2013年中考数学100份试卷分类汇编:圆心角、弧、弦的关系
- 格式:doc
- 大小:205.50 KB
- 文档页数:8
2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =185 3、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。
由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。
因为ABC ADC ∠∠和所对的弧是劣弧 AC ,根据同弧所对的圆周角相等可知(D )一定正确。
【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )Bcm B cm cm或cm D cm或cmOM==3cm==4==2cm5、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()2BE===6CE===29、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()B的长为=2=210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()==511、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O 的半径()OB===14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()4BAC=∠可得出=BAC=∠∴=15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()A、当弦PB最长时,ΔAPC是等腰三角形。
2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.542、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为 半径的圆与AB 交于点D ,则AD 的长为( )A.95B. 245C. 185D. 523、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是( )A. AG =BGB. AB ∥BFC.AD ∥BCD. ∠ABC =ADC4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( ) A. cm B. cm C. cm 或cm D. cm 或cm5、(2013•广安)如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )A. cmB. 5cmC. 4cmD. cm6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A. B. C. D.8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. 2B.C.D.9、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A. B. C. D. 3210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A. 10B. 8C. 5D. 311、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C.6D.812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A. B. AF=BF C. OF=CF D. ∠DBC=90°13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A. 5B. 10C. 8D. 614、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O 的半径为()A. 4B. 5C. 4D. 315、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.716、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不.正确..的是()19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.图20 图21 图2220、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.图23 图24 图25 图26 图27 图2823、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB 的长为.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为52,CD=4,则弦AC的长为.26、(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.27、(2013•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=度.28、(2013陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.29、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为13,则点P的坐标为 ____________.30、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
2013中考全国100份试卷分类汇编圆心角、弧、弦的关系1、(德阳市2013年)如图.圆O的直径CD过弦EF的中点G, ∠DCF=20°.,则∠EOD等于A. 10°B. 20°C. 40°D. 80°答案:C解析:因为直径过弦EF的中点G,所以,CD⊥EF,且平分弧EF,因此,弧ED与弧BD的度数都为40°,所以,∠EOD=40°,选C。
2、(2013•内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()cm B cm cm==4cm=4cm3、(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.专题:计算题.分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A 正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE 中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.解答:解:A.∵点C是的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B.∵=,∴BC=CE,本选项正确;C.∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D.AC不一定垂直于OE,本选项错误,故选D点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.4、(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()ABD=×5、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;6、(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()=,即=7、(2013台湾、34)如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°,则的度数为何?()A.56 B.58 C.60 D.62考点:圆心角、弧、弦的关系;平行线的性质.分析:以AB为直径作圆,如图,作直径CM,连接AC,根据平行线求出∠1=∠2,推出弧DC=弧AM=62°,即可求出答案.解答:解:以AB为直径作圆,如图,作直径CM,连接AC,∵AD∥OC,∴∠1=∠2,∴弧AM=弧DC=62°,∴弧AD的度数是180°﹣62°﹣62°=56°,故选A.点评:本题考查了平行线性质,圆周角定理的应用,关键是求出弧AM的度数.8、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.MN=FC=2MN=4==2,,=109、(2013•常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=2.ADB=∠BDC=÷=4DC=BD=4=2.10、(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.=可以确定∠,即= =。
圆心角、弦、弧之间的关系回顾1.圆是 对称图形,它的对称中心是.2.____________________________________叫做圆心角. 3、垂径定理: 圆心 弧 弦 弦心距之间的关系[知识要点归纳]1.一个角度,都能够与原来的图形重合。
2. 3. 对的弦的弦心距相等。
4. 距中有一组量相等,那么它们所对应的其余各组量都分别相等。
注意:要正确理解和使用圆心角定理及推论。
(1)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件虽然圆心角距也不相切。
(2若⊙中,O 以用圆心角定理推论证明。
5. 1°的弧:因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,我们把每一份这样的弧叫做1°的弧。
一般地,N °的圆心角对着N °的弧,N °的弧对着N °的圆心角,也就是⋂”之类的错误。
因为角与弧是两个不弧、弦心距关系定理;另外,证明两弦相等也常作弦心距。
(2)在计算弧的度数时,或有等弧的条件时,或证等弧时,常作弧所对OBA OBACDEF的圆心角。
(3)有弧的中点或证弧的中点时,常有以下几种引辅助线的方法: (I )连过弧中点的半径;(II )连等弧对的弦;(III )作等弧所对的圆心角。
【学海导航】1.如图,将圆心角∠AOB 绕圆心O 旋转到∠A ’OB ’的位置,你能发现哪些等量关系?相等的弦:;相等的弧:理由:结论:在同圆或等圆中,相等的圆心角所对的相等,所对的弦也. 表达式:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也. 表达式:在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等. 表达式:注:同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也。
5、在圆心角、弧、弦这三个量中,角的大小可以用度数刻画,弦的大小可以用长度刻画,那么如何来刻画弧的大小呢?弧的大小:圆心角的度数与它所对的弧的度数相等例1、如图,AB 、AC 、BC 都是⊙O 的弦,∠AOC=∠BOC ∠ABC 与∠BAC 相等吗?为什么?例题2、已知:如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,CE ⊥AB 于E ,DF ⊥AB 于F ,且AE=BF ,AC 与BD 相等吗?为什么?如图,在⊙O 中, = ,∠1=30°,则∠2=__________ 一条弦把圆分成1:3两部分,则劣弧所对的圆心角为________。
山东17市2013年中考数学试题分类解析汇编 专题11 圆一、选择题1. (2013年山东滨州3分)如图,已知圆心角∠BOC=78°,则圆周角∠BAC 的度数是【 】A .1560B .780C .390D .1202. (2013年山东东营3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为【 】A .内含B .内切C .相交D .外切3. (2013年山东东营3分)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为【 】A. a πB. 2a πC. 1a 2πD.3a π4. (2013年山东济南、德州3分)如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为【 】A .14πB .12π- C .12 D .1142π+ 【答案】C 。
【考点】扇形面积的计算,勾股定理,转换思想的应用。
【分析】在Rt△AOB 中,AB ==5. (2013年山东济宁3分)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为【】A.4 B.C.6 D.【分析】连接OD,∵DF为圆O的切线,∴OD⊥DF。
∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°。
∵OD=OC,∴△OCD为等边三角形。
∴OD∥AB。
又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线。
则根据勾股定理得:FG=。
故选B。
6. (2013年山东莱芜3分)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为【】A. C D.3 27. (2013年山东莱芜3分)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为【】A.135° B.122.5° C.115.5° D.112.5°【答案】D。
2013中考全国100份试卷分类汇编圆周角1、(德阳市2013年)如图,在圆O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:圆O半径为52,tan∠ABC=34,则CQ的最大值是A、5B、154C、253D、203答案:D解析:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△PCQ中,∠PCQ=∠ACB=90°,∵∠CPQ=∠CAB,∴△ABC∽△PQC;因为点P在⊙O上运动过程中,始终有△ABC∽△PQC,∴BCCQ=ACPC,AC、BC为定值,所以PC最大时,CQ取到最大值.∵AB=5,tan∠ABC=34,即BC:CA=4:3,所以,∴BC=4,AC=3.PC的最大值为直线5,所以,435CQ,所以,CQ的最大值为2032、(2013济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B. C.6 D.考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.专题:计算题.分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.解答:解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选B点评:此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.3、(2013年临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.答案:B解析:连结OC,则∠OCB=45°,∠OCA=15°,所以,∠ACB=30°,根据同弧所对圆周角等于圆心角的一半,知∠AOB=60°4、(2013•自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A 的半径为( )5、(2013成都市)如图,点A,B,C 在O 上,A 50∠=,则BOC ∠的度数为( ) A.40 B.50 C.80D.100答案:D解析:因为同弧所对的圆周角等于它所对圆心角的一半,所以,∠BOC=2∠BAC=100°,选D。
平面直角坐标系1、(2013•曲靖)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.解答:解:∵点P(﹣2,0)向右平移3个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选B.点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.2、(2013•遂宁)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.解答:解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选C.点评:本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.3、(2013泰安)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解答:解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.4、(2013•莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4B.5C.6D.8考点:等腰三角形的判定;坐标与图形性质.专题:数形结合.分析:作出图形,利用数形结合求解即可.解答:解:如图,满足条件的点M的个数为6.故选C.点评:本题考查了等腰三角形的判定,利用数形结合求解更形象直观.5、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评: 本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.6、(2013•湘西州)如图,在平面直角坐标系中,将点A (﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是( )A . (﹣2,﹣3)B . (﹣2,6)C . (1,3)D . (﹣2,1)考点:坐标与图形变化-平移. 分析:根据平移时,点的坐标变化规律“左减右加”进行计算即可. 解答:解:根据题意,从点A 平移到点A′,点A′的纵坐标不变,横坐标是﹣2+3=1, 故点A′的坐标是(1,3).故选C .点评:此题考查了点的坐标变化和平移之间的联系,平移时点的坐标变化规律是“上加下减,左减右加”.7、(2013•孝感)在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为,把△EFO 缩小,则点E 的对应点E′的坐标是( )A . (﹣2,1)B . (﹣8,4)C . (﹣8,4)或(8,﹣4)D . (﹣2,1)或(2,﹣1)考点: 位似变换;坐标与图形性质.专题: 作图题.分析: 根据题意画出相应的图形,找出点E 的对应点E′的坐标即可.解答: 解:根据题意得:则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1).故选D.点评:此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.8、(2013•荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)考点:坐标与图形变化-旋转.3718684专题:数形结合.分析:如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.解答:解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.点评:本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.9、(2013安顺)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为为(1,﹣3),故点在第四象限.故选D.点评:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10、(2013年广东湛江)在平面直角坐标系中,点A ()2,3-在第( )象限..A 一 .B 二 .C 三 .D 四解析:在平面直角坐标系中,点的横纵坐标共同决定点所在的象限,点()()(),,,++-+--、、、 (),+-分别在第一、二、三、四象限,∴选D11、(2013年深圳市)在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于原点对称,则b a +的值为( )A.33B.-33C.-7D.7 答案:D解析:因为P 、Q 关于原点对称,所以,a =-13,b =20,a +b =7,选D 。
2013年中考数学分类汇编之圆周角定理一.选择题9.(2013舟山)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.(2013莆田)如图,△ABC内接于⊙O,∠A=50°,则∠OBC的度数为()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:连接OC,利用圆周角定理即可求得∠BOC的度数,然后利用等腰三角形的性质即可求得.解答:解:连接OC.则∠BOC=2∠A=100°,∵OB=OC,∴∠OBC=∠OCB==40°.故选A.点评:本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键.6.(2013南平)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B考点:圆周角定理;垂径定理.分析:根据垂径定理得出弧AD=弧BD,弧AC=弧BC,根据以上结论判断即可.解答:解:A.根据垂径定理不能推出AD=AB,故本选项错误;B.∵直径CD⊥弦AB,∴弧BC=弧AC,∵弧AC对的圆周角是∠ADC,弧BC对的圆心角是∠BOC,∴∠BOC=2∠ADC,故本选项正确;C.根据已知推出∠BOC=2∠ADC,不能推出3∠ADC=90°,故本选项错误;D.根据已知不能推出∠DAB=∠BOC,不能推出∠D=∠B,故本选项错误;故选B.点评:本题考查了垂径定理的应用,主要考查学生的推理能力和辨析能力.6.(2013龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.B.2 C.2D.4考点:圆周角定理;等腰直角三角形.分析:由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.解答:解:∵A、B、P是半径为2的⊙O上的三点,∠APB=45°,∴∠AOB=2∠APB=90°,∴△OAB是等腰直角三角形,∴AB=OA=2.故选C.点评:此题考查了圆周角定理以及等腰直角三角形性质.此题难度不大,注意掌握数形结合思想的应用.5.(2013昭通)如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=()A.28°B.42°C.56°D.84°考点:圆周角定理.分析:根据等腰三角形性质求出∠OCB的度数,根据圆周角定理得出∠BAD=∠OCB,代入求出即可.解答:解:∵OB=OC,∠ABC=28°,∴∠OCB=∠ABC=28°,∵弧AC对的圆周角是∠BAD和∠OCB,∴∠BAD=∠OCB=28°,故选A.点评:本题考查了等腰三角形性质和圆周角定理的应用,关键是求出∠OCB的度数和得出∠BAD=∠OCB.8.(2013红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA考点:圆周角定理;圆心角、弧、弦的关系;探究型.分析:根据圆周角定理,圆心角、弧、弦的关系对各选项进行逐一分析即可.解答:解:∵弦BD平分∠ABC,∴∠DBC=∠ABD,∴=,AD=DC,故A、B正确;∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,故C正确;∵>,∴∠DAB>∠CBA,故D错误.故选D.点评:本题考查的是圆周角定理及圆心角、弧、弦的关系,熟知直径所对的圆周角是直角是解答此题的关键.8.(2013百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是()A.25°B.30°C.40°D.50°考点:圆周角定理;垂径定理.分析:由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C=50°;则在直角△BOE中,利用“直角三角形的两个锐角互余”的性质解题.解答:解:如图,∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.∴∠ABO=90°﹣∠DOB=40°.故选C.点评:本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(2013自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3 B.4 C.5 D.8考点:圆周角定理;坐标与图形性质;勾股定理.专题:计算题.分析:连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径.解答:解:连接BC,∵∠BOC=90°,∴BC为圆A的直径,即BC过圆心A,在Rt△BOC中,OB=8,OC=6,根据勾股定理得:BC=10,则圆A的半径为5.故选C点评:此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键.10.(2013安徽省)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30° D.当∠ACP=30°时,△BPC是直角三角形考点:三角形的外接圆与外心;等边三角形的性质;垂径定理;圆周角定理.分析:根据直角是圆中最长的弦,可知当弦PB最长时,PB为⊙O的直径,由圆周角定理得出∠BAP=90°,再根据等边三角形的性质及圆周角定理得出AP=CP,则△APC是等腰三角形,判断A正确;当△APC是等腰三角形时,分三种情况:①PA=PC;②AP=AC;③CP=CA;确定点P的位置后,根据等边三角形的性质即可得出PO⊥AC,判断B正确;当PO⊥AC时,由垂径定理得出PO是AC的垂直平分线,点P或者在图1中的位置,或者与点B重合.如果点P在图1中的位置,∠ACP=30°;如果点P在B点的位置,∠ACP=60°;判断C错误;当∠ACP=30°时,点P或者在P1的位置,或者在P2的位置.如果点P在P1的位置,易求∠BCP1=90°,△BP1C是直角三角形;如果点P在P2的位置,易求∠CBP2=90°,△BP2C是直角三角形;判断D正确.解答:解:A.如图1,当弦PB最长时,PB为⊙O的直径,则∠BAP=90°.∵△ABC是等边三角形,∴∠BAC=∠ABC=60°,AB=BC=CA,∵点P是等边三角形ABC外接圆⊙O上的点,∴BP⊥AC,∴∠ABP=∠CBP=∠ABC=30°,∴AP=CP,∴△APC是等腰三角形,故本选项正确,不符合题意;B.当△APC是等腰三角形时,分三种情况:①如果PA=PC,那么点P在AC的垂直平分线上,则点P或者在图1中的位置,或者与点B重合(如图2),所以PO⊥AC,正确;②如果AP=AC,那么点P与点B重合,所以PO⊥AC,正确;③如果CP=CA,那么点P与点B重合,所以PO⊥AC,正确;故本选项正确,不符合题意;C.当PO⊥AC时,PO平分AC,则PO是AC的垂直平分线,点P或者在图1中的位置,或者与点B重合.如果点P在图1中的位置,∠ACP=30°;如果点P在B点的位置,∠ACP=60°;故本选项错误,符合题意;D.当∠ACP=30°时,点P或者在P1的位置,或者在P2的位置,如图3.如果点P在P1的位置,∠BCP1=∠BCA+∠ACP1=60°+30°=90°,△BP1C是直角三角形;如果点P在P2的位置,∵∠ACP2=30°,∴∠ABP2=∠ACP2=30°,∴∠CBP2=∠ABC+∠ABP2=60°+30°=90°,△BP2C是直角三角形;故本选项正确,不符合题意.故选C.点评:本题考查了等边三角形的性质,三角形的外接圆与外心,圆周角定理,垂径定理,难度适中,利用数形结合、分类讨论是解题的关键.10.(2013雅安)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A.B.C.D.考点:切线的性质;圆周角定理;特殊角的三角函数值.分析:首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E 的度数,则可求得sin∠E的值.解答:解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.点评:此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.12.(2013内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm考点:圆心角、弧、弦的关系;全等三角形的判定与性质;勾股定理;圆周角定理.分析:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.解答:解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△OED,∴OE=AF=AC=3cm,在Rt△DOE中,DE==4cm,在Rt△ADE中,AD==4cm.故选A.点评:本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.9.(2013嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.(2013德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB 的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5 B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质;最值问题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.5.(2013德阳)如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.10°B.20°C.40°D.80°考点:圆周角定理;垂径定理.分析:根据垂径定理得出弧DF=弧DE,求出弧DE的度数,即可求出答案.解答:解:∵⊙O的直径CD过弦EF的中点G,∠DCF=20°,∴弧DF=弧DE,且弧的度数是40°,∴∠DOE=40°,故选C.点评:本题考查了圆周角定理,垂径定理的应用,注意:圆心角的度数等于它所对的弧的度数.10.(2013成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.解答:解:由题意得,∠BOC=2∠A=100°.故选D.点评:本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.8.(2013巴中)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°考点:圆周角定理.分析:由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.解答:解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B.点评:此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.13.(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.专题:计算题.分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.解答:解:A.∵点C是的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B.∵=,∴BC=CE,本选项正确;C.∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D.AC不一定垂直于OE,本选项错误,故选D点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.9.(2013泰安)如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°考点:圆周角定理.分析:过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出θ=2α+2β.解答:解:过A作⊙O的直径,交⊙O于D;△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2×32°=64°,同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,故∠BOC=∠BOD+∠COD=140°.故选D点评:本题考查了圆周角定理,涉及了等腰三角形的性质及三角形的外角性质,解答本题的关键是求出∠COD及∠BOD的度数.10.(2013日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥AC B.AC2=2AB•AEC.△ADE是等腰三角形D.BC=2AD考点:圆周角定理;等腰三角形的判定;相似三角形的判定与性质.分析:利用圆周角定理可得A正确;证明△ADE∽△ABC,可得出B正确;由B选项的证明,即可得出C正确;利用排除法可得D不一定正确.解答:解:∵BC是直径,∴∠BDC=90°,∴BD⊥AC,故A正确;∵BD平分∠ABC,BD⊥AC,∴△ABC是等腰三角形,AD=CD,∵∠AED=∠ACB,∴△ADE∽△ABC,∴△ADE是等腰三角形,∴AD=DE=CD,∴===,∴AC2=2AB•AE,故B正确;由B的证明过程,可得C选项正确.故选D.点评:本题考查了相似三角形的判定与性质、圆周角定理及圆内接四边形的性质,综合考察的知识点较多,解答本题的关键在于判断△ABC和△ADE是等腰三角形.12.(2013临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.60°C.45°D.30°考点:圆周角定理.分析:首先连接OC,由OB=OC=OA,∠CBO=45°,∠CAO=15°,根据等边对等角的性质,可求得∠OCB 与∠OCA的度数,即可求得∠ACB的度数,又由圆周角定理,求得∠AOB的度数.解答:解:连接OC,∵OB=OC=OA,∠CBO=45°,∠CAO=15°,∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,∴∠ACB=∠OCB﹣∠OCA=30°,∴∠AOB=2∠ACB=60°.故选B.点评:此题考查了圆周角定理以及等腰三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.9.(2013莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°考点:圆周角定理.分析:首先利用等腰三角形的性质求得∠AOB的度数,然后利用圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBC=22.5°,∴∠AOB=180°﹣22.5°﹣22.5°=135°.∴∠C=(360°﹣135°)=112.5°.故选D.点评:本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键.10.(2013济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B. C.6 D.考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.专题:计算题.分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.解答:解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选B点评:此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.4.(2013滨州)如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°考点:圆周角定理.专题:计算题.分析:观察图形可知,已知的圆心角和圆周角所对的弧是一条弧,根据同弧所对的圆心角等于圆周角的2倍,由圆心角∠BOC的度数即可求出圆周角∠BAC的度数.解答:解:∵圆心角∠BOC和圆周角∠BAC所对的弧为,∴∠BAC=∠BOC=×78°=39°.故选C点评:此题要求学生掌握圆周角定理,考查学生分析问题、解决问题的能力,是一道基础题.5.(2013鞍山)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°考点:圆周角定理.专题:探究型.分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2013无锡)如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°考点:圆周角定理.分析:由A、B、C是⊙O上的三点,且∠ABC=70°,利用圆周角定理,即可求得答案.解答:解:∵A、B、C是⊙O上的三点,且∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°.故选B.点评:此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2013苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°考点:圆周角定理;圆心角、弧、弦的关系.分析:连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB 的度数.解答:解:连结BD,如图,∵点D是AC弧的中点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选C.点评:本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.10.(2013南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()A.4 B.3.5 C.3 D.2.8考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.分析:利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.解答:解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=4,∴AF=BF=2,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=4,AC=3,∴BC=5,∴DO=2.5,∴DF=2.5﹣1.5=1,∵AC∥DO,∴△DEF∽△CEA,∴=,∴==3.故选C.点评:此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.8.(2013淮安)如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.解答:解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=∠BOC=40°.故选A.点评:此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.(2013长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°考点:圆周角定理.分析:根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.解答:解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.点评:本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.6.(2013衡阳)如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D.100°考点:圆周角定理.分析:因为同弧所对圆心角是圆周角的2倍,即∠AOC=2∠ABC=100°.解答:解:∵∠ABC=50°,∴∠AOC=2∠ABC=100°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(2013宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°考点:垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:根据垂径定理可判断A、B,根据圆周角定理可判断D,继而可得出答案.解答:解:∵DC是⊙O直径,弦AB⊥CD于F,∴点D是优弧AB的中点,点C是劣弧AB的中点,A.=,正确,故本选项错误;B.AF=BF,正确,故本选项错误;C.OF=CF,不能得出,错误,故本选项错误;D.∠DBC=90°,正确,故本选项错误;故选C.点评:本题考查了垂径定理及圆周角定理,解答本题的关键是熟练掌握垂径定理、圆周角定理的内容,难度一般.6.(2013孝感)下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交考点:圆与圆的位置关系;垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可解答:解:A.平分弦(不是直径)的直径垂直于弦,故本选项错误;B.半圆或直径所对的圆周角是直角,故本选项正确;C.同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D.两圆有两个公共点,两圆相交,故本选项错误,故选B.点评:本题考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键.10.(2013武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.考点:弧长的计算;多边形内角与外角;圆周角定理;切线的性质;切线长定理.分析:点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y;然后在四边形BDPE中,求出∠B;最后利用弧长公式计算出结果.解答:解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y+90°=360°,解得:∠B=180°﹣2y.∴的长度是:=.故选B.点评:本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y.11.(2013荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B. C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.18.(2013绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4 B.5 C.6 D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.17.(2013龙东)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为()A.3 B.2C.3D.2考点:圆周角定理;含30度角的直角三角形;圆心角、弧、弦的关系.分析:首先根据AB=BC,∠ABC=120°,求出∠C的度数,然后根据圆周角定理可知:∠D=∠C,又直径AD=6,易求得AB的长度.解答:解:∵AB=BC,∴∠BAC=∠C,∵∠ABC=120°,∴∠BAC=∠C=30°,∵AD为直径,AD=6,∴∠ABD=90°,∵∠D=30°,∴AB=AD=3.故选A.点评:本题考查了圆周角定理,难度一般,关键是掌握圆周角定理:同弧所对的圆周角相等.6.(2013黔西南州)如图所示,线段AB是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50°B.40°C.60°D.70°考点:切线的性质;圆周角定理.分析:连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.解答:解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对弧BC,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.故选A.点评:此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键.10.(2013安顺)如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于()A.100°B.80°C.50°D.40°考点:圆周角定理.分析:由圆周角定理知,∠ACB=∠AOB=40°.解答:解:∵∠AOB=80°∴∠ACB=∠AOB=40°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2013河南省)如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC考点:切线的性质;垂径定理;圆周角定理.分析:根据切线的性质,垂径定理即可作出判断.解答:解:A.∵CD是⊙O的直径,弦AB⊥CD于点G,∴AG=BG,故正确;B.∵直线EF与⊙O相切于点D,∴CD⊥EF,又∵AB⊥CD,∴AB∥EF,故正确;C.只有当弧AC=弧AD时,AD∥BC,当两个互不等时,则不平行,故选项错误;D.根据同弧所对的圆周角相等,可以得到∠ABC=∠ADC.故选项正确.故选C.点评:本题考查了切线的性质定理、圆周角定理以及垂径定理,理解定理是关键.14.(2013河北省)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC. D.π考点:扇形面积的计算;垂径定理;圆周角定理.分析:根据垂径定理求得CE=ED=;然后由圆周角定理知∠AOD=60°,然后通过解直角三角形求得线段AE、OE的长度;最后将相关线段的长度代入S阴影=S扇形OAD﹣S△OED+S△ACE.解答:解:∵CD⊥AB,CD=2∴CE=DE=CD=,在Rt△ACE中,∠C=30°,则AE=CEtan30°=1,在Rt△OED中,∠DOE=2∠C=60°,则OD==2,∴OE=OA﹣AE=OD﹣AE=1,S阴影=S扇形OAD﹣S△OED+S△ACE=﹣×1×﹣×1×=.故选D.点评:本题考查了垂径定理、扇形面积的计算.求得阴影部分的面积时,采用了“分割法”,关键是求出相关线段的长度.12.(2013海南省)如图,在⊙O中,弦BC=1.点A是圆上一点,且∠BAC=30°,则⊙O的半径是()A.1 B.2 C.D.考点:圆周角定理;等边三角形的判定与性质.分析:连接OB,OC,先由圆周角定理求出∠BOC的度数,再OB=OC判断出△BOC的形状,故可得出结论.解答:解:连接OB,OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,∵OB=OC,∴△BOC是等边三角形,∴OB=BC=1.故选A.。
弧、弦、圆心角教学内容1 .圆心角的概念.2 .有关弧、弦、圆心角关系的定理:在同圆或等圆中, ?相等的圆心角所对的弧相等, 所对的弦也相等.3 .定理的推论:在同圆或等圆中,如果两条弧相等, ?那么它们所对的圆心角相等, 所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可 以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等 圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都 分别相等,最后应用它解决一些具体问题.重难点、关键1 .重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等, ?所对弦也相等及其 两个推论和它们的应用.2 .难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△ OAB 如图所示,作出绕 0点旋转30°、45 °、60°的图形.老师点评:绕 0点旋转,0点就是固定点,旋转 30。
,就是旋转角/ BOB =30 °.二、探索新知如图所示,/ AOB 的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(学生活动)请同学们按下列要求作图并回答问题:如图所示的O 0中,分别作相等的圆心角/ AOB?和/ A? ' 0B?'将圆心角 / AOB 绕圆心0旋转到/ A OB 的位置,你能发现哪些等量关系?为什么?A B = A'B' , AB=A B '理由:•••半径0A 与O' A '重合,且/ AOB M A ' OB•••半径OB 与OB 重合•••点A 与点A '重合,点 B 与点B'重合• A B 合弦AB 与弦A ' B '重合• A B = A B , AB =A B '因此,在同一个圆中,相等的圆心角所对的弧相等,在等圆中,相等的圆心角是否也有所对的弧相等, 请同学们现在动手作一作. (学生活动)老师点评:如图1,在O 0和O O 心角/ AOE 和/ A ' O' B '得到如图2,滚动一个圆,使 0与0'重合,固定圆心,将其中的 一个圆旋转一个角度,使得 0A 与O' A 重合.所对的弦相等.所对的弦相等呢? ?中,?分别作相等的圆我能发现:A B=A B , AB=AB.现在它的证明方法就转化为前面的说明了,?这就是又回到了我们的数学思想上去呢一—化归思想,化未知为已知,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,?所对的弦也相等. ?所对的弧也相等.(学生活动)请同学们现在给予说明一下.请三位同学到黑板板书,老师点评.例1 .如图,在O O中,AB CD是两条弦,OE!AB, OF丄CD,垂足分别为EF.(1)如果/ AOB2 COD那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF那么A B与C D的大小有什么关系?AB与CD的大小有什么关系??为什么?/ AOB与/ COD呢?分析:(1)要说明OE=OF只要在直角三角形AOE和直角三角形COF中说明AE=CF即说明AB=CD因此,只要运用前面所讲的定理即可.(2)v OE=OF •••在Rt△AOE和Rt △COF中,又有AO=C是半径,• Rt△ AOE^ Rt? △ COF• AE=CF •- AB=CD又可运用上面的定理得到A B =C D解:(1)如果/ AOB=/ COD 那么OE=OF理由是:I/ AOB M COD• AB=CD1 1•/ OEL AB, OF丄CD • AE=—AB, CF=—CD • AE=CF2 2又••• OA=OC • Rt △ OAE^ Rt △ OCF •OE=OF(2)如果OE=O F 那么AB=CD A B=C D , / AOB/ COD 理由是:•/ OA=OC OE=OF• Rt △ OAE^ Rt △ OCF• AE=CF又••• OEL AB, OI L CD1 1• AE=—AB, CF=—CD2 2• AB=2AE CD=2CF• AB=CD•A B =C D , / AOB/ COD三、巩固练习教材练习1四、应用拓展例2 .如图3和图4, MN是O O的直径,弦AB CD?相交于MN?上的一点P, ? / APM= /CPM(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在O O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.⑶(4)分析:(1)要说明AB=CD只要证明AB CD所对的圆心角相等,?只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1) AB=CD理由:过0作OE OF分别垂直于AB CD垂足分别为E、F•••/ APM M CPM•••/ 仁/ 2OE=OF连结OD OB且OB=OD• Rt △ OFD^ Rt△ OEB• DF=BE根据垂径定理可得:AB=CD(2)作OEL AB OF丄CD垂足为E、F•••/ APM M CPN且OP=OP / PEO M PFO=90• Rt △ OPE^ Rt△ OPF• OE=OF连接OA OB OC OD易证Rt △ OBE^ Rt △ ODF Rt △ OAE^ Rt △ OCF•/ 1+Z 2=Z 3+Z 4• AB=CD五、归纳总结(学生归纳,老师点评)本节课应掌握:1 .圆心角概念.2 .在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,?那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材P94-95 复习巩固4、5、。
2013中考全国100份试卷分类汇编平面直角坐标系1、(2013•曲靖)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上2、(2013•遂宁)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴5、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()6、(2013•湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()9、(2013安顺)将点A (﹣2,﹣3)向右平移3个单位长度得到点B ,则点B 所处的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律求出点B 的坐标,再根据各象限内点的坐标特点即可判断点B 所处的象限.解答:解:点A (﹣2,﹣3)向右平移3个单位长度,得到点B 的坐标为为(1,﹣3), 故点在第四象限.故选D .点评:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10、(2013年广东湛江)在平面直角坐标系中,点A ()2,3-在第( )象限..A 一 .B 二 .C 三 .D 四解析:在平面直角坐标系中,点的横纵坐标共同决定点所在的象限,点()()(),,,++-+--、、、 (),+-分别在第一、二、三、四象限,∴选D11、(2013年深圳市)在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于原点对称,则b a +的值为( )A.33B.-33C.-7D.7 答案:D解析:因为P 、Q 关于原点对称,所以,a =-13,b =20,a +b =7,选D 。
12、(2013台湾、11)坐标平面上有一点A ,且A 点到x 轴的距离为3,A 点到y 轴的距离恰为到x 轴距离的3倍.若A 点在第二象限,则A 点坐标是( )A .(﹣9,3)B .(﹣3,1)C .(﹣3,9)D .(﹣1,3)考点:点的坐标.分析:根据点到x 轴的距离等于纵坐标的长度求出点A 的纵坐标,再根据点到y 轴的距离等于横坐标的长度求出横坐标,即可得解.解答:解:∵A 点到x 轴的距离为3,A 点在第二象限,∴点A 的纵坐标为3,∵A 点到y 轴的距离恰为到x 轴距离的3倍,A 点在第二象限,∴点A 的横坐标为﹣9,∴点A 的坐标为(﹣9,3).故选A .点评:本题考查了点的坐标,主要利用了点到x 轴的距离等于纵坐标的长度,点到y 轴的距离等于横坐标的长度,需熟练掌握并灵活运用.13、(绵阳市2013年)如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则将此“QQ ”笑脸向右平移3个单位后,右眼B 的坐标是(3,3)。
2013中考全国100份试卷分类汇编
圆心角、弧、弦的关系
1、(德阳市2013年)如图.圆O的直径CD过弦EF的中点G, ∠
DCF=20°.,则∠EOD等于
A. 10°
B. 20°
C. 40°
D. 80°
答案:C
解析:因为直径过弦EF的中点G,所以,CD⊥EF,且平分弧EF,
因此,弧ED与弧BD的度数都为40°,所以,∠EOD=40°,选C。
2、(2013•内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()
cm B cm cm
∴=
DE=
AD==4
3、(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()
A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE
考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.
专题:计算题.
分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A 正确;
由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;
由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE 中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;
AC不一定垂直于OE,选项D错误.
解答:解:A.∵点C是的中点,
∴OC⊥BE,
∵AB为圆O的直径,
∴AE⊥BE,
∴OC∥AE,本选项正确;
B.∵=,
∴BC=CE,本选项正确;
C.∵AD为圆O的切线,
∴AD⊥OA,
∴∠DAE+∠EAB=90°,
∵∠EBA+∠EAB=90°,
∴∠DAE=∠EBA,本选项正确;
D.AC不一定垂直于OE,本选项错误,
故选D
点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.
4、(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()
ABD=
5、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()
B
、,正确,故本选项错误;
6、(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()
∴=,即=
7、(2013台湾、34)如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°,则的度数为何?()
A.56 B.58 C.60 D.62
考点:圆心角、弧、弦的关系;平行线的性质.
分析:以AB为直径作圆,如图,作直径CM,连接AC,根据平行线求出∠1=∠2,推出弧DC=弧AM=62°,即可求出答案.
解答:解:
以AB为直径作圆,如图,作直径CM,连接AC,
∵AD∥OC,
∴∠1=∠2,
∴弧AM=弧DC=62°,
∴弧AD的度数是180°﹣62°﹣62°=56°,
故选A.
点评:本题考查了平行线性质,圆周角定理的应用,关键是求出弧AM的度数.
8、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.
MN=FC=2
MN=4
==2,
,
=10
9、(2013•常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=2.
ADB=BDC=×
÷,
DC=BD==2
.
10、(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;
(2)若BC=3,sin∠P=3
5
,求⊙O的直径.
,根据可以确定∠
=
∴=
=。