三极管参数
- 格式:pdf
- 大小:1.58 MB
- 文档页数:34
三极管的参数范文三极管(transistor)是一种用来放大和开关电信号的电子器件,由德国物理学家朱利叶斯·埃德加·莫里斯·利利恩费尔德、沃尔特·布拉滕和威廉·卡普特等人发明,广泛应用于现代电子技术中。
三极管由三个控制电极组成:发射极(Emitter)、基极(Base)和集电极(Collector)。
参数是用来衡量和描述三极管特性的量度,包括直流参数和交流参数,以下是三极管的一些重要参数:1. 最大集电极电流(ICmax):三极管可以承受的最大集电极电流。
超过这个值会导致三极管损坏。
2. 最大集电极-发射极电压(VCEmax):三极管可以承受的最大集电极和发射极之间的电压。
超过这个值会导致击穿。
3. 最大功耗(Pmax):三极管可以承受的最大功耗,即电源向三极管提供的最大功率。
超过这个值会导致烧毁。
4.最大反向漏电流(IR):三极管关闭时,从集电极到发射极的最大漏电流。
过大的反向漏电流会影响器件的性能。
5.最大集电极电导(hFE):三极管的直流电流放大倍数,即输入电流与输出电流的比值。
一般三极管的hFE值范围在50至200之间。
6.最大输入电阻(Ri):三极管的输入端电阻,表示输入信号通过基极到达三极管内部时,对输入电流的影响程度。
7.最大输出电阻(Ro):三极管的输出端电阻,表示输出电流通过集电极到达负载时,对输出信号的影响程度。
8. 最大开输入电压(VBE(on)):三极管进入导通状态所需的最小基极与发射极之间的电压。
9. 最大关输入电压(VBE(off)):三极管进入截止状态所需的最大基极与发射极之间的电压。
10.最大开关频率(fT):表示三极管在高频条件下的最大可靠性,也称特征频率。
除了上述参数外,还有一些电压参数和电流参数,如饱和电流(IC(sat))、饱和压降(VCE(sat))、发射结饱和压降(VBE(sat))、基极-发射极电压(VBE)等,这些参数也能够更全面地描述三极管的特性。
三极管参数及互换大全三极管是一种常见的电子器件,具有放大、开关等功能。
根据其不同的参数和规格,可以用于各种不同的电路设计和应用。
以下是关于三极管的参数及其互换的详细介绍。
一、三极管的参数1.电流增益(β值):电流增益是指输入电流与输出电流之间的比值。
通常用β值表示。
β值越大,三极管的放大能力越好。
不同类型的三极管其β值范围也不同。
2.最大耗散功率(PD):最大耗散功率是指三极管能够承受的最大功率。
超过该功率时,三极管可能会受损或烧坏。
3.最大集电极电压(VCEO):最大集电极电压是指三极管能够承受的最大电压。
超过该电压时,三极管可能会发生击穿或损坏。
4.最大集电极-发射极电压(VCBO):最大集电极-发射极电压是指三极管集电极和发射极之间的最大电压。
超过该电压,三极管可能会发生击穿或损坏。
5.最大基极-发射极电压(VBE):最大基极-发射极电压是指三极管基极和发射极之间的最大电压。
超过该电压,三极管可能会发生击穿或损坏。
6.最大工作温度(Tj):最大工作温度是指三极管能够正常工作的最高温度。
超过该温度,三极管的性能可能会受到影响或发生故障。
7. 切换时间(tf、tr):切换时间是指三极管从关断到导通或从导通到关断的时间。
切换时间越短,三极管的开关速度越快。
8. 饱和电压(VCEsat):饱和电压是指三极管在饱和区时集电极与发射极之间的电压。
饱和电压越低,三极管的开关性能越好。
二、三极管的互换三极管的互换是指在电路中可以互相替换的三极管。
通常来说,只有具有相似参数和特性的三极管才能进行互换。
1.相同结构的三极管:如果两个三极管具有相同的封装、引脚和型号,那么它们很有可能可以互换使用。
但是在具体应用中仍然需要根据电路的需求和参数进行验证。
2.参数相似的三极管:如果两个三极管具有相似的参数和特性,尤其是β值、最大集电极电压等关键参数相近,那么它们可能可以进行互换。
但是在具体应用中仍然需要根据电路的需求和参数进行验证。
常用三极管数据三极管是一种常用的电子元件,用于放大和开关电路。
在电子设备中,三极管的性能参数对于电路的设计和性能至关重要。
下面是常用三极管的数据,包括型号、最大额定值、电流增益、最大功率和封装类型等。
1. 型号:BC547- 最大额定值:- 集电极-基极电压:45V- 集电极-发射极电压:45V- 集电极电流:100mA- 电流增益:200-800- 最大功率:500mW- 封装类型:TO-922. 型号:2N3904- 最大额定值:- 集电极-基极电压:40V- 集电极-发射极电压:6V- 集电极电流:200mA- 电流增益:100-300- 最大功率:625mW- 封装类型:TO-923. 型号:2N3906- 最大额定值:- 集电极-基极电压:40V - 集电极-发射极电压:6V - 集电极电流:200mA- 电流增益:100-300- 最大功率:625mW- 封装类型:TO-924. 型号:BC337- 最大额定值:- 集电极-基极电压:45V - 集电极-发射极电压:5V - 集电极电流:800mA- 电流增益:100-630- 最大功率:625mW- 封装类型:TO-925. 型号:BC327- 最大额定值:- 集电极-基极电压:45V- 集电极-发射极电压:5V- 集电极电流:800mA- 电流增益:100-630- 最大功率:625mW- 封装类型:TO-92以上是常用的五种三极管型号及其相关数据。
这些数据是根据厂商提供的规格书和测试数据整理得到的。
不同型号的三极管适合于不同的电路应用,如放大器、开关和稳压器等。
在选择三极管时,需要根据具体的电路要求和设计需求来确定最合适的型号。
各种常用三极管参数三极管是最常见的半导体器件之一,用于放大和开关电路中。
了解和掌握三极管的参数对于设计和分析电路非常重要。
下面是一些常用的三极管参数及其解释:1. 最大漏极电流 (Ic max):三极管能够承受的最大漏极电流。
超过这个值可能会损坏三极管。
2. 饱和漏极电流 (Ic sat):当三极管工作在饱和区时,漏极电流的最大值。
通常情况下,应尽量选择工作点使得Ic小于Ic sat。
3. 最大漏极-基极电压 (Vceo max):三极管能够承受的最大漏极-基极电压。
超过这个值可能会损坏三极管。
4. 最大集电极-基极电压 (Vcbo max):三极管能够承受的最大集电极-基极电压。
超过这个值可能会损坏三极管。
5. 最大发射极-基极电压 (Vebo max):三极管能够承受的最大发射极-基极电压。
超过这个值可能会损坏三极管。
6. 最大功率耗散 (Pd max):三极管能够承受的最大功率耗散。
超过这个值可能会损坏三极管。
7. 最大集电极漏电流 (Iceo max):当基极和发射极短路时,集电极的漏电流达到的最大值。
应尽量选择工作点使得Iceo小于Iceo max。
8. 最大发射极漏电流 (Iebo max):当基极和集电极短路时,发射极的漏电流达到的最大值。
应尽量选择工作点使得Iebo小于Iebo max。
9. 直流电流放大倍数(β或hfe):三极管输入电流和输出电流的比值,通常用于放大电路的设计。
10. 最大频率 (fmax):三极管的最大工作频率。
超过这个频率,三极管的性能可能会下降。
11. 输入电阻 (Rin):三极管的输入电阻,表示输入信号的电压和输入电流之间的关系。
12. 输出电阻 (Rout):三极管的输出电阻,表示输出信号的电压和输出电流之间的关系。
13. 基极电压降 (VBE sat):三极管在饱和区的基极电压降。
14. 饱和区电流增益(βsat):三极管在饱和区的电流放大倍数。
以上是一些常用的三极管参数。
三极管参数三极管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
※电流放大系数电流放大系数也称电流放大倍数,用来表示三极管放大能力。
根据三极管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,三极管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,三极管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
※耗散功率耗散功率也称集电极最大允许耗散功率PCM,是指三极管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与三极管的最高允许结温和集电极最大电流有密切关系。
三极管在使用时,其实际功耗不允许超过PCM值,否则会造成三极管因过载而损坏。
通常将耗散功率PCM小于1W的三极管称为小功率三极管,PCM等于或大于1W、小于5W的三极管被称为中功率三极管,将PCM等于或大于5W的三极管称为大功率三极管。
※频率特性三极管的电流放大系数与工作频率有关。
若三极管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。
三极管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。
1.特征频率fT三极管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。
特征频率是指β值降为1时三极管的工作频率。
通常将特征频率fT小于或等于3MHZ的三极管称为低频管,将fT大于或等于30MHZ的三极管称为高频管,将fT大于3MHZ、小于30MHZ的三极管称为中频管。
2.最高振荡频率fM最高振荡频率是指三极管的功率增益降为1时所对应的频率。
通常,高频三极管的最高振荡频率低于共基极截止频率fα,而特征频率fT 则高于共基极截止频率fα、低于共集电极截止频率fβ。
常用三极管数据三极管是一种常用的半导体器件,广泛应用于电子电路中。
三极管的性能参数对电路的工作性能起着至关重要的作用。
本文将介绍常用的三极管数据,匡助读者更好地了解和应用三极管。
一、三极管的基本参数1.1 饱和电流(Icmax):三极管在饱和状态下的最大电流。
通常情况下,饱和电流越大,三极管的工作性能越好。
1.2 最大功耗(Pmax):三极管能够承受的最大功率。
超过最大功耗可能导致三极管损坏。
1.3 最大耗散功率(Pdmax):三极管在正常工作状态下能够承受的最大耗散功率。
二、三极管的频率参数2.1 最大工作频率(fT):三极管能够正常工作的最高频率。
频率越高,三极管的响应速度越快。
2.2 输入电容(Cib):三极管输入端的电容。
输入电容越小,三极管对输入信号的响应越灵敏。
2.3 输出电容(Cob):三极管输出端的电容。
输出电容越小,三极管对输出信号的响应越灵敏。
三、三极管的放大特性参数3.1 峰值电流增益(hFE):三极管的放大倍数。
峰值电流增益越大,三极管的放大效果越好。
3.2 输入电阻(Rin):三极管输入端的电阻。
输入电阻越大,三极管对输入信号的影响越小。
3.3 输出电阻(Rout):三极管输出端的电阻。
输出电阻越小,三极管对输出信号的影响越小。
四、三极管的温度特性参数4.1 温度系数(α):三极管的基极电流随温度变化的系数。
温度系数越小,三极管的温度稳定性越好。
4.2 温度上升系数(β):三极管的饱和电流随温度升高的系数。
温度上升系数越小,三极管的工作稳定性越好。
4.3 温度范围(Tj):三极管能够正常工作的温度范围。
超出温度范围可能导致三极管性能下降。
五、三极管的封装参数5.1 封装类型:三极管的封装形式,如TO-92、SOT-23等。
不同封装类型适合于不同的应用场景。
5.2 封装材料:三极管封装的材料,如塑料、金属等。
封装材料的选择影响三极管的散热性能。
5.3 封装尺寸:三极管封装的尺寸,包括封装的长、宽、高等参数。
三极管参数详解
三极管是一种电子器件,它是由三个P型或N型材料构成的。
三极管具有放大、开关和稳压等多种功能。
由于三极管具有很多种类,下面分别介绍不同种类的三极管的参数。
1. NPN三极管
NPN三极管是由两个N型半导体夹一个P型半导体构成的。
NPN三极管是一种常见的三极管。
下面介绍NPN三极管的几个重要参数:
(1)最大耐压:指三极管的最大工作电压。
在超过此电压后,三极管会发生击穿。
(4)放大系数:也称为电流增益,指输出电流与输入电流之比。
在放大电路中,使用NPN三极管时,需要保证其放大系数在一个可接受的范围内。
3. MOSFET
MOSFET又称MOS场效应管,是一种通用的高频低噪声功率放大器。
MOSFET的导通与截止是通过施加控制电压来实现的。
其控制电压可以是电压、电流、光等。
下面介绍MOSFET 的几个重要参数:
(1)阈值电压:MOSFET的导通与截止需要一个阈值电压来控制,这个电压即为阈值电压。
当控制电压小于这个电压时,MOSFET处于截止状态;当控制电压大于这个电压时,MOSFET处于导通状态。
(3)最大电流:指MOSFET的最大电流负载能力。
在超过此电流后,MOSFET会被烧毁。
(4)漏极电流:指MOSFET导通时从漏极流过的电流。
4. JFET
(4)增益:指JFET的放大倍数。
三极管的相关参数三极管是一种重要的电子器件,广泛应用于电子电路中的放大、开关、斩波等功能。
它具有许多关键参数,下面将详细介绍三极管的相关参数。
1. 最大集电极电流(ICmax):三极管可以承受的最大集电极电流。
超过这个电流极限,三极管可能会损坏。
2. 最大集电极-基极电压(VCEOmax):三极管可以承受的最大集电极到基极的电压。
超过这个电压极限,三极管可能发生击穿。
3. 最大功耗(PDmax):三极管可以承受的最大功耗。
超过这个功耗极限,三极管可能会过热,导致故障。
4. 最大集电极-发射极电压(VCESmax):三极管可以承受的最大集电极到发射极的电压。
超过这个电压极限,三极管可能发生击穿。
5.最大集电极电流放大倍数(hFE):三极管的集电极电流与基极电流之间的比例关系。
它表示三极管的放大能力,通常在工作区域内具有较高的值。
6. 饱和区(Saturation Region):当三极管的基极电流足够大时,集电极-发射极间的电压达到最低值,此时三极管工作在饱和区。
7. 切断区(Cut-off Region):当三极管的基极电压较低时,集电极-发射极间的电压达到最高值,此时三极管工作在切断区。
8. 属性(Transconductance):三极管的输入特性之一,它是指集电极电流变化与基极-发射极电压变化之比,常用单位是毫安每伏特(mA/V)。
9. 剪切频率(Cut-off Frequency):三极管的输出特性之一,它是指在特定放大倍数下,三极管的功耗输出能力降低到原来的一半所对应的频率。
10. 输入电阻(Input Resistance):三极管的输入电阻,也称为基极电阻,是指输入端电压与输入端电流之比。
11. 输出电阻(Output Resistance):三极管的输出电阻,是指输出端电压与输出端电流之比。
12. 射极电阻(Emitter Resistance):三极管的发射极电阻,是指发射极电压与发射极电流之比。
常用三极管型号及参数常用的三极管型号及参数有很多种。
以下是一些常见的三极管型号和相应的参数。
1.NPN型三极管:(1)2N3904:最大封装电流为200mA,最大集电极电压为40V,最大功耗为625mW,最大开关频率为200MHz,最小增益为100。
(2)BC547:最大封装电流为100mA,最大集电极电压为45V,最大功耗为625mW,最大开关频率为100MHz,最小增益为110。
(3)2N2222:最大封装电流为600mA,最大集电极电压为30V,最大功耗为625mW,最大开关频率为300MHz,最小增益为100。
(4)C1815:最大封装电流为150mA,最大集电极电压为50V,最大功耗为400mW,最大开关频率为100MHz,最小增益为70。
2.PNP型三极管:(1)2N3906:最大封装电流为200mA,最大集电极电压为40V,最大功耗为625mW,最大开关频率为200MHz,最小增益为100。
(2)BC557:最大封装电流为100mA,最大集电极电压为45V,最大功耗为625mW,最大开关频率为100MHz,最小增益为110。
(3)2N2907:最大封装电流为600mA,最大集电极电压为30V,最大功耗为625mW,最大开关频率为300MHz,最小增益为100。
(4)C458:最大封装电流为150mA,最大集电极电压为45V,最大功耗为400mW,最大开关频率为100MHz,最小增益为70。
3.双极性三极管:(1)2N3904/2N3906:NPN型和PNP型三极管的包装概述见上文。
(2)BC546/BC556:NPN型和PNP型三极管的包装概述见上文。
(3)BC337/BC327:NPN型和PNP型三极管的包装电流与功耗概述见上文,最大集电极电压为50V,最大开关频率为100MHz,最小增益为100。
(4)2SA933/2SC945:NPN型和PNP型三极管的包装电流与功耗概述见上文,最大集电极电压为50V,最大开关频率为100MHz,最小增益为100。
三极管的主要参数直流参数1、直流参数 (1)集电极⼀基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb时的集电极反向电流,它只与温度有关,在⼀定温度下是个常数,所以称为集电极⼀基极的反向饱和电流。
良好的三极管,Icbo很⼩,⼩功率锗管的Icbo约为1~10微安,⼤功率锗管的Icbo可达数毫安,⽽硅管的Icbo则⾮常⼩,是毫微安级。
(2)集电极⼀发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电压Vce时的集电极电流。
Iceo⼤约是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受温度影响极⼤,它们是衡量管⼦热稳定性的重要参数,其值越⼩,性能越稳定,⼩功率锗管的Iceo⽐硅管⼤。
(3)发射极---基极反向电流Iebo 集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的电流,它实际上是发射结的反向饱和电流。
(4)直流电流放⼤系数β1(或hEF)这是指共发射接法,没有交流信号输⼊时,集电极输出的直流电流与基极输⼊的直流电流的⽐值,即:β1=Ic/Ib交流参数 2、交流参数 (1)交流电流放⼤系数β(或hfe)这是指共发射极接法,集电极输出电流的变化量△Ic与基极输⼊电流的变化量△Ib之⽐,即: β= △Ic/△Ib ⼀般晶体管的β⼤约在10-200之间,如果β太⼩,电流放⼤作⽤差,如果β太⼤,电流放⼤作⽤虽然⼤,但性能往往不稳定。
(2)共基极交流放⼤系数α(或hfb)这是指共基接法时,集电极输出电流的变化是△Ic与发射极电流的变化量△Ie 之⽐,即: α=△Ic/△Ie 因为△Ic<△Ie,故α<1。
⾼频三极管的α>0.90就可以使⽤ α与β之间的关系: α= β/(1+β) β= α/(1-α)≈1/(1-α) (3)截⽌频率fβ、fα当β下降到低频时0.707倍的频率,就是共发射极的截⽌频率fβ;当α下降到低频时的0.707倍的频率,就是共基极的截⽌频率fαo fβ、fα是表明管⼦频率特性的重要参数,它们之间的关系为:fβ≈(1-α)fα (4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全⾯地反映晶体管的⾼频放⼤性能的重要参数。