第八章卡方检验
- 格式:doc
- 大小:304.50 KB
- 文档页数:9
卡方检验应用第八章记数数据统计法一卡方检验法知识引入在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。
例如,性别分男女,职业分为公务员、教师、工人、......... , 教师职称又分为教授、副教授、……。
有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。
对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。
卡方检验是专用于解决计数数据统计分析的假设检验法。
本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。
拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。
独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否有关联或是否独立的问题。
在计数数据进行统计分析时要特别注意取样的代表性。
我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。
在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。
在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。
例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。
这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。
因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。
第一节卡方拟合性检验一、卡方检验的一般问题卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。
它由统计学家皮尔逊推导。
第八章 2χ检验一、教学大纲要求(一) 掌握内容 1. 2χ检验的用途。
2. 四格表的2χ检验。
(1) 四格表2χ检验公式的应用条件; (2) 不满足应用条件时的解决办法; (3) 配对四格表的2χ检验。
3. 行⨯列表的2χ检验。
(二) 熟悉内容频数分布拟合优度的2χ检验。
(三) 了解内容 1.2χ分布的图形。
2.四格表的确切概率法。
二、教学内容精要(一)2χ检验的用途2χ检验(Chi-square test )用途较广,主要用途如下:1.推断两个率及多个总体率或总体构成比之间有无差别 2.两种属性或两个变量之间有无关联性 3.频数分布的拟合优度检验 (二)2χ检验的基本思想1.2χ检验的基本思想是以2χ值的大小来反映理论频数与实际频数的吻合程度。
在零假设0H (比如0H :21ππ=)成立的条件下,实际频数与理论频数相差不应该很大,即2χ值不应该很大,若实际计算出的2χ值较大,超过了设定的检验水准所对应的界值,则有理由怀疑0H 的真实性,从而拒绝0H ,接受H 1(比如1H :21ππ≠)。
2. 基本公式:()∑-=TT A 22χ,A 为实际频数(Actual Frequency ),T 为理论频数(Theoretical Frequency )。
四格表2χ检验的专用公式正是由此公式推导出来的,用专用公式与用基本公式计算出的2χ值是一致的。
(三)率的抽样误差与可信区间 1.率的抽样误差与标准误样本率与总体率之间存在抽样误差,其度量方法: np )1(ππσ-=,π为总体率,或 (8-1)np p S p )1(-=, p 为样本率; (8-2) 2.总体率的可信区间当n 足够大,且p 和1-p 均不太小,p 的抽样分布逼近正态分布。
总体率的可信区间:(p p S u p S u p ⨯+⨯-2/2/,αα)。
(8-3) (四)2χ检验的基本计算表8-12检验的用途、假设的设立及基本计算公式01四格表①独立资料两样本率的比较②配对资料两 样本率的比较0H :两总体率相等 1H :两总体率不等①专用公式)(22nbc ad -=χ 1②当n ≥40但1≤T<5时,校正公式))()()(()2/(22d b c a d c b a n n bc ad ++++--=χ③配对设计cb c b +--=22)1(χR ⨯C 表①多个样本率、 构成比的比较②两个变量之 间关联性分析0H :多个总体率(构成比)相等(0H :两种属性间存在关联)1H :多个总体率(构成比)不全相等(0H :两种属性间存在关联))1(22-=∑CR n n A n χ (R-1)(C-1)频数分布表 频数分布的拟合优度检验0H :资料服从某已知的理论分布 1H :资料不服从某已知的理论分布∑-TT A 2)( 据频数表的组数而定(五)四格表的确切概率法:当四格表有理论数小于1或n <40时,宜用四格表的确切概率法。
第八章2χ检验一、教学大纲要求(一) 掌握内容 1. 2χ检验的用途。
2. 四格表的2χ检验。
(1) 四格表2χ检验公式的应用条件; (2) 不满足应用条件时的解决办法; (3) 配对四格表的2χ检验。
3. 行⨯列表的2χ检验。
(二) 熟悉内容频数分布拟合优度的2χ检验。
(三) 了解内容 1.2χ分布的图形。
2.四格表的确切概率法。
二、教学内容精要(一) 2χ检验的用途2χ检验(Chi-square test )用途较广,主要用途如下:1.推断两个率及多个总体率或总体构成比之间有无差别 2.两种属性或两个变量之间有无关联性 3.频数分布的拟合优度检验 (二) 2χ检验的基本思想1.2χ检验的基本思想是以2χ值的大小来反映理论频数与实际频数的吻合程度。
在零假设0H (比如0H :21ππ=)成立的条件下,实际频数与理论频数相差不应该很大,即2χ值不应该很大,若实际计算出的2χ值较大,超过了设定的检验水准所对应的界值,则有理由怀疑0H 的真实性,从而拒绝0H ,接受H 1(比如1H :21ππ≠)。
2. 基本公式:()∑-=TT A 22χ,A 为实际频数(Actual Frequency ),T 为理论频数(Theoretical Frequency )。
四格表2χ检验的专用公式正是由此公式推导出来的,用专用公式与用基本公式计算出的2χ值是一致的。
(三)率的抽样误差与可信区间 1.率的抽样误差与标准误样本率与总体率之间存在抽样误差,其度量方法:np )1(ππσ-=,π为总体率,或 (8-1)np p S p )1(-=, p 为样本率; (8-2)2.总体率的可信区间当n 足够大,且p 和1-p 均不太小,p 的抽样分布逼近正态分布。
总体率的可信区间:(p p S u p S u p ⨯+⨯-2/2/,αα)。
(8-3) (四)2χ检验的基本计算 见表8-1。
表8-1 2χ检验的用途、假设的设立及基本计算公式资料形式用途0H 、1H 的设立与计算公式自由度四格表①独立资料两 样本率的比较②配对资料两 样本率的比较0H :两总体率相等 1H :两总体率不等①专用公式))()()(()(22d b c a d c b a nbc ad ++++-=χ②当n ≥40但1≤T<5时,校正公式))()()(()2/(22d b c a d c b a n n bc ad ++++--=χ ③配对设计cb c b +--=22)1(χ1R ⨯C 表①多个样本率、 构成比的比较②两个变量之 间关联性分析0H :多个总体率(构成比)相等(0H :两种属性间存在关联)1H :多个总体率(构成比)不全相等(0H :两种属性间存在关联))1(22-=∑CR n n A n χ (R-1)(C-1)频数分布表 频数分布的拟合优度检验0H :资料服从某已知的理论分布 1H :资料不服从某已知的理论分布∑-TT A 2)(据频数表的组数而定(五)四格表的确切概率法当四格表有理论数小于1或n <40时,宜用四格表的确切概率法。
(六)2χ检验的应用条件及注意事项1.分析四格表资料时,应注意连续性校正的问题,当1<T <5,n >40时,用连续性校正2χ检验;T ≤1,或n ≤40时,用Fisher 精确概率法。
2.对于R ⨯C 表资料应注意以下两点:(1)理论频数不宜太小,一般要求:理论频数<5的格子数不应超过全部格子的1/5; (2)注意考察是否有有序变量存在。
对于单向有序R ⨯C 表资料,当指标分组变量是有序的时,宜用秩和检验;对于双向有序且属性不同的R ⨯C 表资料,若希望弄清两有序变量之间是否存在线性相关关系或存在线性变化趋势,应选用定性资料的相关分析或线性趋势检验;对于双向有序且属性相同的R ⨯C 表资料,为考察两种方法检测的一致性,应选用Kappa 检验。
三、典型试题分析(一)单项选择题1.下列哪项检验不适用2χ检验( )A . 两样本均数的比较B . 两样本率的比较C . 多个样本构成比的比较D . 拟合优度检验答案:A[评析] 本题考点:2χ检验的主要用途。
2χ检验不能用于均数差别的比较。
2.分析四格表时,通常在什么情况下需用Fisher 精确概率法( )A .1<T <5,n>40B .T <5C .T 1≤或n 40≤D .T 1≤或n 100≤ 答案: C[评析] 本题考点:对于四格表,当T 1≤或n 40≤时,不宜用2χ检验,应用Fisher 精确概率法。
3.2χ值的取值范围为A .∞-<2χ<∞+B .+∞≤≤20χC .12≤χ D .02≤≤∞-χ答案: B[评析]根据2χ分布的图形或2χ的基本公式可以判断2χ值一定是大于等于零且没有上界的,故应选B 。
(二)是非题 两样本率的比较可以采用2χ检验,也可以采用双侧u 检验。
答案:正确。
[评析]就两个样本率的比较而言,双侧u 检验与2χ检验是等价的。
(三)简答题1.四格表的2χ检验和u 检验有何联系与区别?答案:相同点:凡是能用u 检验进行的两个率比较检验的资料,都可用2χ检验,两者是等价的,即22χ=u ;相异点:(1)u 检验可进行单侧检验;(2)满足四格表u 检验的资料,计算两个率之差的可信区间,可从专业上判断两率之差有无实际意义;(3)2χ检验可用于2⨯2列联表资料有无关联的检验。
2.R ⨯C 表2χ检验的适用条件及当条件不满足时可以考虑的处理方法是什么? 答案:R ⨯C 表2χ检验的适用条件是理论频数不宜过小,否则有可能产生偏性。
当条件不满足时有三种处理方法:①增大样本例数使理论频数变大;②删去理论数太小的行或列;③将理论数太小的行或列与性质相近的邻行或邻列合并,使重新计算的理论频数变大。
但②、③法都可能会损失信息或损害样本的随机性,因此应慎用。
(四)计算题1.为研究静脉曲张是否与肥胖有关,观察122对同胞兄弟,每对同胞兄弟中有一个属肥胖,另一个属正常体重,记录得静脉曲张发生情况见表8-2,试分析之。
表8-2 122对同胞兄弟静脉曲张发生情况正常体重 肥胖合计 发生 未发生 发 生19 5 24 未发生 12 86 98 合 计31 91122[评析]这是一个配对设计的资料,因此用配对2χ检验公式计算。
H 0:肥胖者与正常体重者的静脉曲张发生情况无差别 H 1:肥胖者与正常体重者的静脉曲张发生情况不同 05.0=α cb c b +--=22)1(χ=()12.212511252=+--,1=ν2χ=2.11<21,05.0χ,P >0.05,尚不能认为静脉曲张与肥胖有关。
2.某卫生防疫站在中小学观察三种矫正近视眼措施的效果,近期疗效数据见表8-3。
试对这三种措施的疗效作出评价。
表8-3 三种措施的近期有效率比较 矫治方法有效人数 无效人数 合计有效率(%)夏天无眼药水 51 84 135 37.78 新医疗法 6 26 32 18.75 眼保健操 5 13 18 27.78 合计 62 123 18533.51[评析]0H :三种措施有效率相等1H :三种措施有效率不相等或不全相等 05.0=α)1(22-=∑cr n n A n χ=185⨯⎪⎪⎭⎫ ⎝⎛-⨯+⨯+⨯+⨯+⨯+⨯1181231318625321232632626135123841356251222222=4.498,ν=(2-1)(3-1)=2查表得0.25>P >0.10,按0.05α=水准不拒绝0H ,尚不能认为三种措施有效率有差别。
3.某医院以400例自愿接受妇科门诊手术的未产妇为观察对象,将其分为4组,每组100例,分别给予不同的镇痛处理,观察的镇痛效果见表8-4,问4种镇痛方法的效果有无差异?颈麻100 41 注药100 94 置栓100 89 对照100 27 [评析] 为了应用2χ检验,首先应计算出有效和无效的实际频数,列出计算表,见表8-5。
表8-5 4种镇痛方法的效果比较镇痛方法 有效例数 无效例数 合计颈麻41 59 100 注药94 6 100 置栓89 11 100 对照27 73 100 合计 251 149 400 0H :4种镇痛方法的效果相同 1H :4种镇痛方法的效果不全相同05.0=α)1(22-=∑c r n n A n χ=400⎪⎪⎭⎫ ⎝⎛-⨯++⨯+⨯⨯110014973...1001495910025141222=146.175, ν=(4-1)(2-1)=3查表得P <0.05,按0.05α=水准拒绝0H ,接受1H ,即4种镇痛方法的效果不全相同。
四、习 题(一) 单项选择题1. 关于样本率p 的分布正确的说法是: A . 服从正态分布 B . 服从2χ分布C . 当n 足够大,且p 和1-p 均不太小,p 的抽样分布逼近正态分布D . 服从t 分布 2. 以下说法正确的是: A . 两样本率比较可用u 检验 B . 两样本率比较可用t 检验 C . 两样本率比较时,有2χ=u D . 两样本率比较时,有22χ=t 3. 率的标准误的计算公式是: A .)1(p p - B .n p p )1(- C.1-n p D.np p )1(- 4. 以下关于2χ检验的自由度的说法,正确的是: A .拟合优度检验时,2-=n ν(n 为观察频数的个数) B .对一个43⨯表进行检验时,11=ν C .对四格表检验时,ν=4D .若2,05.02,05.0ηνχχ>,则ην>5. 用两种方法检查某疾病患者120名,甲法检出率为60%,乙法检出率为50%,甲、乙法一致的检出率为35%,问两种方法何者为优?A .不能确定B .甲、乙法一样C .甲法优于乙法D .乙法优于甲法 6.已知男性的钩虫感染率高于女性。
今欲比较甲乙两乡居民的钩虫感染率,适当的方法是:A .分性别比较B .两个率比较的2χ检验C .不具可比性,不能比较D .对性别进行标准化后再做比较 7.以下说法正确的是A .两个样本率的比较可用u 检验也可用2χ检验B .两个样本均数的比较可用u 检验也可用2χ检验C .对于多个率或构成比的比较,u 检验可以替代2χ检验D .对于两个样本率的比较,2χ检验比u 检验可靠 (二) 名词解释1. 实际频数与理论频数 2. 2χ界值表 3. 拟合优度 4. 配对四格表5. 双向有序分类资料 6. 率的标准误7. 多个率的两两比较 8. Fisher 精确概率9. McNemar 检验 10. Yates 校正 (三) 是非题四个样本率做比较,2)3(05.02χχ> ,可认为各总体率均不相等。