第4章 电力网络的数学模型
- 格式:ppt
- 大小:213.00 KB
- 文档页数:24
电力网络问题的数学模型简介电力网络问题的数学模型是研究电力系统运行和控制的重要工具。
通过建立数学模型,可以对电力系统进行分析、优化和预测,以提高电力系统的可靠性和效率。
数学模型的基本原理电力网络问题的数学模型基于以下基本原理:- 节点电压平衡方程:通过节点电压平衡方程,可以描述电力系统中各个节点的电压关系。
- 分支潮流方程:借助分支潮流方程,可以计算电力系统中各个分支的功率流动情况。
- 网络拓扑结构:电力系统的网络拓扑结构包括节点之间的连接关系,通过建立网络拓扑结构,可以分析电力系统的传输特性。
常见的数学模型电力网络问题的数学模型可以根据具体问题和需求而定,以下是一些常见的数学模型:1. 潮流计算模型:用于计算电力系统中各个节点的电压和功率潮流分布情况。
2. 传输损耗模型:分析电力系统中输电线路的损耗情况,以优化电力输送效率。
3. 稳定性模型:研究电力系统的稳定性问题,包括电力系统的动态响应和稳定边界分析。
4. 风电、太阳能等可再生能源模型:用于分析可再生能源的发电能力和对电力系统的影响。
数学模型的应用电力网络问题的数学模型在电力系统规划、运行和控制方面广泛应用。
以下是一些常见的应用场景:1. 发电能力评估:通过数学模型可以评估电力系统的发电能力,为电力规划提供依据。
2. 运行状态分析:数学模型可以分析电力系统的运行状态,包括稳定性、电压、频率等参数。
3. 风险评估:通过数学模型可以评估电力系统面临的风险,如输电线路故障、发电机故障等。
4. 调度策略优化:通过数学模型可以优化电力系统的调度策略,以提高电力系统的效率和可靠性。
结论电力网络问题的数学模型在电力系统领域具有重要的应用和研究价值。
通过建立合理的数学模型,可以对电力系统进行分析、优化和预测,提高电力系统的可持续发展和可靠性,进一步推动电力行业的发展。
一、潮流计算的计算机方法对于复杂网络的潮流计算,一般必须借助电子计算机进行。
其计算步骤是:建立电力网络的数学模型,确定计算方法、制定框图和编制程序。
本章重点介绍前两部分,并着重阐述在电力系统潮流实际计算中常用的、基本的方法。
1,电力网络的数学模型电力网络的数学模型指的是将网络有关参数相变量及其相互关系归纳起来所组成的.可以反映网络性能的数学方程式组。
也就是对电力系统的运行状态、变量和网络参数之间相互关系的—种数学描述。
电力网络的数学模型有节点电压方程和回路电流方程等,前者在电力系统潮流计算中广泛采用。
节点电压方程又分为以节点导纳矩阵表示的节点电压方程和以节点阻抗矩阵表示的节点电压方程。
(1)节点导纳矩阵在电路理论课中。
已讲过了用节点导纳矩阵表示的节点电压方程:对于n个节点的网络其展开为:上式中,I是节点注入电流的列向量。
在电力系统计算中,节点注入电流可理解为节点电源电流与负荷电流之和,并规定电源向网络节点的注人电流为正。
那么,只有负荷节点的注入电流为负,而仅起联络作用的联络节点的注入电流为零。
U是节点电压的列向量。
网络中有接地支路时,通常以大地作参考点,节点电压就是各节点的对地电压。
并规定地节点的编号为0。
y是一个n×n阶节点导纳矩阵,其阶数n就等于网络中除参考节点外的节点数。
物理意义:节点i单位电压,其余节点接地,此时各节点向网络注入的电流就是节点i 的自导纳和其余节点的与节点i之间的互导纳。
特点:对称矩阵,稀疏矩阵,对角占优(2) 节点阻抗矩阵对导纳阵求逆,得:其中称为节点阻抗矩阵,是节点导纳矩阵的逆阵。
物理意义:节点i注入单位电流,其余节点不注入电流,此时各节点的电压就是节点i 的自阻抗和其余节点的与节点i之间的互阻抗。
特点:满阵,对称,对角占优2,功率方程、变量和节点分类(1)功率方程已知的是节点的注入功率,因此,需要重新列写方程: **==B B B B B U S I U Y其展开式为: i i i nj j ij U jQ P U Y ~1-=∑= 所以:∑=**=+nj jij i i i U Y U jQ P 1 展开写成极坐标方程的形式:)cos sin ()sin cos (11ij ij ij ij n j j i i ij ij ij ij n j j i i B G U U Q B G U U P δδδδ-=+=∑∑==所以节点的功率方程为:)cos sin ()sin cos (11ij ij ij ij n j j i di Gi i ij ij ij ij nj j i di Gi i B G U U Q Q Q B G U U P P P δδδδ---=∆+--=∆∑∑==(2) 变量分类负荷消耗的有功、无功功率取决于用户,因而是无法控制的,故称为不可控变量或扰动变量。