第七章假设检验(F检验与卡方检验)_图文.
- 格式:doc
- 大小:1.46 MB
- 文档页数:13
第七章假设检验【教学要求】要求掌握假设检验的的基本思想和基本步骤;能够理解假设检验的两类错误及其关系;熟练掌握总体平均数、总体成数和总体方差的各种假设检验方法;利用P-值进行假设检验【知识点】假设检验、两类错误、总体平均数、总体成数、总体方差【本章重点】理解假设检验的基本思想和基本步骤;能够理解假设检验的两类错误及其关系;熟练掌握总体平均数、总体成数和总体方差的各种假设检验方法。
【本章难点】总体平均数、总体成数和总体方差的各种假设检验方法。
【教学内容】7.1 假设检验的基本思想(小概率事件在一次实验中不会发生)前一章中我们讨论了如何根据样本去得到总体的分布所含参数的优良估计.以这样得到的估计值作为参数的已知值得到的一个总体必须跟真实的总体作比较,考察它们之间是否在统计的意义上相合。
显然,这种比较只能在样本的基础上进行。
怎么比较才能得到一个有较大把握的结论呢?这就是我们这章所要讲的统计假设检验问题。
一、假设检验的一个实际问题问题7.1.1 一种零件采用自动生产线生产,零件的寿命(单位:小时)服从正态分布(2000,4000)N。
现在工厂改良了生产技术,假设零件的寿命仍服从正态分布且方差不变。
为检验零件的寿命是否有提高,质检人员在某天生产的零件中随机抽取40个进行检验,测得平均寿命为2020小时。
试问在新技术下生产的零件寿命是否得到了提高?现在的问题就是要判断新技术下零件的平均寿命2000μ>?还是与以前一样依然是2000小时?如果是前者,我们说新产品寿命有显著提高;若是后者,就是说没有。
我们把任意一个有关未知分布的假设称为统计假设或简称假设。
上面的问题中我们把两种情况用假设来表示。
假设2000μ=表示新技术下零件寿命没有显著增加;假设2000μ>表示新技术下零件寿命有显著提高。
我们把第一个假设作为原假设,用符号0:2000H μ=表示;第二个假设作为备择假设,用符号1:2000H μ>表示。
(1建立假设H 0:健康状况好、中、差人数比率为1: 2: 1 (2计算理论频数
和
判断
,,.05 (2)
1.22 .05 (2) 所以该校高中应届毕业生健康状况好、中、差的人数比率是1 : 2 :
1。
• 例子:某校高中应届毕业生180人(男生90人,女生 90人,参加高考的结果
如下表所示,问高考录取 名额是否具有性别差异? 性别 男生 女生 合计 录取人数
10(9) 8(9) 18 未录取人数 80(81) 82(81) 162 合计 90 90 180