ p∧q∧⌝q ⇔ p∧0 ⇔ 0 ⇔ 0. 矛盾式.(2)重言式.(3) (p∨q) → (p∧r) ⇔ ⌝(p∨q) ∨ (p∧r) ⇔ ⌝p⌝∧q ∨ p∧r 易见, 是可满足式, 但不是重言式. 成真赋值为: 000, 001, 101, 111p q r←p ∍ ←q (p∍r0 0 0 1 1 1 1 00 0 1 1 1 1 1 00 1 0 1 0 0 0 00 1 1 1 0 0 0 01 0 0 0 0 1 0 01 0 1 0 0 1 1 11 1 0 0 0 0 0 01 1 1 0 0 0 1 12.4. 用等值演算法证明下面等值式:(1) p⇔ (p∧q) ∨ (p∧⌝q)(3) ⌝ (p↔q) ⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q) ⇔ (p∨q) ∧⌝ (p∧q)(1) (p∧q) ∨ (p∧⌝q) ⇔ p ∧ (q⌝∨q) ⇔ p ∧ 1 ⇔ p.(3) ⌝ (p↔q)⇔⌝ ((p→q) ∧ (q→p))⇔⌝ ((⌝p∨q) ∧ (⌝q∨p))⇔ (p∧⌝q) ∨ (q∧⌝p)⇔ (p∨q) ∧ (p∨⌝p) ∧ (⌝q∨q) ∧ (⌝p∨⌝q)⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q)⇔ (p∨⌝p) ∧ (p∨q) ∧ (⌝q∨⌝p) ∧ (⌝q∨q)⇔ (p∨q) ∧⌝ (p∧q)2.5. 求下列公式的主析取范式, 并求成真赋值:(1)( ⌝p→q) → (⌝q∨p)(2) ⌝ (p→q) ∧q∧r(3)(p∨ (q∧r)) → (p∨q∨r)(1)(⌝p→q) → (⌝q∨p)⇔ ⌝(p∨q) ∨ (⌝q∨p)⇔ ⌝p∧⌝q ∨ ⌝q ∨ p⇔ ⌝p∧⌝q ∨ ⌝q ∨ p(吸收律)⇔ (p⌝∨p)⌝∧q ∨ p∧(q⌝∨q)⇔ p⌝∧q ⌝∨p⌝∧q ∨ p∧q ∨ p⌝∧q⇔ m10 ∨ m00 ∨ m11 ∨ m10⇔ m0 ∨ m2 ∨ m3⇔ ∑(0, 2, 3).成真赋值为00, 10, 11.(2)主析取范式为0, 无成真赋值, 为矛盾式.(3)m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7, 为重言式.2.6. 求下列公式的主合取范式, 并求成假赋值:(1) ⌝ (q→⌝p) ∧⌝p(2)(p∧q) ∨ (⌝p∨r)(3)(p→ (p∨q)) ∨r(1) ⌝ (q⌝→p) ∧ ⌝p⇔ ⌝(⌝q⌝∨p) ∧ ⌝p⇔ q∧p ∧ ⌝p⇔ q∧0⇔ 0⇔ M0∧M1∧M2∧M3这是矛盾式. 成假赋值为00, 01, 10, 11.(2)M4, 成假赋值为100.(3)主合取范式为1, 为重言式.2.7. 求下列公式的主析取范式, 再用主析取范式求合取范式:(1)(p∧q) ∨r(2)(p→q) ∧ (q→r)(1)m1∨m3∨m5∨m6∨m7⇔M0∧M2∧M4(2)m0∨m1∨m3∨m7⇔M2∧M4∧M5∧M62.8. 略2.9. 用真值表求下面公式的主析取范式.(2) (p→q) → (p⌝↔q)p q(p q) (p ← q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0(2)从真值表可见成真赋值为01, 10. 于是(p → q) → (p⌝ ↔ q) ⇔ m1 ∨ m2.2.10. 略2.11. 略2.12. 略2.13. 略2.14. 略2.15. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2)(p→q) →r⇔ ⌝(⌝p∨q) ∨ r⇔ ⌝(⌝p∨q) ∨ r⇔ p⌝∧q ∨ r⇔ p⌝∧q∧(r⌝∨r) ∨ (p⌝∨p) ∧ (q⌝∨q)∧r⇔ p⌝∧q∧r ∨ p⌝∧q∧⌝r ∨p∧q∧r ∨ p∧⌝q∧r ∨ ⌝p∧q∧r ∨ ⌝p∧⌝q∧r= m101 ∨ m100 ∨ m111 ∨ m101 ∨ m011 ∨ m001⇔ m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7= ∑(1, 3, 4, 5, 7).而q→(p→r)⇔ ⌝q ∨ (⌝p∨r)⇔ ⌝q ∨ ⌝p ∨r⇔ (⌝p∨p)⌝∧q∧(⌝r∨r) ∨ ⌝p∧(⌝q∨q)∧(⌝r∨r)∨ (⌝p∨p)∧(⌝q∨q)∧r⇔ (⌝p⌝∧q∧⌝r)∨(⌝p⌝∧q∧r)∨(p⌝∧q∧⌝r)∨(p⌝∧q∧r)∨(⌝p∧⌝q∧⌝r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧⌝r)∨(⌝p∧q∧r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)= m0 ∨ m1 ∨ m4 ∨ m5∨ m0 ∨ m1 ∨ m2 ∨ m3∨ m1 ∨ m3 ∨ m5 ∨ m7⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7⇔ ∑(0, 1, 2, 3, 4, 5, 7).两个公式的主吸取范式不同, 所以(p→q) →rœq→ (p→r).2.16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2) ⌝ (p∧q)与⌝ (p∨q)(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) œq→ (p→r)(2)⌝ (p∧q) ⇔m0∨m1∨m2⌝ (p∨q) ⇔m0所以⌝ (p∧q) œ⌝ (p∨q)2.17. 用主合取范式判断下列公式是否等值:(1)p→ (q→r)与⌝ (p∧q) ∨r(2)p→ (q→r)与(p→q) →r(1)p→ (q→r) ⇔M6⌝ (p∧q) ∨r⇔M6所以p→ (q→r) ⇔ ⌝ (p∧q) ∨r(2)p→ (q→r) ⇔M6(p→q) →r⇔M0∧M1∧M2∧M6所以p→ (q→r) œ(p→q) →r2.18. 略2.19. 略2.20.将下列公式化成与之等值且仅含{⌝, →} 中联结词的公式.(3) (p∧q)↔r.注意到A↔B ⇔ (A→B)∧(B→A)和A∧B ⇔ ⌝(⌝A⌝∨B) ⇔ ⌝(A⌝→B)以及A∨B ⇔ ⌝A→B. (p∧q)↔r⇔ (p∧q → r) ∧ (r → p∧q)⇔ (⌝(p⌝→q) → r) ∧ (r → ⌝(p⌝→q))⇔ ⌝((⌝(p⌝→q) → r) → ⌝(r → ⌝(p⌝→q)))注 联结词越少, 公式越长.2.21. 证明:(1) (p↑q) ⇔ (q↑p), (p↓q) ⇔ (q↓p).(p↑q) ⇔ ⌝(p∧q) ⇔ ⌝(q∧p) ⇔ (q↑p).(p↓q) ⇔ ⌝(p∨q) ⇔ ⌝(q∨p) ⇔ (q↓p).2.22. 略2.23. 略2.24. 略2.25. 设A, B, C 为任意的命题公式.(1)若A∨C⇔B∨C, 举例说明A⇔B 不一定成立. (2)已知A∧C⇔B∧C, 举例说明A⇔B 不一定成立. (3)已知⌝A⇔⌝B, 问: A⇔B 一定成立吗?(1) 取A = p, B = q, C = 1 (重言式), 有A∨C ⇔ B∨C, 但A œB.(2) 取A = p, B = q, C = 0 (矛盾式), 有A∧C ⇔ B∧C, 但A œB.好的例子是简单, 具体, 而又说明问题的. (3)一定.2.26. 略2.27.某电路中有一个灯泡和三个开关A,B,C. 已知在且仅在下述四种情况下灯亮:(1)C 的扳键向上, A,B 的扳键向下.(2)A 的扳键向上, B,C 的扳键向下.(3)B,C 的扳键向上, A 的扳键向下.(4)A,B 的扳键向上, C 的扳键向下.设F 为1 表示灯亮, p,q,r 分别表示A,B,C 的扳键向上. (a)求F 的主析取范式.(b)在联结词完备集{⌝, ∧}上构造F. (c)在联结词完备集{⌝, →,↔}上构造F.(a)由条件(1)-(4)可知, F 的主析取范式为F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔m1∨m4∨m3∨m6⇔m1∨m3∨m4∨m6(b)先化简公式F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔⌝q∧ ((⌝p∧r) ∨ (p∧⌝r)) ∨q∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝q∨q) ∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝ (⌝p∧r) ∧⌝ (p∧⌝r)) (已为{⌝, ∧}中公式)(c)F⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝⌝ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝p∧r) → (p∧⌝r)⇔ (p∨⌝r) →⌝ (⌝p∨r)⇔ (r→p) →⌝ (p→r) (已为{⌝, →,↔}中公式)2.28.一个排队线路, 输入为A,B,C, 其输出分别为F A,F B,F C. 本线路中, 在同一时间内只能有一个信号通过, 若同时有两个和两个以上信号申请输出时, 则按A,B,C 的顺序输出. 写出F A,F B,F C 在联结词完备集{⌝, ∨}中的表达式.根据题目中的要求, 先写出F A,F B,F C 的真值表(自己写) 由真值表可先求出他们的主析取范式, 然后化成{⌝, ∧}中的公式F A⇔m4∨m5∨m6∨m7⇔p (已为{⌝, ∧}中公式)F B⇔m2∨m3⇔⌝p∧q (已为{⌝, ∧}中公式)F C⇔m1⇔⌝p∧⌝q∧r (已为{⌝, ∧}中公式)2.29. 略2.30. 略习题三3.1. 略3.2. 略3.3. 略3.4. 略3.5. 略3.6. 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三. (2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一. (3)若今天是星期一, 则明天是星期三;明天不是星期三. 所以今天不是星期一. (4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二. (5)若今天是星期一, 则明天是星期二或星期三. (6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三.设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三. (1)推理的形式结构为(p→r) ∧p→r此形式结构为重言式, 即(p→r) ∧p⇒r 所以推理正确. (2)推理的形式结构为(p→q) ∧q→p 此形式结构不是重言式, 故推理不正确. (3)推理形式结构为(p→r) ∧⌝r→⌝p此形式结构为重言式, 即(p→r) ∧⌝r⇒⌝p故推理正确. (4)推理形式结构为(p→q) ∧⌝p→⌝q此形式结构不是重言式, 故推理不正确.(5)推理形式结构为p→ (q∨r)它不是重言式, 故推理不正确. (6)推理形式结构为(p⇒r) ∧⌝p→⌝r此形式结构为重言式, 即(p⇒r) ∧⌝p⇒⌝r故推理正确.推理是否正确, 可用多种方法证明. 证明的方法有真值表法, 等式演算法. 证明推理正确还可用构造证明法.下面用构造证明法证明(6)推理正确.前提: p⇒r, ⌝p结论: ⌝r证明: ①p⇒r 前提引入②(p→r) ∧ (r→p) ①置换③r→p ②化简律④⌝p 前提引入⑤⌝r ③④拒取式所以, 推理正确.3.7. 略3.8. 略3.9. 用三种方法(真值表法, 等值演算法, 主析取范式法)证明下面推理是正确的:若a 是奇数, 则a 不能被2 整除. 若a 是偶数, 则a 能被2 整除. 因此, 如果a 是偶数, 则a 不是奇数.令p: a 是奇数; q: a 能被2 整除; r: a 是偶数. 前提: p → ⌝q, r → q.结论: r → ⌝p.形式结构: (p → ⌝q) ∧ (r → q) → (r → ⌝p).……3.10.略3.11.略3.12.略3.13.略3.14.在自然推理系统P 中构造下面推理的证明:(1)前提: p→ (q→r), p, q结论: r∨s(2)前提: p→q, ⌝ (q∧r), r结论: ⌝p(3)前提: p→q结论: p→ (p∧q)(4)前提: q→p, q⇒s, s⇒t, t∧r结论: p∧q(5)前提: p→r, q→s, p∧q结论: r∧s(6)前提: ⌝p∨r, ⌝q∨s, p∧q结论: t→ (r∨s) (1)证明:①②p→(q→r)p前提引入前提引入③④q→rq①②假言推理前提引入⑤r③④假言推理⑥r∨s⑤附加律(2)证明:①②③⌝ (q∧r)⌝q∨⌝rr前提引入①置换前提引入④⑤⑥⌝qp→q⌝p②③析取三段论前提引入④⑤拒取式(3)证明:①p→q前提引入②⌝p∨q①置换③(⌝p∨q) ∧ (⌝p∨p)②置换④⌝p∨ (p∧q)③置换⑤p→ (p∧q) ④置换也可以用附加前提证明法, 更简单些.(4)证明:①②③④⑤s⇒t(s→t) ∧ (t→s)t→st∧rt前提引入①置换②化简前提引入④化简⑥s③⑤假言推理⑦⑧⑨⑩q⇒s(s→q) ∧ (q→s)s→qq前提引入⑦置换⑧化简⑥⑥假言推理○11 q →p前提引入○12 ○13 pp∧q⑩○11 假言推理⑩○12 合取(5)证明:①②p→rq→s前提引入前提引入③④p∧qp前提引入③化简⑤q③化简⑥r①④假言推理⑦s②⑤假言推理⑧r∧s⑥⑦合取(6)证明:①②t⌝p∨r附加前提引入前提引入③④p∧qp前提引入③化简⑤r②④析取三段论⑥r∨s⑤附加说明: 证明中, 附加提前t, 前提⌝q∨s 没用上. 这仍是正确的推理.3.15.在自然推理系统P 中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u结论: p→u(1)证明:①②ss→p附加前提引入前提引入③p①②假言推理④⑤⑥p→ (q→r)q→rq前提引入③④假言推理前提引入⑦r⑤⑥假言推理(2)证明:①②Pp∨q附加前提引入①附加③(p∨q) → (r∧s) 前提引入④⑤r∧sS②③假言推理④化简⑥⑦⑧s∨t(s∨t) →uu⑤附加前提引入⑥⑦假言推理3.16.在自然推理系统P 中用归谬法证明下面推理:(1)前提: p→⌝q, ⌝r∨q, r∧⌝s结论: ⌝p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①②Pp→⌝q结论否定引入前提引入③④⑤⑥⑦⌝q⌝r∨q⌝rr∧⌝sr①②假言推理前提引入③④析取三段论前提引入⑥化简⑧⌝r∧r⑤⑦合取⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①⌝ (r∨s)结论否定引入②p∨q前提引入③p→r前提引入④q→s前提引入⑤r∨s②③④构造性二难⑥⌝ (r∨s) ∧ (r∨s)①⑤合取①②③④⑤⑥⑦pp q(rq(rss ←q←qr①②假言推理前提引入前提引入⑥为矛盾式, 所以推理正确.3.17.P53 17. 在自然推理系统P 中构造下面推理的证明:只要A 曾到过受害者房间并且11 点以前没用离开, A 就犯了谋杀罪. A 曾到过受害者房间. 如果A 在11 点以前离开, 看门人会看到他. 看门人没有看到他. 所以A 犯了谋杀罪.令p: A 曾到过受害者房间; q: A 在11 点以前离开了; r: A 就犯了谋杀罪; s:看门人看到A.前提: p⌝∧q → r, p, q → s, ⌝s.结论: r.前提: p⌝∧q → r, p, q → s, ⌝s; 结论: r.证明:①⌝s 前提引入②q → s 前提引入③⌝q ①②拒取④p 前提引入⑤p⌝∧q ③④合取⑥p⌝∧q → r 前提引入⑦r ⑤⑥假言推理3.18.在自然推理系统P 中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩.今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(3)明天是晴天, 或是雨天;若明天是晴天, 我就去看电影;若我看电影, 我就不看书. 所以, 如果我看书,则明天是雨天.(1)令p: 今天是星期六; q: 我们要到颐和园玩; r: 我们要到圆明园玩; s:颐和园游人太多.前提: p→ (q∨r), s → ⌝q, p, s.结论: r.前提引入前提引入p p→q∨rq∨rs s → ⌝q⌝qr④⑤假言推理(1)的证明树③⑥析取三段论① p →r 前提引入 ② ⌝r 前提引入 ③ ⌝p ①②拒取式 ④ ⌝q →p 前提引入 ⑤q③④拒取式(2) 令 p : 小王是理科生, q : 小王是文科生, r : 小王的数学成绩很好. 前提: p →r , ⌝q →p , ⌝r 结论: q 证明:⌝qp →q⌝p⌝r →p(2)的证明树 r(3)令 p : 明天是晴天, q : 明天是雨天, r : 我看电影, s : 我看书. 前提: p ∨q , p →r , r →⌝s结论: s →q 证明:① ② s r →⌝s 附加前提引入 前提引入 ③ ⌝r ①②拒取式 ④ p →r 前提引入 ⑤ ⌝p ③④拒取式 ⑥ p ∨q 前提引入 ⑦q⑤⑥析取三段论习题四4.1. 将下面命题用0 元谓词符号化:(1)小王学过英语和法语. (2)除非李建是东北人, 否则他一定怕冷.(1) 令F(x): x 学过英语; F(x): x 学过法语; a: 小王. 符号化为F(a)∧F(b).或进一步细分, 令L(x, y): x 学过y; a: 小王; b1: 英语; b2: 法语. 则符号化为L(a, b1)∧L(a, b2).(2) 令F(x): x 是东北人; G(x): x 怕冷; a: 李建. 符号化为⌝F(a)→G(a) 或⌝G(a)→F(a).或进一步细分, 令H(x, y): x 是y 地方人; G(x): x 怕冷; a: 小王; b: 东北. 则符号化为⌝H(a, b)→G(a) 或⌝G(a)→ H(a, b).4.2. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)凡有理数都能被2 整除.(2)有的有理数能被2 整除. 其中(a)个体域为有理数集合, (b)个体域为实数集合.(1)(a)中, ∀xF(x), 其中, F(x): x 能被2 整除, 真值为0.(b)中, ∀x(G(x) ∧F(x)), 其中, G(x): x 为有理数, F(x)同(a)中, 真值为0. (2)(a)中, ∃xF(x), 其中, F(x): x 能被2 整除, 真值为1.(b)中, ∃x(G(x) ∧F(x)), 其中, F(x)同(a)中, G(x): x 为有理数, 真值为1.4.3. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)对于任意的x, 均有x2-2=(x+ 2 )(x- 2 ).(2)存在x, 使得x+5=9.其中(a)个体域为自然数集合, (b)个体域为实数集合.(1)(a)中, ∀x(x2-2=(x+ 2 x- 2 真值为1.(b)中, ∀x(F(x) → (x2-2=(x+ 2 x- 2 其中, F(x): x 为实数, 真值为1. (2)(a)中, ∃x(x+5=9), 真值为1.(b)中, ∃x(F(x) ∧ (x+5=9)), 其中, F(x): x 为实数, 真值为1.4.4. 在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的. (4)有的人天天锻炼身体.没指定个体域, 因而使用全总个体域.(1) ⌝∃x(F(x) ∧⌝G(x))或∀x(F(x) →G(x)), 其中, F(x): x 为有理数, G(x): x 能表示成分数.(2) ⌝∀x(F(x) →G(x))或∃x(F(x) ∧⌝G(x)), 其中, F(x): x 在北京卖菜, G(x): x 是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x 是乌鸦, G(x): x 是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x 是人, G(x): x 天天锻炼身体.4.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快. (2)有的火车比有的汽车快. (3)不存在比所有火车都快的汽车. (4)“凡是汽车就比火车慢”是不对的.因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x 是火车, G(y): y 是轮船, H(x,y):x 比y 快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x 是火车, G(y): y 是汽车, H(x,y):x 比y 快.(3) ⌝∃x(F(x) ∧∀y(G(y) →H(x,y)))或∀x(F(x) →∃y(G(y) ∧⌝H(x,y))), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 快.(4) ⌝∀x∀y(F(x) ∧G(y) →H(x,y))或∃x∃y(F(x) ∧G(y) ∧⌝H(x,y) ), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 慢.4.6. 略4.7. 将下列各公式翻译成自然语言, 个体域为整数集®, 并判断各命题的真假.(1) ∀x∀y∃z(x - y = z);(2) ∀x∃y(x⋅y = 1).(1) 可选的翻译:①“任意两个整数的差是整数.”②“对于任意两个整数, 都存在第三个整数, 它等于这两个整数相减.”③“对于任意整数x 和y, 都存在整数z, 使得x - y = z.”选③, 直接翻译, 无需数理逻辑以外的知识. 以下翻译意思相同, 都是错的:“有个整数, 它是任意两个整数的差.”“存在一个整数, 对于任意两个整数, 第一个整数都等于这两个整数相减.”❶ “存在整数z, 使得对于任意整数x 和y, 都有x - y = z.”这3 个句子都可以符号化为∃z∀x∀y(x - y = z).0量词顺序不可随意调换.(2) 可选的翻译:①“每个整数都有一个倒数.”②“对于每个整数, 都能找到另一个整数, 它们相乘结果是零.”③“对于任意整数x, 都存在整数y, 使得x⋅y = z.”选③, 是直接翻译, 无需数理逻辑以外的知识.4.8. 指出下列公式中的指导变元, 量词的辖域, 各个体变项的自由出现和约束出现:(3)∀x∃y(F(x, y) ∧ G(y, z)) ∨ ∃xH(x, y, z)∀x∃y(F(x,y)∧ G(y,z))∨ ∃x H(x,y,z)前件∀x∃y(F(x, y)∧G(y, z)) 中, ∀ 的指导变元是x, ∀ 的辖域是∃y(F(x, y)∧G(y, z)); ∃ 的指导变元是y, ∃ 的辖域是(F(x, y)∧G(y, z)).后件∃xH(x, y, z) 中, ∃ 的指导变元是x, ∃ 的辖域是H(x, y, z).整个公式中, x 约束出现两次, y 约束出现两次, 自由出现一次; z 自由出现两次.4.9. 给定解释I 如下:(a)个体域D I 为实数集合\.(b)D I 中特定元素↓a =0.(c)特定函数↓f (x,y)=x-y, x,y∈D I.(d)特定谓词↓F(x,y): x=y,↓G(x,y): x<y, x,y∈D I. 说明下列公式在I 下的含义, 并指出各公式的真值:(1)∀x∀y(G(x,y) →⌝F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →⌝F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x-y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x-y≠0)), 真值为1.(4) ∀x∀y((x-y<0) → (x=y)), 真值为0.4.10.给定解释I 如下:(a)个体域D=Æ(Æ为自然数).(b)D 中特定元素↓a=2.(c)D 上函数↓f (x,y)=x+y,↓g (x,y)=x·y.(d)D 上谓词↓F (x,y): x=y.说明下列公式在I 下的含义, 并指出各公式的真值:(1) ∀xF(g(x,a),x)(2) ∀x∀y(F(f(x,a),y) →F(f(y,a),x))(3) ∀x∀y∃z(F(f(x,y),z)(4) ∃xF(f(x,x),g(x,x))(1) ∀x(x·2=x), 真值为0.(2) ∀x∀y((x+2=y) → (y+2=x)), 真值为0.(3) ∀x∀y∃z(x+y=z),真值为1.(4) ∃x(x+x=x·x),真值为1.4.11.判断下列各式的类型:(1) F(x, y) → (G(x, y) → F(x, y)).(3) ∀x∃yF(x, y) → ∃x∀yF(x, y).(5) ∀x∀y(F(x, y) → F(y, x)).(1) 是命题重言式p → (q → p) 的代换实例, 所以是永真式.(3) 在某些解释下为假(举例), 在某些解释下为真(举例), 所以是非永真式的可满足式.(5) 同(3).4.12.P69 12. 设I 为一个任意的解释, 在解释I 下, 下面哪些公式一定是命题?(1) ∀xF(x, y) → ∃yG(x, y).(2) ∀x(F(x) → G(x)) ∧ ∃y(F( y) ∧ H( y)).(3) ∀x(∀yF(x, y) → ∃yG(x, y)).(4) ∀x(F(x) ∧ G(x)) ∧ H( y).(2), (3) 一定是命题, 因为它们是闭式.4.13.略4.14.证明下面公式既不是永真式也不是矛盾式:(1) ∀x(F(x) →∃y(G(y) ∧H(x,y)))(2) ∀x∀y(F(x) ∧G(y) →H(x,y))(1) 取个体域为全总个体域.解释I1: F(x): x 为有理数, G(y): y 为整数, H(x,y): x<y在I1 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为真命题, 所以该公式不是矛盾式.解释I2: F(x),G(y)同I1, H(x,y): y 整除x.在I2 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为假命题, 所以该公式不是永真式.(2) 请读者给出不同解释, 使其分别为成真和成假的命题即可.4.15.(1) 给出一个非闭式的永真式.(2) 给出一个非闭式的永假式.(3) 给出一个非闭式的可满足式, 但不是永真式.(1) F(x) ∨ ⌝F(x).(2) F(x) ∧ ⌝F(x).(3) ∀x(F(x, y) → F(y, x)).习题五5.1. 略5.2. 设个体域D={a,b,c}, 消去下列各式的量词:(1) ∀x∃y(F(x) ∧G(y))(2) ∀x∀y(F(x) ∨G(y))(3) ∀xF(x) →∀yG(y)(4) ∀x(F(x,y) →∃yG(y))(1) ∀x∃y(F(x) ∧G(y))⇔∀xF(x) ∧∃yG(y)⇔ (F(a) ∧F(b)) ∧F(c)) ∧ (G(a) ∨G(b) ∨G(c))(2) ∀x∀y(F(x) ∨G(y))⇔∀xF(x) ∨∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) ∨ (G(a) ∧G(b) ∧G(c))(3) ∀xF(x) →∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) → (G(a) ∧G(b) ∧G(c))(4) ∀x(F(x,y) →∃yG(y))⇔∃xF(x,y) →∃yG(y)⇔ (F(a,y) ∨F(b,y) ∨F(c,y)) → (G(a) ∨G(b) ∨G(c))5.3. 设个体域D={1,2}, 请给出两种不同的解释I1 和I2, 使得下面公式在I1 下都是真命题, 而在I2 下都是假命题.(1) ∀x(F(x) →G(x))(2) ∃x(F(x) ∧G(x))(1)I1: F(x):x≤2,G(x):x≤3F(1),F(2),G(1),G(2)均为真, 所以∀x(F(x) →G(x))⇔ (F(1) →G(1) ∧ (F(2) →G(2))为真.I2: F(x)同I1,G(x):x≤0则F(1),F(2)均为真, 而G(1),G(2)均为假,∀x(F(x) →G(x))为假. (2)留给读者自己做.5.4. 略5.5. 给定解释I 如下:(a)个体域D={3,4}.(b)↓f (x)为↓f (3)=4,↓f (4)=3. (c)↓F(x,y)为↓F(3,3)=↓F(4,4)=0,↓F(3,4)=↓F(4,3)=1.试求下列公式在I 下的真值:(1)∀x∃yF(x,y)(2)∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))(1)∀x∃yF(x,y)⇔ (F(3,3) ∨F(3,4)) ∧ (F(4,3) ∨F(4,4))⇔ (0∨1) ∧ (1∨0) ⇔1(2)∃x∀yF(x,y)⇔ (F(3,3) ∧F(3,4)) ∨ (F(4,3) ∧F(4,4))⇔ (0∧1) ∨ (1∧0) ⇔0(3) ∀x∀y(F(x,y) →F(f(x),f(y)))⇔ (F(3,3) →F(f(3),f(3)))∧ (F(4,3) →F(f(4),f(3)))∧ (F(3,4) →F(f(3),f(4)))∧ (F(4,4) →F(f(4),f(4)))⇔ (0→0) ∧ (1→1) ∧ (1→1) ∧ (0→0) ⇔15.6. 略5.7. 略5.8. 在一阶逻辑中将下列命题符号化, 要求用两种不同的等值形式.(1) 没有小于负数的正数.(2) 相等的两个角未必都是对顶角.(1) 令F(x): x 小于负数, G(x): x 是正数. 符合化为:∃⌝x((F(x) ∧ G(x)) ⇔ ∀x(G(x) → ⌝G(x)).(2) 令F(x): x 是角, H(x, y): x 和y 是相等的, L(x, y): x 与y 是对顶角. 符合化为:⌝∀x∀y(F(x) ∧ F(y) ∧ H(x, y) → L(x, y))⇔ ∃x∃y(F(x) ∧ F(y) ∧ H(x, y) ∧ ⌝L(x, y))⇔ ∃x(F(x) ∧ (∃y(F(y) ∧ H(x, y) ∧ ⌝L(x, y))).5.9. 略5.10.略5.11.略5.12.求下列各式的前束范式.(1) ∀xF(x) → ∀yG(x, y);(3) ∀xF(x, y) ↔ ∃xG(x, y);(5) ∃x1F(x1, x2) → (F(x1) → ∃⌝x2G(x1, x2)).前束范式不是唯一的.(1) ∀xF(x) → ∀yG(x, y)⇔ ∃x(F(x) → ∀yG(x, y))⇔ ∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔ ∃xG(x, y)⇔ (∀xF(x, y) → ∃xG(x, y)) ∧ (∃xG(x, y) → ∀xF(x, y))⇔ (∀x1F(x1, y) → ∃x2G(x2, y)) ∧ (∃x3G(x3, y) → ∀x4F(x4, y))⇔ ∃x1∃x2(F(x1, y) → G(x2, y)) ∧ ∀x3∀x4(G(x3, y) → F(x4, y))⇔ ∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).5.13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.(1) 令F(x): x 是汽车, G( y): y 是火车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y))⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(2)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∀y(G( y) → H(x, y)))⇔ ∃x∀y(F(x) ∧ (G( y) → H(x, y))).0错误的答案: ∃x∀y(F(x) ∧ G( y) → H(x, y)).(3)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.⌝∀x(F(x) → ∀y(G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) → (G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) ∧ G( y) → H(x, y)) (不是前束范式)⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(4)令F(x): x 是飞机, G( y): y 是汽车, H(x, y): x 比y 跑得慢.⌝ ∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y)))⇔ ⌝ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)) (不是前束范式)⇔ ∀x∀y ⌝ (F(x) ∧ G( y) ∧ H(x, y))⇔ ∀x∀y(F(x) ∧ G( y) → ⌝H(x, y)).5.14.略5.15.在自然推理系统F 中构造下面推理的证明:(1) 前提: ∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)), ∃xF(x)结论: ∃xR(x).(2) 前提: ∀x(F(x) → (G(a) ∧R(x))), ∃xF(x)结论: ∃x(F(x) ∧R(x))(3) 前提: ∀x(F(x) ∨G(x)), ⌝∃xG(x)结论: ∃xF(x)(4) 前提: ∀x(F(x) ∨G(x)), ∀x(⌝G(x) ∨⌝R(x)), ∀xR(x)结论: ∀xF(x)①∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)) 前提引入②∃xF(x) 前提引入③∀y((F(y) ∨ G(y)) → R(y)) ①②假言推理④(F(c) ∨ G(c)) → R(c) ③UI⑤F(c) ①EI⑥F(c) ∨ G(c) ⑤附加⑦⑧R(c)∃xR(x)④⑥假言推理⑦EG(2) 证明:①∃xF(x) 前提引入②F(c) ①EI③∀x(F(x) → (G(a) ∧ (R(x))) 前提引入④F(c) → (G(a) ∧R(c)) ④UI⑤G(a) ∧R(c) ②④假言推理⑥R(c) ⑤化简⑦F(c) ∧R(c) ②⑥合取⑧∃x(F(x) ∧R(x)) ⑥E G(3) 证明:①⌝∃xG(x) 前提引入②∀x⌝G(x) ①置换③⌝G(c)②UI④∀x(F(x) ∨G(x) 前提引入⑤F(c) ∨G(c) ④UI⑥F(c) ③⑤析取三段论⑦∃xF(x) ⑥E G(4) 证明:①∀x(F(x) ∨G(x)) 前提引入②F(y) ∨G(y) ①UI③∀x(⌝G(x) ∨⌝R(x)) 前提引入④⌝G(y) ∨⌝R(y)③UI⑤∀xR(x) 前提引入⑥R(y) ⑤UI⑦⌝G(y) ④⑥析取三段论⑧F(y) ②⑦析取三段论⑥∀xF(x) U G5.16.略5.18.略5.19.略5.20.略5.21.略5.22.略5.23.在自然推理系统F 中, 证明下面推理:(1) 每个有理数都是实数, 有的有理数是整数, 因此有的实数是整数.(2) 有理数, 无理数都是实数, 虚数不是实数, 因此虚数既不是有理数, 也不是无理数.(3) 不存在能表示成分数的无理数, 有理数都能表示成分数, 因此有理数都不是无理数.(1)设F(x):x 为有理数, R(x):x 为实数, G(x):x 是整数.前提: ∀x(F(x) →R(x)), ∃x(F(x) ∧G(x))结论: ∃x(R(x) ∧G(x))证明:①∃x(F(x) ∧G(x)) 前提引入②F(c) ∧G(c) ①EI③F(c) ②化简④G(c) ②化简⑤∀x(F(x) →R(x)) 前提引入⑥F(c) →R(c) ⑤UI⑦R(c) ③⑥假言推理⑧R(c) ∧G(c) ④⑦合取⑥∃x(R(x) ∧G(x)) ⑧EG(2)设: F(x):x 为有理数, G(x):x 为无理数, R(x)为实数, H(x)为虚数前提: ∀x((F(x) ∨G(x)) →R(x)), ∀x(H(x) →⌝R(x))结论: ∀x(H(x) → (⌝F(x) ∧⌝G(x)))证明:①∀x((F(x) ∨G(x) →R(x)) 前提引入②F(y) ∨G(y)) →R(y) ①UI③∀x(H(x) →⌝R(x)) 前提引入④H(y) →⌝R(y)③UI⑤⌝R(y) →⌝ (F(y) ∨G(y)) ②置换⑥H(y) →⌝ (F(y) ∨G(y)) ④⑤假言三段论⑦H(y) → (⌝F(y) ∧⌝G(y)) ⑥置换⑧∀x(H(x) → (⌝F(x) ∧⌝G(x)))⑦UG(3)设: F(x):x 能表示成分数, G(x):x 为无理数, H(x)为有理数前提: ∀x(G(x) →⌝F(x)), ∀x(H(x) →F(x))结论: ∀x(H(x) →⌝G(x))证明:①∀x(H(x) →F(x)) 前提引入②H(y) →F(y) ①UI③∀x(G(x) →⌝F(x)) 前提引入④G(y) →⌝F(y)③UI⑤F(y) →⌝G(y) ④置换⑥H(y) →⌝G(y) ②⑤假言三段论⑦∀x(H(x) →⌝G(x))⑥UG5.24.在自然推理系统F 中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合)令F(x): x 喜欢步行, G( x): x 喜欢骑自行车, H(x): x 喜欢乘汽车.前提: ∀x(F(x) → ⌝G(x)), ∀x(G(x) ∨ H(y)), ∃x⌝H(x).结论: ∃x⌝F(x).①∀x(G(x) ∨ H(y)) 前提引入②G(c) ∨ H(c) ①UI③∃x⌝H(x) 前提引入④⌝H(c) ③UI⑤G(c) ②④析取三段⑥∀x(F(x) → ⌝G(x)) 前提引入⑦F(c) → ⌝G(c) ⑥UI⑧⌝F(c) ⑤⑦拒取⑨∃x⌝F(x) ⑧EG5.25.略习题六6.1. 选择适当的谓词表示下列集合:(1)小于5 的非负整数(2)奇整数集合(3)10 的整倍数的集合(1){x|x∈®∧0≤x<5}(2){x|x=2k+1∧k∈®}(3){x|x=10k∧k∈®}6.2. 用列元素法表示下列集合:(1)S1={x|x 是十进制的数字}(2)S2={x|x=2∨x=5}(3)S3={x|x=x∈®∧3<x<12}(4)S4={x|x∈\∧x2-1=0∧x>3}(5)S5={〈x, y>|x, y∈®∧0≤x≤2∧-1≤y≤0}(1) S1={0,1,2,3,4,5,6,7,8,9}(2) S2={2,5}(3) S3={4,5,6,7,8,9,10,11}(4) S4=∅(5) S5={〈0, -1〉,〈1, -1〉,〈2, -1〉,〈0,0〉,〈1,0〉,〈2,0〉}6.3. 略6.4. 设F 表示一年级大学生的集合, S 表示二年级大学生的集合, M 表示数学专业学生的集合, R 表示计算机专业学生的集合, T 表示听离散数学课学生的集合, G 表示星期一晚上参加音乐会的学生的集合, H 表示星期一晚上很迟才睡觉的学生的集合. 问下列各句子所对应的集合表达式分别是什么? 请从备选的答案中挑出来.(1)所有计算机专业二年级的学生在学离散数学课. (2)这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星期一晚上很迟才睡觉.(3)听离散数学课的学生都没参加星期一晚上的音乐会.(4)这个音乐会只有大学一, 二年级的学生参加. (5)除去数学专业和计算机专业以外的二年级学生都去参加了音乐会.备选答案:①T⊆G∪H ②G∪H⊆T ③S∩R⊆T④H=G∪T ⑤T∩G=∅ ⑥F∪S⊆G⑦G⊆F∪S ⑧S- (R∪M) ⊆G ⑥G⊆S- (R∩M)答案:(1)③S∩R⊆T(2)④H=G∪T(3) ⑤T∩G=∅(4)⑦G⊆F∪S(5) ⑧S- (R∪M) ⊆G6.5. 确定下列命题是否为真:(1) ∅⊆∅(2) ∅∈∅(3) ∅⊆{∅}(4) ∅∈{∅}(5){a, b}⊆{a, b, c, {a, b, c}}(6){a, b}∈{a, b, c, {a, b }}(7){a, b} {a, b, {{a, b}}}(8){a, b}∈{a, b, {{a, b}}}(1) 真(2)假(3) 真(4) 真(5) 真(6) 真(7) 真(8) 假6.6. 略6.7. 略6.8. 略6.9. 略6.10.略6.11.略6.12.略6.13.略6.14.略6.15.略6.16.略6.17.略6.18.略6.19.略6.20.略6.21.略6.22.略6.23.略6.24.略6.25.略6.26.略6.27.略6.28.略6.29.略6.30.略6.31.略6.32.略6.33.略6.34.略6.35.略6.36.略6.37.略6.38.略6.39.略6.40.略6.41.略6.42.略6.43.略6.44.略6.45.略习题七7.1. 已知A={∅,{∅}},求A×P(A).A×P(A)={ 〈 ∅,∅〉,〈∅,{∅}〉,〈∅,{{∅}}〉,〈∅,{∅,{∅}}〉,〈{∅},∅〉,〈{∅},{∅}〉,〈{∅},{{∅}}〉, 〈{∅},{∅,{∅}}〉}7.2. 对于任意集合A,B,C, 若A×B⊆A×C,是否一定有B⊆C 成立? 为什么?不一定, 因为有反例: A=∅,B={1},C={2},B⊆C,A×B=∅=A×C.7.3. 设A, B, C, D 是任意集合,(1) 求证(A∩B)×(C∩D)=(A×C)∩(B×D).(2) 下列等式中哪个成立? 那些不成立?对于成立的给出证明, 对于不成立的举一反例.(A∪B)×(C∪D)=(A×C)∪(B×D)(A-B)×(C-D)=(A×C) - (B×D)(1) ∀〈x,y〉〈x,y〉∈(A∩B)×(C∩D) ⇔x∈A∩B∧y∈C∩D⇔ (x∈A∧x∈B) ∧ (y∈C∧y∈D) ⇔ (x∈A∧y∈C) ∧ (x∈B∧y∈D)⇔〈x,y〉∈(A×B) ∧〈x,y〉∈(C×D) ⇔〈x,y〉∈A×B∩C×D(A∩B)×(C∩D)=(A×C)∩(B×D)(2)都不成立, 反例: A={1,2},B={2,3},C={1,2},D={2,3}(A∪B)×(C∪D)={1,2,3}×{1,2,3}⊃(A×C)∪(B×D)(A-B)×(C-D)={1}×{1}⊂(A×C) - (B×D)7.4. 略7.5. 设A, B 为任意集合, 证明若A×A=B×B, 则A=B.∀x,x∈A⇔〈x,x〉∈A×A⇔〈x,x〉∈B×B⇔x∈BA=B7.6. 列出从集合A={1, 2}到B={1}的所有的二元关系.R1=∅ ,R2={〈1,1〉},R2={〈2,1〉},R3={〈1,1〉,〈2,1〉}.7.7. 列出集合A={2, 3, 4}上的恒等关系I A, 全域关系E A, 小于或等于关系L A, 整除关系D A.I A={〈2,2〉,〈3,3〉,〈4,4〉}E A=A×A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,2〉,〈3,3〉,〈3,4〉,〈4,2〉,〈4,3〉,〈4,4〉}L A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,3〉,〈3,4〉,〈4,4〉}D A={〈2,2〉,〈2,4〉,〈3,3〉,〈4,4〉}7.8. 列出集合A={∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}上的包含关系.R⊆={〈∅,∅〉,〈∅,{∅}〉,〈∅,{∅,{∅}}〉,〈∅,{∅,{∅},{∅,{∅}}}〉,〈{∅},{∅}〉,〈{∅},{∅,{∅}}〉,〈{∅},{∅,{∅},〈∅,{ ∅}〉}〉,〈{∅,{∅}}, {∅,{∅}}〉,〈{∅,{∅}},{∅,{∅},{∅,{∅}}}〉, 〈{∅,{∅},{∅,{∅}}},{∅,{∅},{∅,{∅}}}〉}7.9. 设A={1, 2, 4, 6}, 列出下列关系R:(1) R={〈x, y〉|x, y∈A∧x+y≠2}(2) R={〈x, y〉|x, y∈A∧|x-y|=1}(3) R={〈x, y〉|x, y∈A∧x/y∈A}(4) R={〈x, y〉|x, y∈A∧y 为素数}(1)R={〈1,2〉,〈1,4〉,〈1,6〉,〈2,1〉,〈2,2〉,〈2,4〉,〈2,6〉,〈4,1〉,〈4,2〉,〈4,4〉,〈4,6〉,〈6,1〉,〈6,2〉,〈6,4〉,〈6,6〉}=E A-{〈1,1〉}(2)R={〈1,2〉,〈2,1〉}(3)R={〈1,1〉,〈2,2〉,〈4,4〉,〈6,6〉,〈2,1〉,〈4,2〉,〈4,1〉}(4)R={〈1,2〉,〈2,2〉,〈4,2〉,〈6,2〉}7.10.略7.11.R i 是X 上的二元关系, 对于x∈X 定义集合R i(x)={y|xR i y}.显然Ri(x) ⊆X. 如果X={-4, -3, -2, -1, 0, 1, 2, 3, 4}, 且令R1={〈x, y〉|x, y∈X∧x<y}R2={〈x,y〉|x, y∈X∧y-1<x<y+2}R3={〈x,y〉|x, y∈X∧x2≤y}求R1(0), R1(1), R2(0), R2(-1), R3(3).R1(0)={1,2,3,4}R1(1)={2,3,4}R2(0)={ -1,0}R2(-1)={ -2, -1}R3(3)= ∅7.12.设A={0, 1, 2, 3}, R 是A 上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}给出R 的关系矩阵和关系图.7.13.设A = {〈1, 2〉, 〈2, 4〉, 〈3, 3〉}B = {〈1, 3〉, 〈2, 4〉, 〈4, 2〉}求A∪B, A∩B, dom A, dom(A∪B), ran A, ran B, ran(A∩B), fld(A-B).A∪B={〈1,2〉, 〈1,3〉, 〈2,4〉, 〈3,3〉, 〈4,2〉}A∩B={〈2,4〉}dom A={1,2,3}dom(A∪B)={1,2,3,4}r an A={2,3,4}r an B={3,4,2}r an(A∩B)={4}fld(A-B)={1,2,3}7.14.设R={〈0,1〉,〈0,2〉,〈0,3〉,〈1,2〉,〈1,3〉,〈2,3〉}求R○R,R-1 ,R†{0,1},R[{1,2}].R○R={〈0,2〉, 〈0,3〉, 〈1,3〉}R-1={〈1,0〉,〈2,0〉,〈3,0〉,〈2,1〉,〈3,1〉,〈3,2〉}R†{0,1}={〈0,1〉, 〈0,2〉, 〈0,3〉, 〈1,2〉, 〈1,3〉}R[{1,2}]={2,3}7.15.设A={〈∅,{∅,{∅}}〉,〈{∅},∅〉}求A-1,A2,A3,A†{∅},A[∅],A†∅,A†{{∅}},A[{{∅}}].A-1={〈{∅,{∅}},∅〉,〈∅,{∅}〉},A2={〈{∅},{∅,{∅}}〉},A3=∅,A†{∅}={〈∅,{∅,{∅}}〉},A[∅]={∅,{∅}},1 2A †∅=∅,A †{{∅}}={〈{∅},∅〉}, A [{{∅}}]=∅7.16.设 A ={a ,b ,c ,d }, R 1,R 2 为 A 上的关系, 其中R 1={〈a ,a 〉,〈a ,b 〉,〈b ,d 〉} R 2={〈a ,d 〉,〈b ,c 〉,〈b ,d 〉,〈c ,b 〉} 2 3求 R 1○R 2, R 2○R 1,R 1 ,R 2 .R 1○R 2={〈a ,a 〉,〈a ,c 〉,〈a ,d 〉}, R 2○R 1={〈c ,d 〉}, R 2={〈a ,a 〉,〈a ,b 〉,〈a ,d 〉}, R 3={〈b ,c 〉,〈b ,d 〉,〈c ,b 〉}237.17.设 A ={a ,b ,c }, 试给出 A 上两个不同的关系 R 1 和 R 2,使得 R 1 =R 1, R 2 =R 2.R 1={〈a ,a 〉,〈b ,b 〉}, R 2={〈b ,c 〉,〈c ,b 〉}7.18.证明定理 7.4 的(1), (2), (4).(1) F ○ (G ∪H )=F ○G ∪F ○H任取〈x ,y 〉,〈x ,y 〉∈F ○ (G ∪H )⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ∪H )⇔∃t (〈x ,t 〉∈F ∧ (〈t ,y 〉∈G ∨〈t ,y 〉∈H ))⇔∃t ((〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨ (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔〈x ,y 〉∈F ○G ∨〈x ,y 〉∈F ○H ⇔〈x ,y 〉∈F ○G ∩F ○H 所以有 F ○ (G ∩H )⊆ F ○G ∩F ○H .(2) (G ∪H ) ○F =G ○F ∪H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∪H ) ○F⇔∃t (〈x ,t 〉∈(G ∪H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∨〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F(4) (G ∩H ) ○F ⊆G ○F ∩H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∩H ) ○F⇔∃t (〈x ,t 〉∈(G ∩H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇒∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F7.19.证明定理 7.5 的(2), (3).(2) F [A ∪B ]=F [A ]∪F [B ]任取 y ,。
第三章 命题逻辑的推理理论§1 推理的形式结构推理:从前提出发推出结论的思维过程。
前提:已知命题公式集合。
结论:从前提出发应用推理规则推出的命题公式。
定义设A1, A2, …, A k, B都是命题公式,若命题公式A1∧A2∧…∧A k→B是重言式,则称由前提A1, A2, …, A k推出结论B的推理是有效的或正确的,并称B是有效的结论。
推理的形式结构记为{A1,A2,…,A k}A B推理正确,记为{ A1,A2,…,A k }⊨B推理无效,记为{ A1,A2,…,A k }⊭B注①推理正确,结论未必为真。
②推理只注重结构。
例判断下述推理的正确性。
(1) {p, p→q}⊢ q(2) {p, q→p}⊢ q解 (1) p∧(p→q)→q⇔p∧(¬p∨q)→q⇔(p∧¬p)∨(p∧q)→q⇔p∧q→q⇔¬ (p∧q)∨q⇔¬p∨(¬q∨q)⇔¬p∨1⇔1故{p, p→q }⊨ q(2) p∧(q→p)→q让q =0,可得q→p =1,再取p =1可得p∧(q→p)=1 由此得p∧(q→p)→q有成假赋值1 0,故{ p, q→p }⊭ q判断推理正确性:1.真值表法。
2.等值演算法。
3.主析取范式法。
4.构造证明。
例判断下述推理是否正确?(1)若a能被4整除,则a能被2整除。
a能被4整除。
所以a能被2整除。
(2)若下午气温超过30℃,则王小燕必去游泳。
若她去游泳,则她就不去看电影了。
所以,若王小燕没去看电影,则下午气温必超过了30℃。
解(1) p:a能被4整除q:a能被2整除前提:p→q,p结论:q推理的形式结构:{p→q,p} A q前面已证此推理正确。
(2) p:下午气温超过30℃q:王小燕去游泳r:王小燕去看电影前提:p→q, q→¬r结论:¬ r→p推理的形式结构:{p→q,q→¬r} A(¬r→p)因为,(p→q)∧(q→¬ r)→(¬r→p)⇔m1∨m3∨m4∨m5∨m6∨m7主析取范式显然不是重言式,故推理不正确。
推理理论中的推理规则(离散数学)推理理论是一个研究推理方法与规则的学问,其中推理规则是重要的一部分。
推理规则是指在一定的条件下,由一个或多个命题出发,推出另一个命题的规则。
在离散数学中,推理规则包括一些基础的规则和一些复杂的规则。
1. 充分必要条件充分必要条件是指一个命题P能成立的充分必要条件是命题Q 成立。
即P⇔Q。
这里的充分必要条件是指两个命题是等价的,即当且仅当P成立时Q成立,Q成立时P也成立。
例如,一个三角形是等腰三角形的充分必要条件是它有两个相等的角。
2. 反证法反证法是一种常用的推理规则,它常用于证明一个命题的反命题成立。
即假设命题P不成立,通过推理得到矛盾,从而证明了P成立。
例如,证明“所有偶数都不是素数”这个命题可以采用反证法,假设有一个偶数是素数,然后推导出矛盾,从而证明“所有偶数都不是素数”。
3. 等价变形等价变形是指在推理过程中将命题变形成等价的命题。
例如,将P∧Q推导为Q∧P是一种等价变形。
等价变形可以通过逻辑符号的转换、语法规则的变换等方式实现。
4. 全称推理全称推理是指从一个全称命题出发,推出另一个全称命题。
例如,从“对于任意一个自然数n,n+1>n”这个全称命题可以推出“对于任意一个自然数m,m+2>m”。
5. 假言推理假言推理是指从一个条件命题和它的前件出发,推出它的后件的命题。
例如,从“如果今天下雨,那么他就不去逛公园。
今天不下雨”这两个命题可以推出“他会去逛公园”。
6. 假命题推理假命题推理是指从一个假命题出发进行推理,最终得到矛盾。
例如,从假设“1=2”出发,我们可以通过推导得到矛盾,并证明1不等于2。
7. 归谬法归谬法是指从前提推导出矛盾的方法,一般用于证明前提错误的情况。
例如,如果要证明“所有汉语拼音都是辅音加韵母”这个命题是错误的,可以通过归谬法证明,即找出一个汉语拼音不符合这个规则。
8. 消解法消解法是推理中常用的一种方法,可用于在两个命题中推导得到新的命题。
离散数学判断公式类型离散数学是一门研究离散对象及其性质、关系和运算的数学学科。
在离散数学中,有许多重要的公式和定理,可以帮助我们判断公式的类型。
本文将介绍几种常见的公式类型,并对其进行简要解释。
一、命题逻辑公式命题逻辑是离散数学的一个重要分支,它研究命题之间的逻辑关系。
在命题逻辑中,我们常常会遇到命题的合取、析取和否定等运算。
命题逻辑公式指的是由命题变量、逻辑运算符和括号组成的表达式。
例如,p∧q表示命题p和命题q的合取,p∨q表示命题p和命题q的析取,¬p表示命题p的否定。
命题逻辑公式可以通过真值表或推理规则来进行验证。
二、谓词逻辑公式谓词逻辑是命题逻辑的扩展,它引入了谓词和量词的概念。
谓词逻辑公式是由谓词变量、量词、逻辑运算符和括号组成的表达式。
谓词逻辑公式可以表示关于个体和关系的命题。
例如,∀x (P(x)→Q(x))表示对于所有的个体x,如果P(x)成立,则Q(x)也成立。
谓词逻辑公式可以通过真值表或归纳法来进行验证。
三、集合论公式集合论是离散数学的另一个重要分支,它研究集合及其性质、关系和运算。
在集合论中,我们常常会遇到集合的交、并、补和差等运算。
集合论公式是由集合变量、集合运算符和括号组成的表达式。
例如,A∩B表示集合A和集合B的交集,A∪B表示集合A和集合B的并集,A\B表示集合A和集合B的差集。
集合论公式可以通过集合图或Venn图来进行验证。
四、图论公式图论是离散数学的重要分支之一,它研究图及其性质、关系和运算。
在图论中,我们常常会遇到图的顶点数、边数和度数等概念。
图论公式是由图变量、图运算符和括号组成的表达式。
例如,V表示图的顶点数,E表示图的边数,deg(v)表示图中顶点v的度数。
图论公式可以通过图的表示和计算来进行验证。
五、组合数学公式组合数学是离散数学的另一个重要分支,它研究组合结构及其性质、关系和计数。
在组合数学中,我们常常会遇到排列、组合和二项式系数等概念。
离散数学与逻辑推理离散数学是一门研究离散对象和规律的数学分支,与连续数学相对应。
它在计算机科学、信息科学、工程技术等领域具有重要的应用价值。
离散数学的一个重要应用领域是逻辑推理,它通过使用离散数学的知识和工具来进行逻辑分析和判断。
本文将通过介绍离散数学的基本概念和逻辑推理的方法,来探讨离散数学与逻辑推理之间的关系。
一、集合与命题集合论是离散数学的基础,它研究的是元素的集合以及它们之间的关系。
在逻辑推理中,我们经常需要用到集合和命题的概念。
一个集合可以包含若干个元素,而命题则是对某种陈述的真假进行判断的语句。
命题可以用逻辑符号“与”、“或”、“非”等进行组合,形成复合命题,并通过逻辑推理来判断其真假。
二、命题逻辑命题逻辑是逻辑推理的基础,它通过对命题的真假进行推理和判断。
命题逻辑中使用的逻辑符号包括“与”、“或”、“非”以及条件等。
这些逻辑符号可以通过真值表来进行推理,从而得到命题的真值。
离散数学的概念和方法能够帮助我们进行命题逻辑的分析和推理,例如使用数学归纳法来证明命题的正确性。
三、谓词逻辑谓词逻辑是对命题逻辑的扩展,它引入了谓词和量词的概念。
在谓词逻辑中,命题可以包含变量,并通过量词对变量进行限定。
谓词逻辑可以更精确地描述命题之间的关系,在逻辑推理中发挥重要作用。
离散数学提供了谓词逻辑的基本概念和方法,例如集合论中的笛卡尔积和二元关系等,这些工具能够帮助我们进行谓词逻辑的推理和分析。
四、证明方法在离散数学和逻辑推理中,证明是一种重要的推理方法。
通过证明可以检验一个命题的真假,并得到其正确性的证据。
离散数学中的证明方法包括直接证明、间接证明、数学归纳法等。
这些证明方法在逻辑推理中也可以得到应用,例如用直接证明来推导一个条件命题的真值,或者用数学归纳法来证明一个命题的递推关系。
五、图论和排列组合在离散数学中,图论和排列组合是两个重要的分支,它们也在逻辑推理中发挥着关键作用。
图论研究的是由节点和边构成的图结构,而逻辑推理中的问题常常可以用图论来建模和求解。
离散数学中的逻辑推理方法逻辑推理是离散数学中的重要概念,它是一种通过推理和论证来得出结论的方法。
逻辑推理在数学、计算机科学、哲学等领域都有广泛的应用。
本文将探讨离散数学中的逻辑推理方法,包括命题逻辑、谓词逻辑和推理规则。
命题逻辑是逻辑推理的基础,它研究的是命题之间的关系。
命题是陈述一个明确的陈述句,可以是真或假。
命题逻辑使用逻辑运算符来连接命题,包括合取、析取、蕴含和等价。
合取表示“且”,析取表示“或”,蕴含表示“如果...则”,等价表示“当且仅当”。
通过这些逻辑运算符,我们可以对命题进行逻辑推理。
谓词逻辑是命题逻辑的扩展,它研究的是命题中的变量和量词。
谓词逻辑引入了谓词符号和量词符号。
谓词符号表示一个命题中的属性或关系,而量词符号表示命题的范围。
谓词逻辑使用量词来限定变量的取值范围,包括全称量词和存在量词。
全称量词表示对于所有的变量都成立,存在量词表示存在一个变量成立。
通过谓词逻辑,我们可以推理出更加复杂的命题。
在逻辑推理中,我们可以使用一些推理规则来推导出新的命题。
其中最常用的推理规则有假言推理、析取三段论和拒取三段论。
假言推理是通过蕴含关系来推导新的命题。
如果我们知道一个条件蕴含另一个条件,那么我们可以推导出新的条件。
析取三段论是通过两个条件的析取来推导出一个新的条件。
拒取三段论是通过两个条件的否定来推导出一个新的条件。
这些推理规则可以帮助我们在逻辑推理中得出正确的结论。
除了推理规则,逻辑推理还涉及到一些重要的概念,如充分必要条件和等价条件。
充分必要条件是指一个条件是另一个条件的必要条件,同时另一个条件也是这个条件的充分条件。
等价条件是指两个条件互相蕴含,即一个条件成立时另一个条件也成立。
通过理解这些概念,我们可以更好地进行逻辑推理。
总之,离散数学中的逻辑推理方法是一种通过推理和论证来得出结论的方法。
命题逻辑和谓词逻辑是逻辑推理的基础,通过逻辑运算符和量词来连接和限定命题。
推理规则和重要概念如充分必要条件和等价条件可以帮助我们进行逻辑推理。
离散数学精选笔记一、集合论基础。
1. 集合的定义与表示。
- 集合是由一些确定的、彼此不同的对象组成的整体。
通常用大写字母表示集合,如A、B、C等。
- 集合的表示方法有列举法和描述法。
- 列举法:把集合中的元素一一列举出来,例如A = {1,2,3}。
- 描述法:用谓词来描述集合中元素的性质,例如B={xx是偶数且x < 10}。
2. 集合间的关系。
- 包含关系:如果集合A的所有元素都是集合B的元素,则称A包含于B,记作A⊆ B。
当A⊆ B且A≠ B时,称A是B的真子集,记作A⊂ B。
- 相等关系:如果A⊆ B且B⊆ A,则A = B。
3. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设全集为U,A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
- 集合运算的性质:- 交换律:A∩ B = B∩ A,A∪ B=B∪ A。
- 结合律:(A∩ B)∩ C = A∩(B∩ C),(A∪ B)∪ C=A∪(B∪ C)。
- 分配律:A∩(B∪ C)=(A∩ B)∪(A∩ C),A∪(B∩ C)=(A∪ B)∩(A∪ C)。
二、命题逻辑。
1. 命题与命题联结词。
- 命题是能够判断真假的陈述句。
例如“今天是晴天”是一个命题。
- 命题联结词:- 否定¬:若P为命题,则¬ P表示“P不成立”。
- 合取wedge:Pwedge Q表示“P并且Q”,当P和Q都为真时,Pwedge Q为真。
- 析取vee:Pvee Q表示“P或者Q”,当P和Q至少有一个为真时,Pvee Q为真。
- 蕴涵to:Pto Q表示“如果P,那么Q”,当P为真Q为假时,Pto Q为假,其余情况为真。
- 等价↔:P↔ Q表示“P当且仅当Q”,当P和Q同真同假时,P↔ Q为真。
2. 命题公式及其分类。
- 命题公式是由命题变元(通常用P、Q、R等表示)和命题联结词按照一定规则组成的符号串。
离散数学逻辑推理规则
嘿,朋友们!今天咱们来聊聊离散数学里的逻辑推理规则。
啥是离散数学的逻辑推理规则呢?简单说,就是在离散数学这个领
域里,咱们怎么根据已知的条件和信息,有理有据地推出新的结论。
先来说说允许的行为哈。
比如说,咱们可以根据给定的命题和已经
证明过的定理,一步一步地推导。
就像搭积木一样,一块一块稳稳地
往上加,只要每一步都有理有据,那就是被允许的。
再说说禁止的行为。
可千万别乱猜!不能毫无根据就得出结论,这
就像闭着眼睛走路,容易摔跟头。
也不能随便否定已经被严格证明过
的定理和规则,不然整个推理的大厦可就要摇摇欲坠啦。
举个例子哈,如果已知“所有的猫都会抓老鼠”,又知道“小花是一只猫”,那咱们就能得出“小花会抓老鼠”的结论。
这就是合理的推导。
但
要是说“因为我觉得小花长得可爱,所以它会抓老鼠”,这可就不行啦,这完全没逻辑嘛!
为啥要有这些规则呢?这就好比咱们玩游戏得有游戏规则,不然就
乱套啦。
在离散数学里,有了明确的逻辑推理规则,才能保证咱们得
出的结论是可靠的,是能站得住脚的。
而且哦,掌握好这些规则,能让咱们的思维更加清晰,解决问题更
加有条理。
就像在迷宫里有了地图,能更快找到出口。
总之呢,离散数学的逻辑推理规则很重要,咱们要遵守允许的,避开禁止的,这样才能在离散数学的世界里畅游,得出准确又靠谱的结论!好啦,希望大家都能玩转这些规则,在离散数学里玩得开心!。
离散数学命题逻辑公式1. 命题逻辑的基本概念命题逻辑是离散数学的一个重要分支,主要研究命题之间的关系以及命题的推理规则。
命题逻辑中的基本概念包括:命题:命题是描述客观事实真假的句子。
命题的真假值只有两个:真和假。
命题联结词:命题联结词用于将两个或多个命题连接起来,形成新的命题。
常见的命题联结词有:否定(¬)、合取(∧)、析取(∨)、蕴含(→)和等价(↔)。
命题公式:命题公式是由命题和命题联结词组成的表达式。
命题公式的真假值取决于其组成命题的真假值。
2. 命题逻辑的推理规则命题逻辑的推理规则是用于从给定的命题公式推导出新命题公式的规则。
常见的推理规则有:三段论:三段论是一种由两个前提和一个结论组成的推理形式。
如果两个前提都是真的,那么结论也一定是真的。
例如:所有哺乳动物都是恒温动物。
猫是哺乳动物。
所以,猫是恒温动物。
假言推理:假言推理是一种由一个条件句和一个结论组成的推理形式。
如果条件句是真的,那么结论也一定是真的。
例如:如果今天下雨,那么我就不出门。
今天下雨。
所以,我不出门。
选言推理:选言推理是一种由两个或多个分支组成的推理形式。
如果其中一个分支是真的,那么结论也一定是真的。
例如:要么今天下雨,要么明天下雨。
今天下雨。
所以,明天不会下雨。
3. 命题逻辑的应用命题逻辑在计算机科学、人工智能、哲学等领域有着广泛的应用。
在计算机科学中,命题逻辑用于设计和分析逻辑电路、编译器和操作系统等。
在人工智能中,命题逻辑用于知识表示和推理。
在哲学中,命题逻辑用于研究逻辑的本质和推理的有效性。
4. 结语命题逻辑是离散数学的一个重要分支,主要研究命题之间的关系以及命题的推理规则。
命题逻辑的应用非常广泛,包括计算机科学、人工智能、哲学等领域。