工业锅炉控制系统设计
- 格式:docx
- 大小:1.22 MB
- 文档页数:21
1 引言1.1 系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。
因此,在工业生产和家居生活过程中常需对温度进行检测和监控。
由于许多实践现场对温度的影响是多方面的,使得温度的控制比较复杂,传统的加热炉电气控制系统普遍采用继电器控制技术,由于采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电多,效率不高且易出故障,不能保证正常的工业生产。
随着计算机控制技术的发展,传统继电器控制技术必然被基于计算机技术而产生PLC控制技术所取代。
而PLC 本身优异的性能使基于PLC控制的温度控制系统变的经济高效稳定且维护方便。
这种温度控制系统对改造传统的继电器控制系统有普遍性意义。
通过本设计可以熟悉并掌握西门子S7-300PLC的原理与功能以及它的编程语言,以自动控制理论为指导思想,解决工业生产及生活中温度控制的问题。
1.2 系统工作原理加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。
PLC主控系统图1-1 加热炉温度控制系统基本组成加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使加热炉开始加热或停止加热。
既加热炉温度控制得到实现。
其中PLC主控系统为加热炉温度控制系统的核心部分起着重要作用。
1.3 系统组成本系统的结构框图如图2-3所示。
由图1-2可知,温度传感器采集到数据后送给S7-300PLC,S7-300PLC通过运算后给固态继电器一个控制信号从而控制加热炉的导通与否。
基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。
作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。
本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。
文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。
然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。
在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。
通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。
也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。
二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。
该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。
锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。
其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。
锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。
燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。
燃烧器的性能直接影响到锅炉的热效率和污染物排放。
燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。
热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。
热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。
锅炉燃烧系统的控制系统设计摘要:锅炉是热电厂重要且基本的设备,其最主要的输出变量之一就是主蒸汽压力。
主蒸汽压力的自动调节的任务是维持过热器出口气温在允许范围内,以确保机组运行的安全性和气温在允许范围内,以确保机组运行的安全性和[1]经济性。
锅炉所产生的高压蒸汽既可作为驱动透平的动力源,又可以作为精馏、干燥、反可以作为精馏、干燥、反应、加热等过程的热源。
随着工业生产的规模不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
在控制算法上、综合运用了单回路控制、串级控制、比值控制等控制方法实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效克服了彼此的扰动,使整个系统稳定运行。
运行。
关键词:锅炉;蒸汽压力;单回路控制;关键词:锅炉;蒸汽压力;单回路控制;ControlsystemdesignoftheboilercombustionsystemAbstract:Theboilerisimportantandbasicequipmentofthethermalpowerplan t,oneofthemainoutputvariableisthemainsteampressure.Thetaskoftheauto maticadjustmentofthemainsteampressureistomaintainthesuperheateroutle ttemperaturewithintheallowablerange,toensurethesafetyandeconomyofth eunitoperation.Theboilersproducehighpressuresteamcanbeusedasasource ofpower-driventurbine,butalsoasadistillation,drying,reaction,heatingandprocesshe atsource.Withindustrialproductionexpanding,asafilterforpowerandheat,b utalsotowardthehigh-capacity,high-parameter,high-efficiencydirection.Inthecontrolalgorithm,theintegrateduseofsingle-loopcontrol,cascadecontrol,ratiocontrol,thecontrolmethodoffuelcontroltoadjustthevaporpressure,airvolumecontroltoadjustthefluegasoxygenconten t,thewindcontrolthefurnacenegativepressure,andeffectivelyovercomeeac hotherdisturbancessothatthewholestabilityofthesystem.Keywords:Boiler;Vaporpressure;Single-loopcontrol引言引言随着城市的快速发展,我们对用电的需求也越来越大,如何利用好有限的能源来保证供电是一个重要的话题,在能源的利用过程中如何更加提高能源的利用率是一个可研究性的话题,本文基于上述话题对电厂的燃烧锅炉控制进行了研究。
工业锅炉控制系统的设计与实现作者:史宝林来源:《城市建设理论研究》2013年第33期摘要:近年来,随着中国经济的快速发展,对能源的需求日益增加。
能源是生产和生活赖以生存的重要物质基础,没有足够的能源供应,就没有生产力和科学技术的发展。
中国是当今世界锅炉生产和使用最多的国家,如何更好的设计工业锅炉控制系统已是当前面临的关键问题。
本文介绍了工业锅炉控制系统中的给水, 给风、给煤、燃烧等系统的设计以及监控中心的监控与管理的实现。
关键词:锅炉控制系统;PID 调节器;组态中图分类号: TK229 文献标识码: A引言锅炉是特种压力容器设备, 它是化工、发电、供热、炼油和制糖等工业及民用部门必不可少的重要的动力设备。
随着计算机控制技术的飞速发展和广泛应用, 锅炉的控制系统和方式越来越引起人们的重视, 而且对控制系统的要求越来越高, 任何一种优质的锅炉如果没有对应的控制装置, 则无法完全体现锅炉的优点, 控制系统的水平已经成为衡量锅炉好坏的一个至关重要的指标。
在实际运行中, 控制的方式及控制运行的程度是保证锅炉高效运行的必要保证, 如果没有先进的控制, 锅炉的高效率就无从谈起。
锅炉自动控制系统要求可以对工业锅炉进行自动控制与监视, 完成对工业锅炉的给水、给风、给煤、燃烧等系统的管理与控制, 通过人机接口部分可以采集系统中所有重要参数, 进行存储和记录, 并与高效控制器通讯, 锅炉的操作者可以通过系统实现对锅炉运行的监视、管理、操作。
一、工业锅炉控制系统的现状我国现有工业锅炉 30多万台,年产约8万t/h左右,其中90 %以上是燃煤锅炉,每年消耗原煤占全国原煤产量的三分之一左右。
这些锅炉的管理和运行水平较低,多是人工操作,锅炉事故屡有发生,运行效率比设计效率普遍降低5%一 10 %。
国外一些发达国家,工业锅炉控制已完全徽机化了,单位能耗比我国低 50 % 左右。
他们并与管理计算机联网,更能合理利用能源。
我国有些用户在锅炉改造时,上了工业计算机控制系统,但生产厂生产的锅炉配置工业计算机系统的还很少。
工业燃煤锅炉DCS控制系统设计(子课题:控制方案的组态及监控画面的制作)摘要:本文叙述了工业燃煤锅炉的工作原理,具体阐述了锅炉控制中对汽水控制系统方案和自动检测的设计,利用了Control Builder 软件、UMC800控制器和FIX软件进行35吨工业燃煤锅炉汽水系统的自动检测与控制回路的组态,并设计了友好的监控画面。
关键词:锅炉FIX UMC800 控制系统汽水系统蒸汽压力Abstract: the paper introduce the principle of the boiler which is used in burning coal industrial,it describes the scheme of the steam controlsystem in boiler control and the design of auto-detection. it use the Control Buildersoftware,UMC800 controller and FIX softwareto auto-detect 35t steam system in burningcoal industrial and configuration the controlloop, and designed the friendly supervisionappearance.Keyword: boiler, FIX, UMC800, control system, steam system, steam pressure引言锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的13,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。
提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的工作。
基于plc的锅炉供热控制系统的设计工业控制系统中,PLC(可编程逻辑控制器)被广泛应用于各种设备的控制和监控。
本文将重点讨论基于PLC的锅炉供热控制系统的设计。
一、系统概述锅炉供热控制系统是指通过对锅炉进行温度、压力等参数的监测和控制,实现对供热系统的稳定运行和效率优化。
基于PLC的控制系统能够实现自动化控制,节约人力资源,提高系统运行效率。
二、系统组成1. PLC控制器:作为控制系统的核心,PLC负责接收各种传感器采集的数据,并根据预先设定的控制策略执行相应的控制动作。
2. 传感器:用于监测锅炉的各项参数,如温度传感器、压力传感器等。
3. 执行元件:包括电磁阀、泵等执行元件,通过PLC控制输出信号来实现对锅炉操作的控制。
三、系统设计1. 硬件设计:选择适合的PLC型号和合适的IO模块,根据实际需要设计合理的接线和布置。
2. 软件设计:编写PLC程序,包括主控程序和各个子程序,实现对供热系统的全面控制和监控。
四、系统功能1. 温度控制:根据设定的温度范围,实现对锅炉加热的自动控制,确保供热系统温度稳定。
2. 压力保护:设定压力上下限,一旦超过范围即刻停止加热,确保系统安全运行。
3. 水位控制:通过水位传感器监测水位,保持恰当的水位以确保供热效果。
4. 故障诊断:PLC系统能够实时监测各个元件的运行状态,一旦有异常即可及时报警并进行故障诊断。
五、系统优势1. 自动化程度高:基于PLC的供热控制系统可以实现全自动化控制,减少人为干预,节约人力成本。
2. 稳定可靠:系统通过对各项参数的实时监测和控制,确保供热系统的稳定性和可靠性。
3. 灵活性强:PLC程序可以根据实际需要进行定制化设计,满足不同应用场景的需求。
六、总结基于PLC的锅炉供热控制系统的设计,能够实现对供热系统的智能化控制和监测,提高系统的稳定性和效率,减少运行成本,是目前工业控制领域的主流趋势。
希望本文的介绍能够对您有所帮助。
感谢阅读!。
工业锅炉温度控制系统设计与实现摘要:工业锅炉是工业生产中利用率非常高的设备之一,它对一次能源的消耗非常大,特别是煤炭资源,但是目前仍然存在煤质不均一、控制操作不及时等问题,使得燃煤时热效率低、但煤耗率却居高不下,所以如何提高工业锅炉的工作效率是一项亟待解决的问题,这其中,热蒸汽温度是一个十分重要的参数,如何控制工业锅炉的热蒸汽温度保持在既能安全运行又能保证较高利用率的一定范围内,是工业锅炉是否安全经济运行的一项重要任务。
关键词:工业锅炉;温度控制;系统设计1 前言温度控制系统很多是通过PWM方式控制执行器件、调功的方式调节来控制温度、利用直接数字控制中的最小拍控制、或者基于单片机和PC机设计的温度控制系统,还有的以MCGS组态运行系统作为上位机监控系统。
本文根据工业锅炉的运行特点及环境条件,采用最简单最基本的单回路控制,并结合西门子下位机和智能仪表的应用,既能实现数据的实时传输处理,又能跟踪到系统的状态对其进行智能调节。
2 系统方案设计2.1 系统方案设计过程控制系统通常是指工业生产中具有连续生产过程自动控制、由过程检测和控制仪表组成、被控过程多样这些特点的自动控制系统。
过程控制的设计方案十分丰富,单回路控制就是其中之一,如图1所示。
图1中,W为调节器传函,W为调节阀传函,W为被控过程传函,W为测量变送器传函。
从图1可见,该系统只有一个闭环回路,一般是一个对象对另一个对象的调节控制过程,为了防止被控量的参数值不断变化或者该参数值在一个小范围内波动,中间利用传感器对被控量进行调节控制。
这种控制系统得结构简洁明了、易于调节,且成本较低方便投入运行,并能满足大部分工业生产的需求,特别适用于纯滞后和惯性小的系统,本系统就采用这种控制方式。
综合上述原理和控制方式,可获得本系统设计的控制流程如图2所示。
如果测量的实时热蒸汽温度值在设定温度范围内,那么系统处于一种动态平衡状态,水泵的电动阀门就不动。
等到过了一段时间炉膛燃料的燃烧温度发生变化,那时工业锅炉的热蒸汽温度也会随之变化,造成了它的实时测量值与设定范围之间产生了一定的偏差,偏差信号送回给智能仪表,经过它的计算、判断后,产生信号,使水泵的电动阀门适当调节开合程度,减少或加大水泵的水流量,直到再次检测到热蒸汽温度值恢复于设定范围中,那么系统就再次回到了特定的平衡状态,水泵电动阀门再次暂停工作。
锅炉自动控制系统的设计与调试锅炉自动控制系统是现代工业中常见的关键设备之一,它能够确保锅炉能够高效、安全地运行。
设计和调试这样一个复杂的系统需要综合考虑多个因素,包括控制策略、传感器选择、控制器配置等等。
本文将深入探讨锅炉自动控制系统的设计与调试过程。
首先,设计一个合理的控制策略是锅炉自动控制系统的关键。
常见的控制策略包括比例控制、比例积分控制、模糊控制和模型预测控制等。
在选择控制策略时,需要考虑锅炉的特性、工艺要求以及可用的控制器等因素。
比例控制是最简单的控制策略,它根据当前错误信号的大小来控制执行机构输出。
比例积分控制在比例控制的基础上增加了积分部分,用于消除静态偏差。
模糊控制则通过模糊规则和模糊集合来实现控制,它能够应对非线性系统。
模型预测控制基于数学模型预测未来的系统行为,并制定最优的控制策略。
根据具体的需求和实际情况选择合适的控制策略非常重要。
其次,选择合适的传感器对于控制系统的稳定性和精确度来说也至关重要。
常用的锅炉传感器包括压力传感器、温度传感器、流量传感器等。
压力传感器用于监测锅炉内部压力的变化,温度传感器则用于测量锅炉内部温度的变化。
流量传感器可用于测量锅炉进出口的流量,以便精确控制水的供给。
传感器的选择需要考虑其精确度、响应速度和适应环境等因素。
同时,还需要考虑传感器与控制器之间的数据传输方式,如4-20mA信号或数字信号等,以确保数据准确传递。
控制器的配置也是锅炉自动控制系统设计中不可忽视的一环。
现代控制器提供了更多的功能和选项,如PID参数调整、通信接口、报警功能等。
PID控制器是最常见的控制器类型,通过调整比例、积分和微分参数来实现控制。
在配置PID控制器时,需要首先根据实际情况调整比例、积分和微分参数,以达到理想的控制效果。
另外,现代控制器通常具有通信接口,可以与上位机或网络连接,以实现远程监控和数据采集。
此外,控制器还应具备相应的报警功能,在发生异常情况时及时报警,保障安全运行。
基于PLC的锅炉加热温度控制系统设计锅炉加热温度控制系统设计是一个非常重要的工程项目,特别是在工业生产中。
PLC(可编程逻辑控制器)是一种高级自动化控制设备,可以实现对锅炉加热温度的精确控制。
本文将介绍一个基于PLC的锅炉加热温度控制系统的设计。
【系统概述】该系统的基本目标是稳定地控制锅炉的加热温度,保证锅炉在正常工作范围内运行,并尽可能地提高热效率。
具体来说,系统需要实现以下功能:1.实时监测锅炉温度。
2.控制锅炉加热功率。
3.响应温度变化,并自动调整加热功率。
4.报警和故障保护功能。
【系统设计】1.硬件设计:硬件部分包括传感器、执行机构和PLC。
传感器用于实时监测锅炉温度,常用的温度传感器有热电偶和敏感电阻。
执行机构用于控制加热功率,可采用电磁阀或电加热器。
PLC负责处理数据和控制信号,可以选择常用的西门子、施耐德等PLC。
2.软件设计:软件部分主要包括PLC编程和人机界面设计。
PLC编程可以使用基于LD(梯形图)或SFC(时序功能图)的编程语言,根据具体控制要求,设计合适的控制算法和逻辑。
人机界面设计可以使用HMI(人机界面)或SCADA(监控与数据采集系统),实时显示锅炉温度、加热功率和系统状态,并提供控制和设定温度的功能。
3.控制策略设计:控制策略需要根据具体情况进行设计,一般分为开环控制和闭环控制两种。
开环控制是根据经验或数学模型预先设定温度和加热功率曲线,直接输出控制信号。
闭环控制则根据实时监测的温度反馈信息,通过控制算法动态调整加热功率,使实际温度尽可能接近设定温度。
4.报警和故障保护设计:系统需要具备报警和故障保护功能,当温度超出设定范围或系统出现故障时,及时发出警报并采取相应的措施,以保护锅炉和工艺安全。
【实施与测试】在实施前,需要进行系统调试,确保PLC编程和硬件连接正常。
在实际运行中,需要对系统进行定期检测和维护,以保证系统的稳定性和可靠性。
总结起来,基于PLC的锅炉加热温度控制系统的设计是一个复杂的工程,需要综合考虑硬件和软件的因素。
基于PLC的锅炉控制系统设计是一种常见的工业自动化应用,用于实现对锅炉的自动化控制和监测。
下面是一个简要的锅炉控制系统设计的示例:
系统组成:
PLC(可编程逻辑控制器):作为控制系统的核心,负责接收输入信号、进行逻辑处理和输出控制信号。
传感器:用于测量锅炉的各种参数,如温度、压力、流量等。
执行器:用于执行控制信号,如阀门、泵等。
人机界面(HMI):提供人机交互界面,用于显示锅炉状态、操作控制等。
控制策略:
温度控制:根据锅炉的温度设定值和实际测量值,通过控制执行器来调节燃料供应、水流量等,以维持锅炉温度在设定范围内。
压力控制:根据锅炉的压力设定值和实际测量值,通过控制执行器来调节燃料供应、风量等,以维持锅炉压力在设定范围内。
安全保护:设置各种安全保护措施,如过热保护、低水位保护等,通过监测传感器信号,及时采取相应的控制措施,确保锅炉的安全运行。
编程实现:
使用PLC编程软件,根据控制策略进行逻辑编程,设置输入输出信号的连接关系,编写控制程序。
在编程中考虑异常处理、报警和故障诊断等功能,确保系统的可靠性和稳定性。
人机界面设计:
设计直观友好的人机界面,显示锅炉状态、参数、报警信息等。
提供操作界面,允许操作人员设定参数、监控状态、执行操作等。
在设计过程中,应充分考虑锅炉的特性、运行环境和要求,并遵循相关的安全标准和规范。
此外,进行实施前应进行充分的测试和验证,确保系统的功能和性能符合设计要求。
需要指出的是,以上仅是一个基本的锅炉控制系统设计示例,实际的设计可能会因具体的应用要求而有所差异。
摘要随着社会经济的飞速发展,城市建设规模的不断扩大,以及人们生活水平的不断提高,对城市生活供暖的用户数量和供暖质量提出了原来越高的要求。
结合现状,本论文供暖锅炉监控系统,设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。
该控制系统以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。
上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。
下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。
本文设计的变频控制系统实现了锅炉燃烧过程的自动控制,系统运行稳定可靠。
采用锅炉的计算机控制和变频控制不仅可大大节约能源,促进环保,而且可以提高生产自动化水平,具有显著的经济效益和社会效益。
关键字:锅炉控制;变频调速;组态软件;PLCAbstractAlong with social economy’s swift development, the urban construction scale’s unceasing expansion , as well as the peple living standard’s unceasing enhancement , set more and more high request to the city life heating’s user quantity and the heating quality. The union present situation, the present paper heating boiler supervisory sysem, has designed a set based on PLC and the frequency conversion velocity modulation technology heating boiler control system.This control system takes the superior machine by one Industry cybertrons , west of family household S7-300 programmable controller for lower position machine ,system through frequency changer control motor’s start , movement and vclocity modulation .the superior machine monitoring software uses the three dimensional strength to control the WinCC design , mainly completes the system operation contract surface design ,realizes the system to open/stops functions and so on control ,parameter hypothesis ,warning linkage,historical data inquiry. The lower position machine control procedure uses Siemen’s STEP7 programming software design , mainly completes the simulation quantity signal processing , temperature and pressure signal functions and so on PID control , and receives the superior machine control command to complete the air blower to open/stops the control , the parameter hypothesis, the circulating pump control and other electric motor’s control.This article designs the frequency conversion processs automatic control, the systems operation is stable, is reliable. Uses boiler’s computer control and the frequency converseon control noe only may save the energy greatly, the promotion environmental protection moreover may raise the production automation level, has the remarkable economic efficiency and the social efficiency.Key Words:Boiler control;Frequency conversion velocity modulation ;Configuration Software;PLC目录摘要 0Abstract (1)第1章概述 (4)1.1 项目背景及课题的研究意义 (4)1.2 供暖锅炉控制的国内外研究现状 (5)1.3锅炉控制系统的发展趋势 (6)1.4本文所做工作 (7)第2章系统方案设计 (9)2.1锅炉控制研究简介 (9)2.2 总体设计思路 (9)2.3方案比较 (10)2.3.1方案1 (10)2.3.2 方案2 (10)2.4方案论证与方案确定 (11)第3章硬件设计 (12)3.1 用户系统框图 (12)3.2 锅炉系统的理论分析 (13)3.2.1变频调速基本原理 (13)3.2.2变频调速在供暖锅炉中的应用 (13)3.2.3变频调速节能分析 (14)3.3燃烧过程控制 (19)3.4锅炉控制系统设计 (20)3.5控制系统构成介绍 (21)第4章软件设计 (25)4.1 S7-300系列PLC简介 (26)4.2 PLC编程语言简介 (28)4.2.1 PLC编程语言的国际标准 (28)4.2.2复合数据类型与参数类型 (29)4.2.3系统存储器 (29)4.2.4 S7-300 CPU中的寄存器 (30)4.3 STEP7 的原理 (31)4.3.1 STEP7概述 (31)4.3.2 硬件组态与参数设置 (32)4.3.3 符号表 (36)4.3.4 逻辑块 (37)4.3程序设计 (38)4.4通信系统 (41)4.5人机界面 (43)4.5.1监控软件WinCC介绍 (43)4.5.2监控系统设计 (45)4.5.3锅炉监控界面设计 (49)第5章结论 (53)5.1 成果的创造性和先进性 (53)5.2作用意义(经济效益和社会意义) (53)5.3 推广应用范围和前景 (53)5.4 需要进一步改进之处 (54)参考文献 (55)外文资料翻译 (56)外文翻译原文 (56)外文翻译译文 (68)致谢 (75)附录 (76)附录1 程序清单 (76)附录2 I/O点数分配表 (96)附录3 物理参数比较表 (97)第1章概述1.1 项目背景及课题的研究意义工业锅炉是工业生产和集中供热过程中重要的动力设备。
工业蒸汽锅炉自动化控制系统设计王淑杰(哈尔滨电气集团 阿城继电器有限责任公司 黑龙江 哈尔滨 150302)摘 要: 随着科学技术的发展,为提高工业锅炉的热效率,发挥最佳运行工况,提高蒸汽质量、稳定蒸汽压力,保证供汽需要;做到合理,经济燃烧,达到节约能源的目的;同时为减轻操作人员的劳动制度,改善劳动环境和条件,所以工业锅炉生产必须进行自动控制。
关键词: 工业蒸汽锅炉;自动控制;系统组成中图分类号: TP27 文献标识码:A 文章编号:1671-7597(2012)1110060-01必须立即动作或停止,以免事故进一步扩大。
1 概述限值保护-工业锅炉运行时的实际蒸发量和变动负荷速度工业蒸汽锅炉生产自动化控制系统即通过采用各种检测仪应根据锅炉及辅机的运行状态予以限制。
各种调节阀、调节挡表、调节仪表、控制装置等自动化技术工具,对锅炉生产过程板的最大和最小开度应予以限制。
中的温度、压力、流量、液位等热工参量进行自动控制的系紧急保护-如果蒸汽压力,锅炉水位出现危险工况时或炉统。
自动控制的目的是实现各种最优的技术经济指标,减轻劳膛熄火时,相应的自动保护装置都应能快速投入。
动强度,提高经济效益和生产率,节约能源,改善劳动环境条件。
实现锅炉自动化具有提高锅炉运行的安全可靠性、提高锅炉运行的经济性、减少运行人员、提高劳动生产率、改善劳动条件等特点,具有显著的经济效益和社会效益。
本文所介绍的4)控制系统是我公司在生产上百套设备的基础上总结出来的,经过现场实际运行,得到了用户的好评。
2 设计原则根据工程的重要性和实际使用、维护等多方面因素,建议1)主要遵循以下原则:1)安全、可靠、适用、耐用、易操作、易维护。
2)节能、环保、投资少、效率高、先进性。
3)系统软件功能完善,提高管理水平。
4)预留接口,用于扩建时联网、通讯,方便管理。
3 自动化控制系统的内容1)自动检测用检测元件和显示仪表或其它自动化设备,对系统的温度、压力、流量、液位等热工参量,进行连续测量和显示,以供值班员监视生产情况,或为企业经济核算提供数据,为自动调节和保护提供检测信号。
工业锅炉控制系统设计 The following text is amended on 12 November 2020.工业锅炉控制方案设计学生学号:学生姓名:***专业班级:自动化12102班指导老师:***目录引言锅炉是国民经济中主要的供热设备之一。
电力,机械,冶金,化工,纺织,造纸,食品等工业和民用采暖都需要锅炉供给大量的蒸汽。
各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。
锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。
为了提高热量及效率,锅炉向着高压,高温和大容量等方向发展。
供热锅炉,除了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。
随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。
在现代化的建设中,能源的需求是非常大的,然而我国的能源利用率极低,所以提高锅炉的热效率,具有极为重要的实际意义。
此外,锅炉是否能应地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠地供热等课题。
锅炉微机控制,是近年来开发的一项新技术,它是微型机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。
工业锅炉数量大、分布广,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。
因此,提高热效率,提高自动化水平及防止环境污染, 降低耗煤量与耗电量,均是设计工业锅炉需考虑的重要因素。
用微机进行控制是一件具有深远意义的工作。
本课题的主要方向就是采用过程控制对工业锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。
1 文献综述在各种工业企业的动力设备中,锅炉是重要的组成部分,所以锅炉的性能至关重要。
要设计一套完整的、性能良好的工业燃烧锅炉,首先就必须了解一般燃烧锅炉的基本构造和燃烧过程。
锅炉的基本构造锅炉是一种产生蒸汽或热水的热交换设备。
它通过燃料的燃烧释放大量热能,并通过热传递把能量传递给水,把水变成蒸汽或热水,蒸汽或热水直接供给工业和生活中所需要的热能。
所以锅炉的中心任务是把燃料中的化学能有效的转化为蒸汽的热能。
图为简单锅炉的大体组成部分。
锅炉的主要设备包括气锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧设备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃料供给设备以及除灰除尘设备等。
气锅:由上下锅筒和三簇沸水管组成。
水在管内受管外烟气加热,因而管簇内发生自然的循环流动,并逐渐气化,产生的饱和蒸汽积聚在上锅筒里面。
炉子:是使燃烧从充分燃烧并释放出热量的设备。
炉膛:保证燃料的充分燃烧,并使水流受热面积达到规定的数值。
锅筒:使自然循环锅炉各受热面能适应负荷变化的设备。
(须指出,直流锅炉内无锅筒。
)水冷壁:主要是辐射受热面,保护炉壁的作用。
过热器:是将气锅所产生的饱和蒸汽继续加热为过热蒸汽的换热器。
过热器一般都装在炉膛出口。
省煤器:是利用余热加热锅炉给水,以降低排出烟气温度的换热器。
采用省煤器后,降低了排烟温度,提高了锅炉效率,节省了燃料。
同时,由于提高了进入气包的给水温度,减少了因温差而引起的汽包壁的热适应力,从而延长了汽包的使用寿命。
燃烧设备:将燃料和燃烧所需的空气送入炉膛并使燃料着火稳定,充分燃烧。
引风设备:包括引风机、烟道和烟囱等几部分。
用它将锅炉中的烟气连续排出。
送风设备:包括有鼓风机和分道组成。
用它来供应燃料所需的空气。
给水设备:由水泵和给水管组成。
空气预热器:是继续利用离开省煤器后的烟气余热,加热燃料燃烧所需要的空气,是一个换热器。
省煤器出口烟温度高,装上空气预热器后,可以进一步降低排烟温度,也可改善燃料着火和燃烧条件,降低不完全燃烧所造成的损失,提高锅炉机组的效率。
水处理设备:其作用是为清除水中的杂质和降低给水硬度,以防止在锅炉受热面上结水垢或腐蚀。
燃料供给设备:由运煤设备、原煤仓和储煤斗等设备组成,保证锅炉所需燃料供应。
除灰除尘设备:是收集锅炉灰渣并运往储灰场地的设备。
此外,除了保证锅炉的正常工作和安全,蒸汽锅炉还必须装设安全阀、水位表、高低水位报警器、压力表、主气阀、排污阀和止污阀等,还有用来消除受热面上积灰的吹灰器,以提高锅炉运行的经济性,本设计由于篇幅其间,则就不必考虑这些问题了。
锅炉引风机图锅炉控制系统硬件组成图锅炉的工作原理及过程锅炉是一种生产蒸汽的换热设备。
它通过煤油或燃气等燃料的燃烧释放出化学能,并通过传热过程将能量传递给水,使水转变为蒸汽,蒸汽,蒸汽直接供给工业生产中所需的热能,或通过蒸汽动力机能转变为机能,或通过汽轮发电机转变为电能。
所以锅炉的中心任务是把燃料中的化学能最有效地转变为蒸汽的热能。
因此,近代锅炉亦称为蒸汽发生器。
锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程、水的汽化过程、烟气向水的传热过程。
1.2.1燃料的燃烧过程首先将燃料(这里用煤)加到煤斗中,借助于重力下落在炉排面上,炉排接电动机通过变速齿轮箱减速后由链轮来带动,将燃料煤带入炉内。
燃料一面燃烧,一面向后移动,燃料所需要的空气是由风机送入炉排腹中风仓后,向上穿过炉排到达燃料层,进行燃料反应形成高温烟气。
燃料燃烧剩下的灰渣,在炉排末端翻过除渣板后排入灰斗,(若是燃气式锅炉就没有这一部分了)这整个过程称为燃烧过程。
1.2.2 水的汽化过程水的汽化过程就是蒸汽的产生过程,主要包括水循环和水分离过程。
经处理的水由泵加压,先流经省煤器而得到预热,然后进入气锅。
锅炉工作时气锅的工作介质是处于饱和状态的汽水混合物。
位于烟温较低区段的对流灌束,因受热较弱,汽水工质的容量较大,而位于烟温较高区段的对流管束,因受热强烈,相应的汽水工质的容量较小,从而量大的工质则向上流入下锅筒,而容量小的工质则向上流入上锅筒,形成了锅水的自然循环。
蒸汽所产生的过程是借助于上锅筒内设的汽水分离装置。
以及在锅筒本身空间的重力分离力作用,使汽水混合物得到分离。
蒸汽在上锅筒顶部引出后,进入蒸汽过热气,而分离下来的水仍回到上锅筒下半部的水中。
锅炉中的水循环,也保证与高温烟气相接触的金属受热面的以冷却而不被烧坏,是锅炉能长期安全运行的必要条件。
而汽水混合物的分离设备则是保证蒸汽品质和蒸汽过热可靠工作的必要的设备。
1.2.3 烟气向水的传热过程由于燃料的燃烧放热,炉内温度很高在炉膛的四周墙面上,都布置一排水管,俗称水冷壁。
高温烟气与水冷壁进行强烈的辐射换热,将热量传给管内工质水。
继而烟气受引风机和烟囱的引力而向炉膛上方流动。
烟气从炉膛出口掠过防渣管后,就冲刷蒸汽过热器——一组垂直放置的蛇型管受热面,使气锅中产生的饱和蒸汽在其中受烟气加热而得到的过热。
烟气流经过过热气后掠过胀接在上、下锅筒间的对流管束,在管束间设置了折烟墙使烟气呈“S”型曲折地横向冲刷,再次以对流换热的方式将热量传递给管束的工质。
沿途逐渐降低温度的烟气最后进入尾部烟道,与省煤器和空气预热器内的工质进行热交换后,以经济的较低的烟温排出锅炉。
省煤器实际上同给水预热器和空气预热器一样,都设置在锅炉尾部(低温)烟道,以降低排烟温度提高锅炉效率,从而节省了燃料。
以上就是一般锅炉工水的过程,一个锅炉进行工作,其主要任务是:(1)要是锅炉出口蒸汽压力稳定。
(2)保证燃烧过程的经济性。
(3)保持锅炉负压恒定。
通常我们是炉膛负压保持在微负压(-10~80Pa)。
为了完成上述三项任务,我们对三个量进行控制:燃料量,送风量,引风量。
从而使锅炉能正常运行。
难点分析由于调量是汽包水位,而调节量则是给水流量,通过对给水流量的调节,使汽包内部的物料达到动态平衡,变化在允许范围之内,虽然锅炉汽包水位对蒸气流量和给水流量变化的响应呈积极特性,但是在负荷(蒸气流量)急剧增加时,表现却类似逆响应特性,即所谓的虚假水位。
造成这一原因是由于负荷增加时,导致汽包压力下降,使汽包内水的沸点温度下降,水的沸腾突然加剧,形成大量汽泡,而使水位抬高。
汽包水位控制系统,实质上是维持锅炉进出水量平衡的系统。
它是以水位作为水量平衡与否的控制指标,通过调整进水量的多少来达到进出平衡,将汽包水位维持在汽水分离界面最大的汽包中位线附近,以提高锅炉的蒸发效率,保证生产安全。
由于锅炉水位系统是一个设有自平衡能力的被控对象,运行中存在虚假水位现象,实际应用中可根据情况采用水位单冲量、水位蒸汽量双冲量和水位、蒸汽量、给水量三冲量的控制系统。
2 总体方案设计锅炉系统是一个复杂的多变量耦合系统。
根据主控变量可将锅炉系统分为蒸汽温度控制系统、蒸汽压力控制系统、汽包液位控制系统以及炉膛负压控制系统。
下面分别对这几个子系统的设计进行详细的介绍。
蒸汽温度控制系统因为锅炉的运行环境不可能是理想的状态,蒸汽的温度总是会受到某些干扰的影响,所以必学对蒸汽的温度加以控制,以在一定范围内得到温度相对恒定的蒸汽。
影响蒸汽温度的主要因素是给煤量以及空煤比,所以我们采用了串级比值控制系统分别控制给煤量以及给风量。
另外,影响蒸汽温度的因素还有给水量、蒸发量以及引风量等,又考虑到了控制系统相应的快速性,我们又将给水量和蒸发量作为蒸汽温度控制的前馈量构成前馈控制系统。
即采用前馈比值串级控制系统对蒸汽温度进行控制,其控制系统的结构框图见图所示。
图蒸汽温度控制系统结构框图蒸汽压力控制系统如果过来内压力过低,将会降低蒸汽质量;反之,如果锅炉内压力过高,有可能导致爆炸等安全事故的发生。
所以必须保证锅炉的压力处于一个适中的范围内,即必须对锅炉压力加以控制。
上述蒸汽温度控制系统在控制蒸汽温度的同时就直接影响了蒸汽压力,在次不详加介绍。
压力控制系统分为安全压力控制系统和超压控制系统。
安全压力控制系统是锅炉压力在安全压力范围之内的控制系统,其主要完成的功能是在安全的基础上对压力进行调节,使压力维持在一定的范围内,以得到需要的蒸汽压力,保证蒸汽质量;超压控制系统是锅炉压力超压时所采用的压力控制系统,其主要完成的功能是当压力超出某以压力上限的设定值时,迅速打开安全阀,使压力迅速降低,直到降到安全范围内后又迅速关闭安全阀。
其中安全压力控制系统采用串级控制,而超压控制系统采用单回路控制,所以蒸汽压力控制系统是一个综合的控制系统,从某种意义上讲,可以将其归入分程控制系统一类,其结构框图见图所示。
图蒸汽压力控制系统结构框图汽包液位控制系统如果汽包液位过高,可能会影响蒸汽质量,甚至会导致水满溢出等安全事故;反之,如果汽包液位过低,锅炉很有可能会被烧坏,甚至导致爆炸等安全事故。