近独立粒子的最概然分布习题选解
- 格式:ppt
- 大小:189.50 KB
- 文档页数:13
第6-9章作业第六章 近独立粒子的最概然分布6.1试证明,在体积V 内,在ε到ε+dε的能量范围内,三维自由粒子的量子态数为D(ε) d ε =()εεπd m h V2123322解: 式(6.2.13)给出,在体积3V L =内,在x p 到d ,x x y p p p +到d ,y y x p p p +到d x x p p +的动量范围内,自由粒子可能的量子态数为3d d d .x y z Vp p p h(1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的量子态数为234πd .V p p h (2) 上式可以理解为将μ空间体积元24d Vp p π(体积V ,动量球壳24πd p p )除以相格大小3h 而得到的状态数. 自由粒子的能量动量关系为2.2p mε= 因此d .p p p md ε==将上式代入式(2),即得在体积V 内,在ε到d εε+的能量范围内,三维自由粒子的量子态数为()132232π()d 2d .VD m hεεεε= (3)6.2试证明,对于一维自由粒子,在长度L 内,在ε到ε+dε的能量范围内,量子态数为D(ε) d ε =εεd m h L 2122⎪⎭⎫ ⎝⎛ 证明:对于一维自由粒子,有n L hn L p ==ηπ2dnL hdp =∴ 由于p 的取值有正、负两种可能,故动量绝对值在范围内的量子态数p d p p +→p d h Ld 2n =再由 εεm m p 2p 22==得所以 ()εεεεεd m h L m d h L dn 212222 d D ⎪⎭⎫⎝⎛===, 证毕6.3试证明,对于二维自由粒子,在面积L 2内,在ε到ε+dε的能量范围内,量子态数为D(ε) d ε =επmd h L 222证明:对于二维自由粒子,有y y x x n L hp n L h p ==,y y x x dn L h dp dn L h dp ==∴,所以,在面积L 2内,在y y y x x x dp p p dp p p +→+→,内的量子态数为yx y x dp dp dn dn 22h L =换为极坐标,则动量大小在dp p p +→内的量子态数为ϕϕd dp h L pdpd h L dn 222222==对φ从0至2π积分,并利用m p 22=ε则可得在ε到ε+dε的能量范围内,量子态数为D(ε) d ε =επmd h L 222,证毕6.4在极端相对论情形下,粒子的能量动量关系为ε=CP ,试求在体积V 内,ε到ε+dε的能量范围内,三维自由粒子的量子态数为 D(ε) d ε =εεπd ch V 23)(4 解:式(6.2.16)已给出在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的状态数为234d .V p p h π (1) 将极端相对论粒子的能量动量关系cp ε=代入,可得在体积V 内,在ε到d εε+的能量范围内,极端相对论粒子的量子态数为()()234πd d .VD ch εεεε=习题6.5 设系统含有两种粒子,其粒子数分别为N 和N’.粒子间的相互作用很弱,可看作是近独立的。
第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。
②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。
这里0h 由测量精度决定的一个常数。
经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。
空间自由度和一个自旋自由度)个量子确定。
并且微观粒子能量值和动量值的分离性很显著。
③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。
若粒子的自由度为r ,一个量子态占据的相体积为rh 。
在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。
第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV = VnRT P P nRT V ==; 所以, TP nR V T V V P 11)(1==∂∂=α T PVRn T P P V /1)(1==∂∂=β P PnRT V P V V T T /111)(12=--=∂∂-=κ 习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1T α= 1T pκ= ,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pV V T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT V dV dp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdp T dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。
问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
第3章近独立粒子的量子统计(最该然统计理论Ⅱ)习题解答3-1 一系统由两个独立粒子组成,每个粒子可处于能量为EE2,,0的任一状态中,系统与大热源相平衡.试分别写出下列条件下系统的配分函数:(1)粒子是可分辨的;(2)粒子是不可分辨的Bose子;(3) 粒子是不可分辨的Fermi子.【解】:(1)、粒子可分辨,系统与大热源相平衡.,说明系统温度一定,而系统能量不没限制,所以粒子在能级上的各种可能的分布为:用系统配分函数∑-=sE seβZ可得;()()()()()()()()()EEEEEEEEEEEEEEEEeeeeeeeeeeeeeβββββββββββββ4322222222321Z----+-+-+-+-+-+-+-+-+-++++=++++++++=(2)、粒子是不可分辨的Bose子,量子态上对粒子数没有限制。
系统与大热源相平衡.,说明系统温度一定,而系统能量不没限制,所以粒子在能级上的各种可能的分布为:用系统配分函数∑-=sE seβZ可得;EEEE eeeeββββ43221Z----++++=(3)、粒子是不可分辨的Fermi子,每个量子态上最多容纳一个粒子。
系统与大热源相平衡.,说明系统温度一定,而系统能量不没限制,所以粒子在能级上的各种可能的分布为:2EE系统 0 E E 2E 4E 2E 2E 3E 3E能级2EE系统 0 2E 4E E 2E 3E能级系统 E 2E 3E能级2EE用系统配分函数∑-=sE s e βZ 可得;E E E e e e βββ32Z ---++=3-2 试证明:对于理想Bose 气体和理想Fermi 气体有下列关系:U PV 32=,而对于光子气体有下列关系: U PV 31=,并分析两式不同的原因, 其中,P 、V 、U 分别为气体的压强、体积和内能. 【解】:(1)处在边长为L 的立方体中的理想Bose 气体和理想Fermi 气体,粒子的能量本征值为)()2(21222222z y x n n n n n n Lm m p zy x ++== πε,z y x n n n ,,=0,±1,… 可记为)(2)2(,,2222332z y x l n n n ma L V aV ++===- πε所以U V a V V a P l l l ll l3232==∂∂-=∑∑εε,即:U PV 32= (2)处在边长为L 的立方体中的光子气体,光子的能量本征值为21222)(2z y x nn n n n n Lc cp zy x ++== πε,z y x n n n ,,=0,±1,±2,…可记为21222331)(2,,z y x l n n n c h a L V aV ++===-πε所以U V a V V a P l l l ll l3131==∂∂-=∑∑εε,即:U PV 31= 两式不同的原因是:理想Bose 气体和理想Fermi 气体的粒子速度较低,属于非相对论粒子,而光子速度很大,是相对论粒子。
热力学与统计物理课后习题答案第六章HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第六章 近独立粒子的最概然分布试根据式()证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为解: 式()给出,在体积3V L =内,在x p 到d ,x x y p p p +到d ,y y x p p p +到d x x p p +的动量范围内,自由粒子可能的量子态数为3d d d .x y z Vp p p h(1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的量子态数为234πd .V p p h (2) 上式可以理解为将μ空间体积元24d Vp p π(体积V ,动量球壳24πd p p )除以相格大小3h 而得到的状态数. 自由粒子的能量动量关系为 因此将上式代入式(2),即得在体积V 内,在ε到d εε+的能量范围内,三维自由粒子的量子态数为()132232π()d 2d .VD m hεεεε= (3)试证明,对于一维自由粒子,在长度L 内,在ε到d εε+的能量范围内,量子态数为解: 根据式(),一维自由粒子在μ空间体积元d d x x p 内可能的量子态数为在长度L 内,动量大小在p 到d p p +范围内(注意动量可以有正负两个可能的方向)的量子态数为2d .Lp h(1) 将能量动量关系 代入,即得()122d d .2L m D h εεεε⎛⎫=⎪⎝⎭(2) 试证明,对于二维的自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为解: 根据式(),二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为21d d d d .x y x y p p h (1) 用二维动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为 用极坐标描述时,二维动量空间的体积元为在面积2L 内,动量大小在p 到d p p +范围内,动量方向在θ到d θθ+范围内,二维自由粒子可能的状态数为22d d .L p p h θ(2) 对d θ积分,从0积分到2π,有可得在面积2L 内,动量大小在p 到d p p +范围内(动量方向任意),二维自由粒子可能的状态数为222πd .L p p h (3) 将能量动量关系 代入,即有()222πd d .L D m hεεε= (4)在极端相对论情形下,粒子的能量动量关系为 试求在体积V 内,在ε到的能量范围内三维粒子的量子态数.解:式()已给出在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的状态数为234d .V p p hπ (1) 将极端相对论粒子的能量动量关系代入,可得在体积V 内,在ε到d εε+的能量范围内,极端相对论粒子的量子态数为()()234πd d .VD ch εεεε=(2) 设系统含有两种粒子,其粒子数分别为N 和N '. 粒子间的相互作用很弱,可以看作是近独立的. 假设粒子可以分辨,处在一个个体量子态的粒子数不受限制. 试证明,在平衡状态下两种粒子的最概然分布分别为 和其中l ε和l ε'是两种粒子的能级,l ω和l ω'是能级的简并度.解: 当系统含有两种粒子,其粒子数分别为N 和N ',总能量为E ,体积为V 时,两种粒子的分布{}l a 和{}l a '必须满足条件,,lll l l lllllaN a N a a Eεε''==''+=∑∑∑∑ (1)才有可能实现.在粒子可以分辨,且处在一个个体量子态的粒子数不受限制的情形下,两种粒子分别处在分布{}l a 和{}l a '时各自的微观状态数为!,!!.!l l a l ll la l ll lN Ωa N Ωa ωω'='''='∏∏∏∏ (2)系统的微观状态数()0Ω为()0.ΩΩΩ'=⋅ (3)平衡状态下系统的最概然分布是在满足式(1)的条件下使()0Ω或()0In Ω为极大的分布. 利用斯特令公式,由式(3)可得为求使()0ln Ω为极大的分布,令l a 和l a '各有l a δ和l a δ'的变化,()0ln Ω将因而有()0δln Ω的变化. 使()0ln Ω为极大的分布{}l a 和{}l a '必使 即但这些δl a 和δl a '不完全是独立的,它们必须满足条件用拉氏乘子,αα'和β分别乘这三个式子并从()0δln Ω中减去,得 根据拉氏乘子法原理,每个δl a 和δl a '的系数都等于零,所以得 即.l l l l l l a e a eαβεαβεωω--''--=''= (4)拉氏乘子,αα'和β由条件(1)确定. 式(4)表明,两种粒子各自遵从玻耳兹曼分布. 两个分布的α和α'可以不同,但有共同的β. 原因在于我们开始就假设两种粒子的粒子数,N N '和能量E 具有确定值,这意味着在相互作用中两种粒子可以交换能量,但不会相互转化. 从上述结果还可以看出,由两个弱相互作用的子系统构成的系统达到平衡时,两个子系统有相同的β.同上题,如果粒子是玻色子或费米子,结果如何?解: 当系统含有N 个玻色子,N '个费米子,总能量为E ,体积为V 时,粒子的分布{}l a 和{}l a '必须满足条件l l l l lla a E εε''+=∑∑ (1)才有可能实现.玻色子处在分布{}l a ,费米子处在分布{}l a '时,其微观状态数分别为 系统的微观状态数()0Ω为()0.ΩΩΩ'=⋅ (3)平衡状态下系统的最概然分布是在满足式(1)条件下使()0Ω或()0ln Ω为极大的分布. 将式(2)和式(3)取对数,利用斯特令公式可得 令各l a 和l a '有δl a 和δl a '的变化,()0ln Ω将因而有()0δln Ω的变化,使用权()0ln Ω为极大的分布{}l a 和{}l a '必使即但这此致δl a 和δl a '不完全是独立的,它们必须满足条件 用拉氏乘子,αα'和β分别乘这三个式子并从()0δln Ω中减去,得 根据拉氏乘子法原理,每个δl a 和δl a '的系数都等于零,所以得 即,1.1ll ll ll a ea e αβεαβεωω--''--=-''=+ (4) 拉氏乘子,αα'和β由条件(1)确定. 式(4)表明,两种粒子分别遵从玻色分布和费米分布,其中α和α'不同,但β相等.。