第六章近独立粒子的最概然分布
- 格式:pdf
- 大小:3.74 MB
- 文档页数:68
第六章近独立粒子的最概然分布6.1试根据式33d d d d d d d d d 2x y z x y z x y z L V n n n p p p p p p h π⎛⎫== ⎪⎝⎭h ,证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为()()132232d 2d VD m hπεεεε=。
解:用动量空间的球坐标描述自由粒子的动量:sin cos ;sin sin ;cos x y z p p p p p p θϕθϕθ===对动量积分,得在p 到d p p +范围内量子态数为:2233d sin d d 4d Vp Vp V p p h hθθϕΩ==⎰⎰⎰π 自由粒子的能量动量关系为:22p mε=,因此2,d p m p p md εε==得体积V 内,在ε到d εε+的能量范围内,粒子的量子态数为:()132232()d 2d VD m hεεεε=π6.2证明,一维自由粒子,在长度L 内,在ε到d εε+的能量范围内,量子态数为()2d d 2L mD h εεεε=解:一维自由粒子在μ空间体积元d d x x p 内可能的量子态数为:d d d xx x p n h=在长度L 内,动量大小在p 到d p p +范围内的量子态数为2d x L n p h=将能量动量关系:22p mε=,代入,即得()122d d 2L m D h εεεε⎛⎫= ⎪⎝⎭6.3证明二维自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为()222L D d md hεεε=π。
解:二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为:3d d d d d d x yx y x y p p n n h=动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为cos ,sin x y p p p p θθ== 用极坐标描述时,二维动量空间的体积元为d d d V p p θ=在面积2L 内,在p 到d p p +,θ到d θθ+范围内,自由粒子可能的状态数为-22d d h L p p θ 对d θ积分,可得面积2L 内,p 到d p p +范围内,二维自由粒子可能的状态数为:2-22d L h p p π 将能量动量关系:()-122m p ε=,代入,即有()2-2d 2d D L h m εεε=π6.4在极端相对论情形下 cp ε=,试求在体积V 内,在ε到的能量范围内三维粒子的量子态数.解:在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的状态数为234d V p p h π 将cp ε=带入,得V 内在能量ε到d εε+内,量子态数为:()()-32d 4d D V ch εεεε=π6.5系统有两种粒子,其粒子数分别为N 和N '。
近独立粒子的最概然分布热力学和统计物理的关系:热力学是热运动的宏观理论,以实验总结的定律触发,经过严密的逻辑推理得到物体宏观热性质间的联系,宏观过程进行的方向和限度,从而结实热现象的有关规律。
而统计物理是热运动的微观理论,基本观点是认为宏观物质系统由大量微观粒子组成,宏观性质是大量微观粒子的集体表现,宏观热力学量则是相应微观力学量的统计平均值。
热力学验证统计物理,而统计物理揭示了热力学的本质。
μ空间:设粒子的自由度为r 。
经典力学中,粒子在任意时刻的力学运动状态由粒子的r 个广义坐标12r q ,q ,q 和与之共轭的r 个广义动量12r p ,p ,p 在该时刻的数值确定。
粒子的能量ε是其广义坐标和广义动量的函数:1r 1r (q ,q ;p ,p )ε=ε用1r 1r q ,q ;p ,p 共2r 个变量为直角坐标构成一个2r 维空间,称为μ空间。
粒子运动状态的经典描述和量子描述:① 一维谐振子在经典力学中,任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为p mx ∙=,它的能量是其动量和势能之和:222p 1m x 2m 2ε=+ω 在量子力学中,圆频率为ω的线性谐振子,能量的可能值为:n 1(n )2ε=ω+ ② 转子在经典力学中,用球极坐标(r,,)θϕ描述质点的位置: x rsin cos ,y rsin sin ,z rcos =θϕ=θϕ=ϕ.与坐标共轭的动量为222p mr ,p mr sin ∙∙θϕ=θ=θϕ质点的能量可以表示为22211(p p )2I sin θϕε=+θ在量子力学中,转子的能量是:2M 2Iε= 其中,2M 只能取分立值22M l(l 1),l 0,1,2,=+=③ 自由粒子在经典力学中,在三维空间中运动,在任意时刻的位置可由坐标(x,y,z)确定,与之共轭的动量为:x y z p mx,p my,p mz ∙∙∙=== 自由粒子的能量就是它的动能:222x y z 1(p p p )2mε=++. 在量子力学中,设粒子处在边长为的立方容器内,粒子三个动量分量的可能值为x x x 2p n ,n 0,1,2,L π==±± y y y 2p n ,n 0,1,2,L π==±± z z z 2p n ,n 0,1,2,Lπ==±± x y z n ,n ,n 就是表征三维自由粒子运动状态的量子数,三维自由粒子能量的可能取值为22222x y z 222x y z 2n n n 12(p p p )2m m L++πε=++=态密度:在体积V 内,动量大小在p 到p+dp 的范围内,自由粒子可能状态数为234V p dp h π,根据公式,算出,在体积V 内,在到的能量范围内,自由粒子可能的状态数为312232V D()d (2m)d hπεε=εε D()ε表示单位能量间隔内的可能状态数,称为态密度。
单粒子状态的量子描述
3
分布和微观状态
例1 一维无限深势阱(宽L,粒子质量m)
4
8例4 转子
2
2
(1),0,1,2,... 212l l l l l g l I ε+===+=l 为角量子数
9
微观状态数
10
Boltzmann系统
粒子可以分辨,量子态容纳的粒子数不受限制Bose 系统
粒子不可以分辨,量子态容纳的粒子数不受限制,自旋量子数为整数,
Fermi系统
粒子不可以分辨,量子态容纳的粒子数最多为
1,自旋量子数为半整数
11
16
Bose system (确定量子态上粒子数)
Bose
1984.1.1-1974.2.4{}..(1)!!(1)!i i B E i i i i n g W n n g +−=−∏
17
Fermi system (确定量子态上粒子数)Pauli 不相容原理
Bose (1984-1974)
i i
g n ≥相当于从g i 个量子态中挑出n i 个来
为粒子所占据
!!()!i i
n i i g i i i g W C n g n ==−{}.!!()!i F D i i i i i g W n n g n =−∏
27
Bose分布(确定量子态上粒子数)
33
34
利用Lagrange待定乘子法
α,β由约束条件定,物理意义?
35
Fermi 分布
类似Bose分布
37
半经典分布
条件:
48。
第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。
②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。
这里0h 由测量精度决定的一个常数。
经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。
空间自由度和一个自旋自由度)个量子确定。
并且微观粒子能量值和动量值的分离性很显著。
③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。
若粒子的自由度为r ,一个量子态占据的相体积为rh 。
在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。