数学建模1
- 格式:docx
- 大小:76.31 KB
- 文档页数:15
数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。
2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。
3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。
4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。
二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。
6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。
三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。
10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。
11.试找出100以内的所有素数。
12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。
14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。
15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。
数学建模作业(1)
数模
数模
1.学校共学校共1000名学生,235人住在宿名学生,人住在A宿名学生人住在人住B宿舍人住在C宿舍舍,333人住宿舍,432人住在宿舍人住宿舍,人住在宿舍.学生们要组织一个10人的委员会人的委员会,学生们要组织一个人的委员会,试用下列办法分配各宿舍的委员数:列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名按比例分配取整数的名额后,按比例分配取整数的名额后额按惯例分给小数部分较大者。
额按惯例分给小数部分较大者。
(2)用Q值方法。
值方法。
用值方法
数模
如果委员会从10人增至人如果委员会从人增至15人,用以上人增至2种方法再分配名额。
将2种方法两次分配种方法再分配名额。
种方法再分配名额种方法两次分配的结果列表比较。
的结果列表比较。
(3)你能提出其它的方法吗?用你的方你能提出其它的方法吗?你能提出其它的方法吗法分配上面的名额。
法分配上面的名额。
数模
2.考察模拟水下爆炸的比例模型.爆炸物质量m,在距爆炸点距离r处设置仪器,接收到的冲击波压强为p,记大气初始压强p0,水的密度ρ,水的体积弹性模量k,用量纲分析法已经得到
p0ρrp=p0(,)km3
数模
设模拟实验与现场的p0,ρ,k相同,而爆炸物模型的质量为原模型的1/1000.为了使实验中接收到与现场相同的压强p,问实验时应如何设置接收冲击波的仪器,即求实验仪器与爆炸点之间的距离是现场的多少倍?
p0,ρ,k。
在习题1-8中,情景是模糊地陈述的。
从这些模糊的情景中,识别要研究的问题。
哪些变量影响到问题识别中你已经识别的行为?哪些变量最重要?记住,实际上没有正确的答案.1.单种群的总量增长.2.一家零售店要建造一个新的停车场,停车场应该怎样照明?3.一位农民期望他的地里种植的粮食农作物的产量达到最大,他正确地识别了问题吗?试讨论另一种目标.4.怎样设计一个供大班级用的演讲厅?5.一个物体从很高的地方掉下来.何时它撞击到地面?撞击到地面的力度有多大?6.某种产品的制造商应该怎样决定每年应该生产多少件产品,以及每件产品应该标价多少?7.美国食品及药物管理局(FDA)想要了解一种新药对控制人口中的某种疾病是否有效.8.滑雪者滑下山坡有多快?对于习题9~17中提出的情景,识别值得研究的问题并列出会影响你已经识别的行为的变量.哪些变量可以完全忽略?哪些变量在开始时可以认为它们是常数?你能识别出你想仔细研究的子模型吗?识别任何你想收集的数据.9.一位植物学家有兴趣研究叶子的形状以及影响叶子长成这种形状的各种支配力量,她从一棵白橡树的底部剪下几片叶子,发现叶子相当宽,没有很明显的锯齿形.当她到树的顶部去看时,她发现有很明显的锯齿形而几乎没有展得很宽的叶子.10. 不同大小的动物其他特性也不同.小动物比之于较大的动物,叫声尖细、心跳较快以及呼吸次数更多.另一方面,较大的动物的骨骼比小动物的骨骼更为强健,较大的动物的直径和体长之比大于小动物.所以,当体格从小到大增加时,存在着以和动物尺寸的比例相应的规则的变形.11.一位物理学家想要研究光的性质.他想了解当光线从空气进入平滑的湖中,特别是在两种不同介质的交界处,光线的路径.12. 拥有一队卡车的一家公司面临着因卡车使用年限和油耗而增加的维修费用.13. 人们偏爱于计算机的速度.哪些计算机系统提供了最快的速度?14. 怎样提高我们的能力,使得每学期都能报名上最好的班级?15.怎样才能节约我们的一部分收入?16. 考虑在竞争市场情况下一家刚开始运转的生产单一产品的新公司.讨论该公司营业初期的短期和长期目标,这些目标会怎样影响到雇员工作的指派?该公司有必要决定短期运行的最大利润吗?17. 讨论利用模型来预测实际系统和利用模型来解释实际系统之间的差别.想象某些你要利用模型来解释实际系统的情景;类似地,想象你要利用模型来预测实际系统的其他情景.研究课题1.考虑冲泡咖啡的味道问题. 什么是影响味道的变量?哪些变量一开始可以忽略?假定除了水温外,已经固定了所有的变量,多数咖啡壶都用沸水以某种方式从底部的咖啡中蒸馏出滋味. 你认为用沸水是产生最佳滋味的最优方式吗?你将怎样检验这个子模型?你将收集什么样的数据以及怎样去收集这些数据?2.一家运输公司正在考虑用直升飞机在纽约市摩天楼之间运送人员,你被聘为顾问确定所需直升飞机的数量.精确地识别适当的问题,运用模型构建的过程来确定你所选定的变量之间的关系所需要的数据.当你着手进行时,可能需要重新定义你的问题.3.考虑酿酒问题. 提出若干商业制造商可能会有的目标.把考虑品位作为一个子模型,什么是影响品位的变量?哪些变量一开始就可以忽略?怎样把余下的变量关联起来?为确定这些关系,什么样的数据将是有用的?4.一对夫妇应该买房子还是租房子?因为抵押的费用上涨,直观上看,似乎存在一个抵押费用的价位,高于这个价格决不要去抵押贷款买房.什么变量决定了总的抵押费用?5.考虑一家诊所的运作问题.病人个人的病历档案必须保存,而会计程序是一项日常工作,该诊所应该购买或者租用一个小型的计算机系统吗?提出可能要考虑的目标.什么变量你会加以考虑?你怎样建立变量之间的关系?为决定你所选择的变量之间的关系,需要什么样的数据?为什么不同诊所对这个问题会有不同的解决办法?6.什么时候车主应该更新汽车?什么因素会影响到做出决定?哪些变量一开始可以忽略?识别你要的数据以决定所选择的变量之间的关系.7.一个人能跳多远?在1968年墨西哥城举行的奥运会上,美国的鲍勃·比蒙把世界纪录提高了10%,该记录一直保持到1996年的奥运会,列出影响跳远距离的变量.你认为墨西哥城的低空气密度可以解释这个10%的差别吗?8.上大学是一项可靠的金融投资吗?四年里没有收入,而且大学的费用极高,什么因素决定大学教育的总费用?怎么确定为使这项投资有利可图的必要条件?。
习 题 课一、初等模型与常用的建模方法1. 奇偶校验法例11,9,8,6四个数字,问能否在余下的方格各填入一整数,使得方格区上的每一行每一列都构成等差数列?解这就产生了矛盾的结果,故所要求的填法不存在.例2 利用奇偶校验法证明,空间中不存在“有奇数个面,且每个面又都有奇数条边的多面体”.证 用反证法.必为奇数.另一方面,在多面体中,每两个相邻的面都有一条公共边,即多面体的棱,而且每一条棱又都为两个面所共有,每一条棱都被重复地计算了一次,于是产生了矛盾. 故由奇偶校验法知根本不存在具有奇数个面,且每个面又都有奇数条棱的多面体.例3. 证明这个多项式不能分解为两个整系数多项式的乘积.证用反证法.系数多项式的乘积,则必有(1)(2)2).另一方面,由(1)奇数立为奇数,因而(2)右端. 因此由奇偶校验法知满足条件积.2. 席位分配问题例4 比利时的d’Hondt曾提出过如下一种席位分配方案:将甲、乙、丙三个系的人数都用1,2,3…去除,然后将商从大到小排列,取前21个最大的商数考虑,规定在这21个商中,各系占有几个就分配给几个席位。
试通过数学建模探讨这种方法的合理性。
解以教材中甲、乙、丙三个系人数分别为103,63,34为例:系别人数 1 2 3 4 5 6 7 8 9 10 11 12甲 103 103 51.5 34.33 25.75 20.6 17.17 14.71 12.875 11.44 10.3 9.36 8.58乙 63 63 31.5 21 15.75 12.6 10.5 9 7.875 7 6.3丙 34 34 17 11.33 8.5 6.8从表中可以看出,按照比利时方法,在21个席位中甲占11席、乙占7席、丙占3席。
说明:(1)此席位分配方案明显不合理;(2)此方法与Q值方法比较有明显的缺陷,特别是当上述商值相等或十分接近时难以排序。
例5 某系共有1000名学生,其中235人住在A楼,333人住在B楼,432人住在C楼。
数学建模作业1——火箭上升问题的模型建立题目:火箭上升问题的模型建立组员:摘要本文研究的是火箭上升问题,并针对有燃料和燃料已用尽两个问题分别建立了符合实际的数学模型。
在模型的求解过程中,通过运用MATLAB及微分方程,对建立的模型进行求解,得出了符合实际的结果。
关键字:火箭上升;数学模型;微分方程一、问题重述小型火箭初始质量为900千克,其中包括600千克燃料。
火箭竖直向上发射时燃料以15千克每秒的速度燃烧掉,由此产生30000牛顿的恒定推力。
当燃料用尽时引擎关闭。
设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数为0.4(千克/米),重力加速度取10米/秒 2(1)建立火箭升空过程的数学模型;(2)求引擎关闭瞬间火箭到达最高点的时间和高度。
二、基本假设1.火箭在喷气推动下作直线运动,火箭飞行时所受的地球自传与公转忽略不计。
2.火箭正常飞行,忽略其他因素对火箭飞行的影响。
3.假设产生影响的各个因素相互独立。
4.火箭上升初速度忽略不计,引擎足够强大。
5.火箭上升时所受到的重力加速度不变。
三、符号说明t :火箭上升过程的时间。
0t :第一个过程持续的时间。
M :第一阶段向上加速过程中火箭的质量。
m :第二阶段火箭剩余的质量。
f :火箭上升整个过程中空气阻力。
v :火箭的速度。
y :火箭上升的高度。
g :物体所受重力加速度。
F :火箭受到的恒定推力。
四、问题分析这是一个研究火箭竖直向上发射的问题。
火箭在竖直向上发射中,根据有燃料和燃料已用尽,可以分为两个阶段。
第一阶段是燃料产生推力的过程,第二阶段是燃料全部消耗之后的上升过程。
在第一阶段中,燃料燃烧产生的推力是恒定的,但随着燃料的不断消耗,火箭的质量是变化的,因此,火箭的速度以及加速度是变化的,由牛顿第二定律,根据速度与时间关系,建立微分方程组。
在第二阶段中,燃料已经完全消耗,因此,火箭的质量恒定。
引擎关闭即第一阶段终止第二阶段开始的时刻。
由于火箭运动受到阻力的作用,火箭先加速,后减速。
A题系泊系统的设计
近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。
某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。
系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。
锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。
钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。
要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度错误!未找到引用源。
,否则锚会被拖行,致使节点移位丢失。
水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。
钢桶上接第4节钢管,下接电焊锚链。
钢桶竖直时,水声通讯设备的工作效果最佳。
若钢桶倾斜,则影响设备的工作效果。
钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。
为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。
图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。
1。