高二数学选修2-1第二章圆锥曲线与方程练习题
- 格式:doc
- 大小:216.00 KB
- 文档页数:6
选修2-1第二章《圆锥曲线与方程》单元检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 2.平面内有定点A 、B 及动点P ,设命题甲是“|PA |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为( ) A.⎝ ⎛⎭⎪⎫a 2,0 B.⎝ ⎛⎭⎪⎫0,12a C.⎝ ⎛⎭⎪⎫a 4,0 D.⎝ ⎛⎭⎪⎫0,14a 4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( ) A .x 2+y 2=2 B .x 2+y 2=4C .x 2+y 2=2(x ≠±2) D .x 2+y 2=4(x ≠±2)5.已知椭圆x 2a 2+y 2b2=1 (a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)6.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( ) A.22 B.12 C.2-12 D.347.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( ) A .2a +2m B .4a +2m C .a +m D .2a +4m8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.559.设点A 为抛物线y 2=4x 上一点,点B (1,0),且|AB |=1,则A 的横坐标的值为( ) A .-2 B .0 C .-2或0 D .-2或210.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( ) A .5 6 B .6 5 C .10 2 D . 5 211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( )A .2或-1B .-1C .2D .1± 512.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF ²2PF =0,则|1PF +2PF|等于( )A .3B .6C .1D .2第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为_ ___________.14.已知抛物线C :y 2=2px (p >0),过焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF=3FB,则k =________.15.已知抛物线y 2=2px (p >0),过点M (p,0)的直线与抛物线交于A 、B 两点,则OA ²OB =________.16.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=_ _______. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18.(本小题满分12分)已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点F 交椭圆于A 、B 两点,求弦AB 的长.19.( 本小题满分12分)已知两个定点A (-1,0)、B (2,0),求使∠MBA =2∠MAB 的点M 的轨迹方程.20.(本小题满分12分)已知点A (0,-2),B (0,4),动点P (x ,y )满足PA ²PB =y 2-8.(1)求动点P 的轨迹方程;(2)设(1)中所求轨迹与直线y =x +2交于C 、D 两点.求证:OC ⊥OD (O 为原点).21.( 本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程.(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.22.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线y =14x 2的焦点,离心率为255. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于点M ,若MA =m FA ,MB =n FB,求m +n 的值.选修2-1第二章《圆锥曲线与方程》单元检测题参考答案【第5题解析】01.02.x y b y x a c ======∴==时,时,故选A.【第6题解析】2a =3+1=4.∴a =2,又∵c =m 2- m 2-1 =1,∴离心率e =c a =12.故选B.【第7题解析】∵A ,B 在双曲线的右支上,∴|BF 1|-|BF 2|=2a ,|AF 1|-|AF 2|=2a ,|BF 1|+|AF 1|-(|BF 2|+|AF 2|)=4a ,|BF 1|+|AF 1|=4a +m ,∴△ABF 1的周长为4a +m +m =4a +2m ..故选B. 【第8题解析】如图所示过点F 作FM 垂直于直线3x -4y +9=0,当P 点为直线FM 与抛物线的交点时,d 1+d 2最小值为|3+9|5=125.故选A. 【第9题解析】由题意B 为抛物线的焦点.令A 的横坐标为x 0,则|AB |=x 0+1=1,∴x 0=0.故选B.【第10题解析】由题得2,0|3,P p x y ∴=∴=±焦点的坐标为(),PM|=5,152PFM S ∆∴=⋅⋅=故选A. 【第11题解析】由⎩⎪⎨⎪⎧y =kx -2y 2=8x消去y 得,k 2x 2-4(k +2)x +4=0,故Δ=[-4(k +2)]2-4k 2³4=64(1+k )>0,解得k >-1,由x 1+x 2=4 k +2k2=4,解得k =-1或k =2,又k >-1,故k =2.故选C. 【第12题解析】因为PF 1→²PF 2→=0,所以PF 1→⊥PF 2→,则|PF 1→|2+|PF 2→|2=|F 1F 2|2=4c 2=36,故|PF 1→+PF 2→|2=|PF 1→|2+2PF 1→²PF 2→+|PF 2→|2=36,所以|PF 1→+PF 2→|=6.故选B.【第14题解析】设直线l 为抛物线的准线,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 1为垂足,过B 作BE 垂直于AA 1与E ,则|AA 1|=|AF |,|BB 1|=|BF |,由AF →=3FB ,∴cos ∠BAE =|AE ||AB |=12,∴∠BAE =60°,∴tan∠BAE = 3.即k = 3.故填 3.【第15题解析】直接取两个特殊点1212()(,)A p B p OA OB x x y y ∴⋅=+和, 222p p =-2p =-.故填-p 2.【第16题解析】设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2,x 1=1,直线AF 的方程是x =1,故|BF |=|AF |=2. 故填2. 【第17题答案】x 24-y 2=1.【第17题解析】由椭圆方程为x 29+y 24=1,知长半轴长a 1=3,短半轴长b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y 2b2=1 (a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧c =5c 2=a 2+b 2c a =52,解得⎩⎪⎨⎪⎧a =2b =1,故所求双曲线的方程为x 24-y 2=1.∴x 1+x 2=835,x 1x 2=85,∴|AB |= x 1-x 2 2+ y 1-y 2 2=1+1⎝ ⎛⎭⎪⎫8352-4³85=85. 【第19题答案】点M 的轨迹方程为3x 2-y 2=3(右支)或y =0 (-1<x <2). 【第19题解析】设动点M 的坐标为(x ,y ). 设∠MAB =β,∠MBA =α,即α=2β, ∴tan α=tan 2β,则tan α=2tan β1-tan 2β.① (1)如图(1),当点M 在x 轴上方时,tan β=y x +1,tan α=y2-x, 将其代入①式并整理得3x 2-y 2=3 (x >0,y >0); (2)如图(2),当点M 在x 轴的下方时, tan β=-y x +1,tan α=-y2-x, 将其代入①式并整理得3x 2-y 2=3 (x >0,y <0);(3)当点M 在x 轴上时,若满足α=2β,M 点只能在线段AB 上运动(端点A 、B 除外),只能有α=β=0. 综上所述,可知点M 的轨迹方程为3x 2-y 2=3(右支)或y =0 (-1<x <2). 【第20题答案】(1)x 2=2y ;(2)证明见解析. 【第20题解析】(1)解 ∵A (0,-2),B (0,4), ∴PA →=(-x ,-2-y ),PB →=(-x,4-y ).【第21题答案】(1)抛物线C 的方程为y 2=4x ,其准线方程为x =-1;(2)符合题意的直线l 存在,其方程为2x +y -1=0.【第21题解析】(1)将(1,-2)代入y 2=2px , 得(-2)2=2p ²1,所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t .由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 到l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉[-12,+∞),1∈[-12,+∞),所以符合题意的直线l 存在,其方程为2x +y -1=0. 【第22题答案】(1)x 25+y 2=1;(2)m +n =10.【第22题解析】(1)设椭圆C 的方程为x 2a 2+y 2b2=1 (a >b >0).抛物线方程可化为x 2=4y ,其焦点为(0,1), 则椭圆C 的一个顶点为(0,1),即b =1.由e =c a=a 2-b 2a 2=255. 得a 2=5,所以椭圆C 的标准方程为x 25+y 2=1.FA = (x 1-2,y 1),FB=(x 2-2,y 2).∵MA →=m FA ,MB →=n FB ,∴m =x 1x 1-2,n =x 2x 2-2, ∴m +n =2x 1x 2-2 x 1+x 2 4-2 x 1+x 2 +x 1x 2,又2x 1x 2-2(x 1+x 2)=40k 2-10-40k21+5k 2=-101+5k 2,4-2(x 1+x 2)+x 1x 2=4-40k 21+5k 2+20k 2-51+5k 2=-11+5k 2,∴m +n =10.。
选修2-1数学第2章圆锥曲线与方程单元练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某几何体是由直三棱柱与圆锥的组合体,起直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为()A.√2B.12C.√24D.√222. 如图,已知双曲线E:x2a2−y2b2=1(a>0,b>0),长方形ABCD的顶点A,B分别为双曲线E的左、右焦点,且点C,D在双曲线E上,若|AB|=6,|BC|=52,则此双曲线的离心率为()A.√2B.32C.52D.√53. 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为B.若|BF2|=|F1F2|=2,则该椭圆的标准方程为()A.x24+y23=1 B.x23+y2=1 C.x22+y2=1 D.x24+y2=14. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的顶点和焦点到C的同一条渐近线的距离之比为12,则双曲线C的离心率是()A.√2B.2C.√3D.35. 已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,射线FA与抛物线相交于M,与其准线相交于点N,若|FM|:|MN|=2:√5,则a=()A.2B.4C.6D.86. 焦点为(0,2)的抛物线的标准方程是()A.x2=8yB.x2=4yC.y2=4xD.y2=8x7. 椭圆x2+4y2=1的离心率为()A.√32B.34C.√22D.238. 若双曲线x24−m +y2m−2=1的渐近线方程为y=±13x,则m的值为()A.1B.74C.114D.59. 抛物线y=2x2的通径长为( )A.2B.1C.12D.1410. 已知双曲线C:x24−y2=1,则C的渐近线方程为 ( )A.y=±14x B.y=±13x C.y=±12x D.y=±x11. 椭圆x24+y25=1的离心率是()A.3 5B.√55C.25D.1512. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过F作直线l与两条渐近线交于A,B两点.若△OAB为等腰直角三角形(O为坐标原点)则△OAB的面积为( )A.a2B.2a3C.2a2或a2D.2a2或12a213. 已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.14. 若直线y=x+b与曲线x=√1−y2恰有一个公共点,则b的取值范围是________.15. 与椭圆x25+y23=1共焦点的等轴双曲线的方程为________.16. 已知双曲线x2−y28=1上有三个点A,B,C,且AB,BC,AC的中点分别为D,E,F,用字母k表示斜率,若k OD+k OE+k OF=−8(点O为坐标原点,且k OD,k OE,k OF均不为零),则1k AB +1k BC+1k AC=________.17. 设命题p:方程x2a+6+y2a−7=1表示中心在原点,焦点在坐标轴上的双曲线;命题q:存在x∈R,使得x2−4x+a<0.若“p∧(¬q)”为真,求实数a的取值范围.18. 回答下列问题:(1)求过点(2,−2)且与双曲线x 22−y2=1有公共渐近线的双曲线的方程;(2)求双曲线x 24−y25=1的焦点到其渐近线的距离.19. 如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆C上任意一点,A关于原点O的对称点为B,有|AF1|+|BF1|=4,且∠F1AF2的最大值为π3.(1)求椭圆C的标准方程;(2)若A′是A关于x轴的对称点,设点N(4,0),连接NA与椭圆C相交于点E,问直线A′E与x轴是否交于一定点,如果是,求出该定点坐标;如果不是,说明理由.20. 已知椭圆的焦点在α轴上,一个顶点为(0,1),离心率为e=√5,过椭圆的右焦点F的直线1与坐标轴不垂直,且交椭圆于A,B两点.(1)求椭圆的方程.(2)设点C是点A关于x轴的对称点,在α轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点N的坐标;若不存在,说明理由.21. 已知直线l:x−y+1=0与焦点为F的抛物线C:y2=2px(p>0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,离心率为12,点P(1, 32)为椭圆上一点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)如图,过点C(0, 1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM,BN的斜率分别为k1,k2,若k1=2k2,求直线l斜率的值.参考答案与试题解析选修2-1数学第2章 圆锥曲线与方程单元练习题含答案一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1.【答案】 D【考点】 椭圆的定义 【解析】根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a 2−b 2=c 2,和离心率公式e =ca ,计算即可.【解答】解:设正视图正方形的边长为2,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b =2,俯视图的宽就是圆锥底面圆的直径2√2,得到俯视图中椭圆的长轴长2a =2√2, 则椭圆的半焦距c =√a 2−b 2=1, 根据离心率公式得,e =c a =√2=√22; 故选D . 2. 【答案】 B【考点】双曲线的标准方程 【解析】本题主要考查双曲线的几何性质. 【解答】解:因为2c =|AB|=6,所以c =3. 因为b 2a =|BC|=52,所以5a =2b 2. 又c 2=a 2+b 2,所以9=a 2+5a 2,解得a =2或a =−92(舍去),故该双曲线的离心率e =c a=32.故选B . 3. 【答案】 A【考点】椭圆的标准方程 【解析】由|BF 2|=|F 1F 2|=2,可得a =2c =2,即可求出a ,b ,从而可得椭圆的方程. 【解答】解:∵ |BF 2|=|F 1F 2|=2,∴a=2c=2,∴a=2,c=1,∴b=√3,∴椭圆的方程为x24+y23=1.故选A.4.【答案】B【考点】双曲线的离心率【解析】【解答】解:∵双曲线C的顶点和焦点到同一条渐近线的距离之比为12,由三角形相似得ac =12,∴e=ca=2.故选B.5.【答案】D【考点】斜率的计算公式抛物线的性质【解析】无【解答】解:依题意F点的坐标为(a4,0),作MK垂直于准线,垂足为K,由抛物线的定义知|MF|=|MK|,因为|FM|:|MN|=2:√5,则|KN|:|KM|=1:2.k FN =0−1a4−0=−4a ,k FN =−|KN||KM|=−12,所以−4a =−12,求得a =8. 故选D . 6. 【答案】 A【考点】抛物线的标准方程 【解析】 此题暂无解析 【解答】解:由题意得,抛物线的焦点为(0,2), 可得p =4.又抛物线的焦点在y 轴的正半轴, 所以抛物线的标准方程为x 2=8y . 故选A. 7. 【答案】 A【考点】 椭圆的离心率 【解析】 此题暂无解析 【解答】 此题暂无解答 8.【答案】 B【考点】 双曲线的定义 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 C【考点】 抛物线的定义 抛物线的性质 【解析】抛物线y =−2x 2,即x 2=−12y ,可得2p .解:抛物线y=2x2,化为标准方程为x2=12y,可得2p=12,因此通径长为12.故选C.10.【答案】C【考点】双曲线的渐近线【解析】根据双曲线的方程求出双曲线的渐近线即可. 【解答】解:由题意可得,a=2,b=1,则双曲线的渐近线方程为y=±ba x=±12x.故选C.11.【答案】B【考点】椭圆的离心率椭圆的标准方程【解析】根据椭圆的标准方程求出a,b的值,根据椭圆中c2=a2−b2就可求出c,再利用离心率e=ca得到离心率.【解答】解:由椭圆方程为x 24+y25=1可知,a2=5,b2=4,∴c2=a2−b2=1,a=√5,∴c=1,∴椭圆的离心率e=ca =√55.故选B.12.【答案】D【考点】双曲线的简单几何性质双曲线中的平面几何问题本题主要考查双曲线的性质以及直线和双曲线的关系,联立方程组,求出点的坐标,再求出面积即可.【解答】解:①若∠AOB=90∘,则∠AOF=45∘,∴ba=1故c=√a2+b2=√2a,∴S△OAB=12⋅2c⋅c=c2=2a2;②若∠BAO=90∘,则l与y=bax垂直且过F点,垂足为A,∴ l的斜率为−ab,则直线l的方程为y=−ab(x−c),联立{y=−ab⋅(x−c),y=bax,解得x=a 2c ,y=abc,则点A为(a 2c ,ab c)∴ △OAB为等腰直角三角形,OB为斜边,∴ OA=AB,OA2=(a2c )2+(abc)2=a2,∴S△OAB=12OA⋅AB=12OA2=12a2.综上所述S△OAB=2a2或12a2.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】√15【考点】与椭圆有关的中点弦及弦长问题【解析】此题暂无解析【解答】解:由椭圆方程可知a=3,c=2,∴F(−2, 0),根据题意,画出图形:设线段PF中点为M,椭圆右焦点为F1,∵M在以O为圆心,|OF|为半径的圆上,∴F1也在圆上,连接OM, PF1, MF1,则∠FMF1=90∘,OM是△FPF1的中位线,∴|PF1|=2|OM|=2|OF|=2×2=4,由椭圆定义|PF|+|PF1|=2a=6,得|PF|=2,|MF|=|PF|2=1,又∵∠FMF1为直角,|MF1|2=|FF1|2−|MF|2=15,∴tan∠MFF1=|MF1||MF|=√151=√15,∴直线PF的斜率是√15.故答案为:√15.14.【答案】(−1,1]∪{−√2}【考点】曲线与方程直线与圆的位置关系【解析】此题暂无解析【解答】x=√1−y2⇔x2+y2=1(x≥0)方程x2+y2=1(x≥0)所表示的曲线为半圆(如图)当直线与圆相切时或在l2与l3之间时,适合题意.此时−1<b≤1或b=−√2,所以b的取值范围是(−1,1]∪{−√2}.15.【答案】x2−y2=1【考点】双曲线的标准方程圆锥曲线的共同特征【解析】利用椭圆的三参数的关系求出双曲线的焦点坐标;利用等轴双曲线的定义设出双曲线的方程,据双曲线中三参数的关系求出双曲线的方程.【解答】解:对于x 25+y23=1知半焦距为c=√5−3=√2所以双曲线的焦点为(±√2,0)设等轴双曲线的方程为x 2a2−y2a2=1据双曲线的三参数的关系得到2a2=2所以a2=1所以双曲线的方程为x2−y2=1.故答案为:x2−y2=116.【答案】−1【考点】斜率的计算公式中点坐标公式与双曲线有关的中点弦及弦长问题【解析】【解答】解:设A(x1,y1),B(x2,y2),D(x0,y0),则x1+x2=2x0,y1+y2=2y0,x12−y128=1,x22−y228=1,两式相减得(x1−x2)(x1+x2)=(y1+y2)(y1−y2)8,整理可得x1−x2y1−y2=y08x0,即1k AB=k OD8,同理得1k BC =k OE8,1k AC=k OF8.因为k OD+k OE+k OF=−8,所以1k AB +1k BC+1k AC=−1.故答案为:−1.三、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 【考点】逻辑联结词“或”“且”“非” 双曲线的标准方程 一元二次不等式的解法【解析】 此题暂无解析 【解答】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 18. 【答案】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线, 所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2,所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.【考点】双曲线的离心率 【解析】 此题暂无解析 【解答】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线,所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2, 所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.19.【答案】解:(1)点A 为椭圆C 上任意一点, A 关于原点O 的对称点为B , 由|AF 1|+|BF 1|=4知 2a =4, 得a =2.又∠F 1AF 2的最大值为π3,知当A 为上顶点时,∠F 1AF 2最大, 所以a =2c , 得c =1,所以b 2=a 2−c 2=3. 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题知NA 的斜率存在,设NA 方程为 y =k(x −4),与椭圆联立,得(4k 2+3)x 2−32k 2x +64k 2−12=0.① 设点A (x 1,y 1),E (x 2,y 2), 则A ′(x 1,−y 1).直线A ′E 方程为y −y 2=y 2+y1x 2−x 1(x −x 2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y1=k(x1−4),y2=k(x2−4)代入,整理得,x=2x1x2−4(x1+x2)x1+x2−8.②x1+x2=32k24k2+3,x1x2=64k2−124k2+3.代入②整理,得x=1.所以直线A′E与x轴交于定点Q(1,0). 【考点】圆锥曲线中的定点与定值问题与直线关于点、直线对称的直线方程直线与椭圆结合的最值问题椭圆的标准方程椭圆的定义【解析】此题暂无解析【解答】解:(1)点A为椭圆C上任意一点,A关于原点O的对称点为B,由|AF1|+|BF1|=4知2a=4,得a=2.又∠F1AF2的最大值为π3,知当A为上顶点时,∠F1AF2最大,所以a=2c,得c=1,所以b2=a2−c2=3.所以椭圆C的标准方程为x 24+y23=1.(2)由题知NA的斜率存在,设NA方程为y=k(x−4),与椭圆联立,得(4k2+3)x2−32k2x+64k2−12=0.①设点A(x1,y1),E(x2,y2),则A′(x1,−y1).直线A′E方程为y−y2=y2+y1x2−x1(x−x2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y 1=k (x 1−4),y 2=k (x 2−4)代入, 整理得,x =2x 1x 2−4(x 1+x 2)x 1+x 2−8.②x 1+x 2=32k 24k 2+3, x 1x 2=64k 2−124k 2+3.代入②整理,得x =1.所以直线A ′E 与x 轴交于定点Q(1,0). 20. 【答案】(1)椭圆C 的标准方程为x 25+y 2=1.(2)存在定点N (52,0),使得C .B .N 三点共线. 【考点】直线与椭圆结合的最值问题 椭圆的标准方程【解析】 此题暂无解析 【解答】 解:(1)由椭圆的焦点在x 轴上, 设椭圆C 的方程为x 2a2+y 2b 2=1(ab >0),椭圆C 的一个顶点为(0,1),即b =1, 由e =ac √1−b 2a 2=√5解得a 2=5,∴ 椭圆C 的标准方程为x 25+y 2=1.(2)由得F (2,0),设A (x 1,y 1),B (x 2,y 2)设直线l 的方程为y =k (x −2)(k ≠0),代入椭圆方程,消去y 可得 (5k 2+1)x 2−20k 2x +20k 2−5=0, 则x 1+x 2=20k 25k 2+1,x 1x 2=20k 2−55k 2+1.∵ 点C 与点A 关于x 轴对称, ∴ C (x 1,−y 1) .假设存在N (t,0),使得C ,B ,N 三点共线, 则BN →=(t −x 2,−y 2),CN →=(t −x 1,y 1). ∵ C ,B ,N 三点共线,∴ BN →//CN →,∴ (t −x 2)y 1+(t −x 1)y 2=0, 即(y 1+y 2)t =x 2y 1+x 1y 2 ∴ t =k (x 1−2)x 2+k (x 2−2)x 1k (x 1−2)+k (x 2−2) =2⋅20k 2−55k 2+1−2⋅20k 25k 2+120k 25k 2+1−4=52∴ 存在定点N (52,0),使得C .B .N 三点共线.21.【答案】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 【考点】直线与抛物线结合的最值问题 二次函数在闭区间上的最值 抛物线的标准方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 22. 【答案】(1)根据题意,椭圆的离心率为12,即e =ca =2,则a =2c . 又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0. ∴ 由韦达定理可知:x 1+x 2=−8k 3+4k2,x 1x 2=−83+4k 2.∵ k 1=y 1x 1+2,k 2=y 2x 1−2,且k 1=2k 2,∴y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x 12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0. 解得:k =16或k =32. 又由k >1,则k =32. 【考点】 椭圆的离心率 【解析】(1)根据题意,由椭圆离心率可得a =2c ,进而可得b =√3c ,则椭圆的标准方程为x 24c 2+y 23c 2=1,将P 的坐标代入计算可得c 的值,即可得答案; (2)根据题意,设直线l 的方程为y =kx +1,设M(x 1, y 1),N(x 2, y 2),将直线的方程与椭圆联立,可得(3+4k 2)x 2+8kx −8=0,由根与系数的关系分析,:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2,结合椭圆的方程与直线的斜率公式可得3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0,解可得k 的值,即可得答案. 【解答】(1)根据题意,椭圆的离心率为12,即e =c a=2,则a =2c .又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0.∴ 由韦达定理可知:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2.∵ k 1=y 1x1+2,k 2=y 2x 1−2,且k 1=2k 2,∴ y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k 3+4k 2)+12=0,即12k 2−20k +3=0.解得:k =16或k =32. 又由k >1,则k =32.。
第二章圆锥曲线与方程单元综合测试班别: 姓名: 成绩:一、选择题(每小题5分,共60分) 1.椭圆x 2+4y 2=1的离心率为( )A.32B.34C.22D.232.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是( )A .-1B .1C .-1020D.1023.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-12,0)C .(-3,0)D .(-60,-12)4.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线5.已知两定点F 1(-1,0),F 2(1,0),且12|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .线段6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB | 为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3 C .2 D .37.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 8.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( )A .x -2y =0B .x +2y -4=0C .2x +3y +4=0D .x +2y -8=0 9.过椭圆x 24+y 22=1的右焦点作x 轴的垂线交椭圆于A 、B 两点,已知双曲线的焦点在x 轴 上,对称中心在坐标原点且两条渐近线分别过A 、B 两点,则双曲线的离心率e 为( )A.12B.22C.62D.3210.双曲线x 2m -y 2n =1(mn ≠0)有一个焦点与抛物线y 2=4x 的焦点重合,则m +n 的值为( )A .3B .2C .1D .以上都不对11.设F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b <0)的左、右焦点,点P 在双曲线上,若 PF 1→·PF 2→=0,且|PF 1→|·|PF 2→|=2ac (c =a 2+b 2),则双曲线的离心率为( ) A.1+52 B.1+32 C .2 D.1+2212.已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线右支上的任意 一点,若|PF 1|2|PF 2|的最小值为8a ,则双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2]C .(1,3]D .(1,3] 二、填空题(每小题5分,共20分)13.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是.14.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=__________, ∠F 1PF 2的大小为________.15.已知F 1、F 2是椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 是椭圆上任意一点,从F 1引∠F 1PF 2的外角平分线的垂线,交F 2P 的延长线于M ,则点M 的轨迹方程是 . 16.过抛物线y 2=4x 的焦点,作倾斜角为3π4的直线交抛物线于P ,Q 两点,O 为坐标原点,则△POQ 的面积等于__________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共60分)17.(10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18、(12分)知抛物线xy42 ,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.19.(12分)已知双曲线中心在原点,且一个焦点为(7,0),直线y=x-1与其相交于M,N两点,MN的中点的横坐标为-23,求此双曲线的方程.20.(12分)已知A (2,0)、B (-2,0)两点,动点P 在y 轴上的射影为Q ,P A →·PB→=2PQ →2.(1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0<k <1时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标.21.(14分)已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13. (1)求动点P 的轨迹方程;(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.第二章圆锥曲线与方程单元综合测试参考答案一、选择题(每小题5分,共60分)1.A 解析:∵a =1,b =12,∴c =a 2-b 2=32,∴e =c a =32,故选A.2.A 解析 把方程化为标准形式-x 2-1m +y 2-3m=1,则a 2=-3m ,b 2=-1m ,∴c 2=a 2+b 2=-4m =4,∴m =-1.3.B 解析:∵a 2=4,b 2=-k ,∴c 2=4-k .∵e ∈(1,2),∴c 2a 2=4-k4∈(1,4),k ∈(-12,0).4.D 解析:设M (2,0),由题设可知,把直线x =-1向左平移一个单位即为直线x =-2, 则点P 到直线x =-2的距离等于|PM |,所以动点P 的轨迹为抛物线,故选D. 5.D 解析:依题意知|PF 1|+|PF 2|=|F 1F 2|=2,作图可知点P 的轨迹为线段,故选D. 6.B 解析:不妨设双曲线C 为x 2a 2-y 2b 2=1(a >0,b >0),并设l 过F 2(c,0)且垂直于x 轴,则 易求得|AB |=2b 2a ,∴2b 2a =2×2a ,b 2=2a 2,∴离心率e =ca =1+b 2a 2=3,故选B.7.B 解析:由定义|AB |=5+2=7,∵|AB |min =4,∴这样的直线有且仅有两条.8.D 解析:设l 与椭圆的两交点分别为(x 1,y 1)、(x 2,y 2),则得y 21-y 22x 21-x 22=-936,所以y 1-y 2x 1-x 2=-12.故方程为y -2=-12(x -4),即x +2y -8=0.9.C 解析:A (2,1),B (2,-1),设双曲线为x 2a 2-y 2b 2=1(a >0,b >0),渐近线方程为y =±b a x ,因为A 、B 在渐近线上,所以1=b a ·2,b a =22,e =ca =a 2+b 2a 2=62.10.C 解析:抛物线y 2=4x 的焦点为F (1,0),故双曲线x 2m -y 2n =1中m >0,n >0,且m +n =c 2=1.11.A 解析:由PF 1→·PF 2→=0可知△PF 1F 2为直角三角形,则由勾股定理,得 |PF 1→|2+|PF 2→|2=4c 2,① 由双曲线的定义,得(|PF 1→|-|PF 2→|)2=4a 2,② 又|PF 1→|·|PF 2→|=2ac ,③ 由①②③得c 2-ac -a 2=0,即e 2-e -1=0, 解得e =1+52或e =1-52(舍去). 12.D 解析:|PF 1|2|PF 2|=2a +|PF 2|2|PF 2|=4a 2|PF 2|+|PF 2|+4a ≥4a +4a =8a ,当且仅当4a 2|PF 2|=|PF 2|,即|PF 2|=2a 时取等号.这时|PF 1|=4a .由|PF 1|+|PF 2|≥|F 1F 2|,得6a ≥2c ,即e =ca ≤3, 得e ∈(1,3],故选D. 二、填空题(每小题5分,共20分)13.x 29-y 2=1 解析:由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是 (10,0),知a 2+b 2=10,因此a =3,b =1,故双曲线的方程是x 29-y 2=1.14.2;120° 解析:由椭圆的定义知|PF 1|+|PF 2|=2a =2×3=6,因为|PF 1|=4,所以|PF 2|=2.在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.∴∠F 1PF 2=120°.15.(x -a 2-b 2)2+y 2=4a 2 解析:由题意知|MP |=|F 1P |,∴|PF 1|+|PF 2|=|MF 2|=2a .∴点M 到点F 2的距离为定值2a .∴点M 的轨迹是以点F 2为圆心,以2a 为半径的圆,其方程为(x -a 2-b 2)2+y 2=4a 2.16.2 2 解析 设P (x 1,y 1),Q (x 2,y 2),F 为抛物线焦点,由2(1)4y x y x=--⎧⎨=⎩,得y 2+4y -4=0,∴|y 1-y 2|=()()221212444442y y y y +-=-+⨯=∴S △POQ =12|OF ||y 1-y 2|=2 2. 三、解答题17.解:由椭圆方程x 29+y 24=1,知长半轴a 1=3,短半轴b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧c =5,c 2=a 2+b 2,c a =52,解得⎩⎨⎧a =2,b =1.故所求双曲线的方程为x 24-y 2=1. (10分)18. [解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⎪⎪⎩⎪⎪⎨⎧=+=22122y y x x ⇒⎩⎨⎧=-=y y x x 21222,又Q 是OP 的中点 ∴ ⎪⎪⎩⎪⎪⎨⎧==221212y y x x ⇒⎩⎨⎧==-==yy y x x x 422422121,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y . (12分)19.解:设双曲线方程为x 2a 2-y2b 2=1(a >0,b >0),依题意c =7,∴方程可以化为x 2a 2-y 27-a 2=1,由⎩⎪⎨⎪⎧x2a 2-y 27-a 2=1,y =x -1,得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2a 27-2a 2,∵x 1+x 22=-23,∴-a 27-2a 2=-23,解得a 2=2. ∴双曲线的方程为x 22-y 25=1. (12分)20.解:(1)设动点P 的坐标为(x ,y ),则点Q (0,y ),PQ →=(-x,0),P A →=(2-x ,-y ), PB →=(-2-x ,-y ),P A →·PB→=x 2-2+y 2.① ②∵P A →·PB →=2PQ →2,∴x 2-2+y 2=2x 2, 即动点P 的轨迹方程为y 2-x 2=2. (2)设直线m :y =k (x -2)(0<k <1),依题意,点C 在与直线m 平行且与m 之间的距离为2的直线上,设此直线为 m 1:y =kx +b . 由|2k +b |k 2+1=2,即b 2+22kb =2.① 把y =kx +b 代入y 2-x 2=2,整理,得(k 2-1)x 2+2kbx +(b 2-2)=0, 则Δ=4k 2b 2-4(k 2-1)(b 2-2)=0,即b 2+2k 2=2.② 由①②,得k =255,b =105. 此时,由方程组⎩⎨⎧y =255x +105,y 2-x 2=2,解得⎩⎨⎧x =22,y =10,即C (22,10).(12分)21. [解析]:(1)∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0), 2a >2c =22,∴a > 2由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1∵|PF 1||PF 2|≤(|PF 1|+|PF 2|2)2=a 2,∴当且仅当|PF 1|=|PF 2|时,|PF 1||PF 2|取得最大值a 2. 此时cos ∠F 1PF 2取得最小值2a 2-4a 2-1,由题意2a 2-4a 2-1=-13,解得a 2=3,123222=-=-=∴c a b∴P 点的轨迹方程为x 23+y 2=1.(2)设l :y =kx +m (k ≠0),则由 ⎪⎩⎪⎨⎧+==+m kx y y x 1322 将②代入①得:(1+3k 2)x 2+6kmx +3(m 2-1)=0 (*)设A (x 1,y 1),B (x 2,y 2),则AB 中点Q (x 0,y 0)的坐标满足:x 0=x 1+x 22=-3km 1+3k 2,y 0=kx 0+m =m1+3k 2 即Q (-3km 1+3k 2,m1+3k 2) ∵|MA |=|MB |,∴M 在AB 的中垂线上,∴k l k AB =k ·m1+3k 2+1-3km 1+3k 2=-1 ,解得m =1+3k 22 …③又由于(*)式有两个实数根,知△>0,即 (6km )2-4(1+3k 2)[3(m 2-1)]=12(1+3k 2-m 2)>0 ④ ,将③代入④得12[1+3k 2-(1+3k 22)2]>0,解得-1<k <1,由k ≠0, ∴k 的取值范围是k ∈(-1,0)∪(0,1). (14分)。
第二章 2.2 2.2.1一、选择题1.设F 1、F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是导学号 33780342( )A .椭圆B .直线C .圆D .线段[答案] D[解析] ∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2.2.(2015·黑龙江哈师大附中高二期中测试)中心在原点,焦点在坐标轴上,且过两点(4,0)、(0,2)的椭圆方程为导学号 33780343( )A.x 24+y 22=1 B .y 24+x 22=1C.y 216+x 24=1 D .x 216+y 24=1[答案] D[解析] 解法一:验证排除:将点(4,0)代入验证可排除A 、B 、C ,故选D. 解法二:设椭圆方程为mx 2+ny 2=1(m>0,n>0),∴⎩⎨⎧16m =14n =1,∴⎩⎪⎨⎪⎧m =116n =14,故选D.3.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是导学号 33780344( )A .2B .4C .8D .32[答案] B[解析] 设椭圆左焦点F ,右焦点F 1,∵2a =10,|MF|=2,∴|MF 1|=8,∵N 为MF 中点,O 为FF 1中点,∴|ON|=12|MF 1|=4.4.(2015·福建八县一中高二期末测试)“1<m<2”是“方程x 2m -1+y 23-m =1表示的曲线是焦点在y 轴上的椭圆”的导学号 33780345( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] C[解析] 方程x 2m -1+y 23-m=1表示的曲线是焦点在y 轴上的椭圆,∴⎩⎨⎧m -1>03-m>03-m>m -1,∴1<m<2,故选C.5.中心在原点,焦点在x 轴上,椭圆上的点到两焦点的距离之和为18,且两个焦点恰好将长轴三等分的椭圆的方程是导学号 33780346( )A.x 281+y 245=1 B .x 281+y 29=1C.x 281+y272=1 D .x 281+y236=1[答案] C[解析] 椭圆上的点到两焦点的距离之和为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a)=6,∴c =3,∴b 2=a 2-c 2=72,故选C.6.直线2x +by +3=0过椭圆10x 2+y 2=10的一个焦点,则b 的值为导学号 33780347( ) A .-1 B .12C .-1或1D .-12或12[答案] C[解析] 椭圆方程化为标准形式为x 2+y 210=1,∴焦点坐标为(0,±3),当直线过焦点(0,3)时,b =-1;当直线过焦点(0,-3)时,b =1.二、填空题7.(2015·江苏泰州市姜堰区高二期中测试)椭圆x 25+y 24=1的焦点坐标是________.导学号 33780348[答案] (-1,0)、(1,0)[解析] ∵a 2=5,b 2=4,∴c 2=a 2-b 2=1, ∴椭圆x 25+y 24=1的焦点坐标是(-1,0)、(1,0).8.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.导学号 33780349[答案] x 24+y 23=1[解析] 由题意可得⎩⎨⎧a +c =3a -c =1,∴⎩⎨⎧a =2c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y23=1.三、解答题9.已知椭圆的中心在原点,且经过点P(3,0),a =3b ,求椭圆的标准方程.导学号 33780350[解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b2=1(a>b>0).由椭圆过点。
第二章圆锥曲线与方程1、平面内与两个定点F i , F2的距离之和等于常数(大于| F,F2| )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:3、设是椭圆上任一点,点到F,对应准线的距离为d,,点到F2对应准线的距离为d2,则丄丄d i d24、平面内与两个定点F i , F2的距离之差的绝对值等于常数(小于|F i F2 )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:b 6实轴和虚轴等长的双曲线称为等轴双曲线.7、设 是双曲线上任一点,点 到F i 对应准线的距离为d i ,点 到F 2对应准线的距离为8、平面内与一个定点F 和一条定直线丨的距离相等的点的轨迹称为抛物线.定点 F 称为抛物线的焦点,定直线I 称为抛物线的准线. 9、 过抛物线的焦点作垂直于对称轴且交抛物线于 、两点的线段,称为抛物线的“通径”即|| 2p .10、 焦半径公式: 若点 x °,y 。
在抛物线 2y 2px p 0上,焦点为F ,则 Fx 卫 X 。
27若点 x °,y ° 在抛物线 2y2px p 0上,焦点为F ,贝H Fp 7;若点 x °,y 。
在抛物线 2X 2py p 0上,焦点为F ,则 F y0号若点 X o ,y o 在抛物线 2X2py p0上,焦点为F ,贝 JI Fy 。
p2 .11、抛物线的几何性质:d 2,则F iF2d 1d 2圆锥曲线测试题一、选择题:1 •已知动点M的坐标满足方程13「x2—y2|12x 5y 12|,则动点M的轨迹是()A.抛物线B. 双曲线C. 椭圆D. 以上都不对2 22•设P是双曲线笃L 1上一点,双曲线的一条渐近线方程为3x 2y 0, R、F2分别a 9是双曲线的左、右焦点,若IPFJ 5,则|PF2 | ()A. 1 或5B. 1 或9C. 1D. 93. 设椭圆的两个焦点分别为只、、F2,过F2作椭圆长轴的垂线交椭圆于点巳若厶F1PF2为等腰直角三角形,则椭圆的离心率是()•A. B. 辽1C. 2 ,2 D. .2 12 24. 过点(2,-1)引直线与抛物线y x2只有一个公共点,这样的直线共有()条A. 1 C. 35. 已知点A( 2,0)、B(3,0),动点P(x,y)满足PA PB y2,则点P的轨迹是()A.圆 B .椭圆 C.双曲线 D.抛物线2 26. 如果椭圆——1的弦被点(4,2)平分,则这条弦所在的直线方程是()36 9A x 2y 0B x 2y 4 0C ■ 2x 3y 12 0D x 2y 8 0214x7、无论 为何值,方程x 2 2sin y 21所表示的曲线必不是( )二、填空题:22 2 29、 对于椭圆— ' 1和双曲线— ' 1有下列命题:16979①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点; ③双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同•其中正确命题的序号是10、 若直线(1 a)x y 1 0与圆x 2 y 2 2x 0相切,贝U a 的值为 _______________________ 11、 抛物线y x 2上的点到直线4x 3y 8 0的距离的最小值是 _______________12、 抛物线 C: y 2=4x 上一点Q 到点B(4,1)与到焦点 F 的距离和最小,则点Q 的坐 标 。
第二章 2.4 2.4.1一、选择题1.在平面直角坐标系内,到点(1,1)和直线x +2y =3的距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线[答案] A[解析] ∵点(1,1)在直线x +2y =3上,故所求点的轨迹是过点(1,1)且与直线x +2y =3垂直的直线.2.过点A (3,0)且与y 轴相切的圆的圆心的轨迹为( )A .圆B .椭圆C .直线D .抛物线[答案] D[解析] 如图,设点P 为满足条件的一点,不难得出结论:点P 到点A 的距离等于点P 到y 轴的距离,故点P 在以点A 为焦点,y 轴为准线的抛物线上,故点P 的轨迹为抛物线,因此选D.3.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .5[答案] D[解析] 解法一:∵y =4,∴x 2=4·y =16,∴x =±4, ∴A (±4,4),焦点坐标为(0,1), ∴所求距离为42+(4-1)2=25=5.解法二:抛物线的准线为y =-1,∴A 到准线的距离为5,又∵A 到准线的距离与A 到焦点的距离相等.∴距离为5.4.抛物线y 2=mx 的焦点为F ,点P (2,22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为( )A .1B .32 C .2D .52[答案] D[解析] ∵点P (2,22)在抛物线上,∴(22)2=2m ,∴m =4,P 到抛物线准线的距离为2-(-1)=3,F 到准线距离为2, ∴M 到抛物线准线的距离为d =3+22=52.5.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .4[答案] C[解析] 抛物线的准线为x =-p2,将圆方程化简得到(x -3)2+y 2=16,准线与圆相切,则-p2=-1,∴p =2,故选C.6.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为( )A .12B .8C .6D .4[答案] B[解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 二、填空题7.抛物线y =ax 2的准线方程是y =2,则a 的值为________.[答案] -18[解析] 抛物线方程化为标准形式为x 2=1a y ,由题意得a <0,∴2p =-1a ,∴p =-12a ,∴准线方程为y =p 2=-14a =2,∴a =-18.8.沿直线y =-2发出的光线经抛物线y 2=ax 反射后,与x 轴相交于点A (2,0),则抛物线的准线方程为________(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行).[答案] x =-2[解析] 由直线y =-2平行于抛物线的轴知A (2,0)为焦点,故准线方程为x =-2. 三、解答题9.若抛物线y 2=2px (p >0)上一点M 到准线及对称轴的距离分别为10和6,求M 点的横坐标及抛物线方程.[解析] ∵点M 到对称轴的距离为6, ∴设点M 的坐标为(x,6). 又∵点M 到准线的距离为10,∴⎩⎪⎨⎪⎧62=2px ,x +p 2=10.解得⎩⎪⎨⎪⎧ x =9,p =2,或⎩⎪⎨⎪⎧x =1,p =18.故当点M 的横坐标为9时,抛物线方程为y 2=4x . 当点M 的横坐标为1时,抛物线方程为y 2=36x .10.求顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线的标准方程.[解析] ∵点(-2,3)在第二象限,∴设抛物线方程为y 2=-2px (p >0)或x 2=2p ′y (p ′>0), 又点(-2,3)在抛物线上,∴p =94,p ′=23,∴抛物线方程为y 2=-92x 或x 2=43y .一、选择题1.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则点M 的轨迹方程是( ) A .x +4=0 B .x -4=0 C .y 2=8xD .y 2=16x[答案] D[解析] 依题意可知M 点到点F 的距离等于M 点到直线x =-4的距离,因此其轨迹是抛物线,且p =8,顶点在原点,焦点在x 轴正半轴上,∴其方程为y 2=16x ,故答案是D.2.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4[答案] C[解析] 抛物线C 的准线方程为x =-2,焦点F (2,0),由|PF |=42及抛物线的定义知,P 点的横坐标x P =32,从而y P =±26,∴S △POF =12|OF |·|y P |=12×2×26=2 3.3.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|P 1F |+|P 2F |=|FP 3|B .|P 1F |2+|P 2F |2=|P 3F |2C .2|P 2F |=|P 1F |+|P 3F |D .|P 2F |2=|P 1F |·|P 3F |[答案] C[解析] ∵点P 1、P 2、P 3在抛物线上,且2x 2=x 1+x 3,两边同时加上p , 得2(x 2+p 2)=x 1+p 2+x 3+p2,即2|P 2F |=|P 1F |+|P 3F |,故选C.4.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为( )A.522 B .522+1 C.522-2D .522-1[答案] D[解析] 设抛物线焦点为F ,过P 作P A 与准线垂直,垂足为A ,作PB 与l 垂直,垂足为B ,则d 1+d 2=|P A |+|PB |-1=|PF |+|PB |-1,显然当P 、F 、B 三点共线(即P 点在由F 向l 作垂线的垂线段上)时,d 1+d 2取到最小值,最小值为522-1.二、填空题5.已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段F A 交抛物于点B ,过B 点作l 的垂线,垂足为M ,若AM ⊥MF ,则p =________.[答案]2[解析] 由抛物线的定义可得BM =BF ,F (P2,0),又AM ⊥MF ,故点B 为线段F A 中点,即B (p 4,1),所以1=2p ×p4⇒p = 2.6.在平面直角坐标系xOy 中,点B 与点A (-1,0)关于原点O 对称.点P (x 0,y 0)在抛物线y 2=4x 上,且直线AP 与BP 的斜率之积等于2,则x 0=________.[答案] 1+ 2[解析] ∵点B 与点A (-1,0)关于原点O 对称,∴B (1,0),根据题意,得y 20x 20-1=2,又y 20=4x 0,∴2x 0=x 20-1,即x 20-2x 0-1=0,解得x 0=2±82=1±2,舍去负值,得x 0=1+ 2. 三、解答题7.求适合下列条件的抛物线的标准方程:(1)过抛物线y 2=2mx 的焦点F 作x 轴的垂线交抛物线于A 、B 两点,且|AB |=6; (2)抛物线顶点在原点,对称轴是x 轴,点P (-5,25)到焦点的距离是6.[解析] (1)设抛物线的准线为l ,交x 轴于K 点,l 的方程为x =-m2,如图,作AA ′⊥l于A ′,BB ′⊥l 于B ′,则|AF |=|AA ′|=|FK |=|m |,同理|BF |=|m |.又|AB |=6,则2|m |=6. ∴m =±3,故所求抛物线方程为y 2=±6x .(2)设焦点F (a,0),|PF |=(a +5)2+20=6,即a 2+10a +9=0,解得a =-1或a =-9.当焦点为F (-1,0)时,p =2,抛物线开口方向向左,其方程为y 2=-4x ;当焦点为F (-9,0)时,p =18,抛物线开口方向向左,其方程为y 2=-36x .8.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[解析] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则B 点的坐标为(a2,-a 4),如图所示,设隧道所在抛物线方程为x 2=my ,则(a 2)2=m ·(-a 4),∴m =-a ,即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得 0.82=-ay , 即y =-0.82a.欲使卡车通过隧道,应有y -(-a 4)>3,即a 4-0.82a >3,由于a >0,得上述不等式的解为a >12.21,∴a 应取13.。
章末检测卷二)时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.双曲线3x 2-y 2=9的实轴长是( ) A.2 3 B.2 2 C.4 3 D.4 2[答案] A[解析] ∵3x 2-y 2=9,∴x 23-y 29=1, ∴a =3,∴2a =2 3.2.抛物线y 2=8x 的焦点到准线的距离是( )A.1B.2C.4D.8[答案] C[解析] ∵2p =8,∴p =4.3.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 应满足的条件是( ) A.k >3B.2<k <3C.k =2D.0<k <2[答案] C[解析] k >0,c =9-k 2=k +3,∴k =2. 4.F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,P 是椭圆上任一点,过一焦点引∠F 1PF 2的外角平分线的垂线,则垂足Q 的轨迹为( )A.圆B.椭圆C.双曲线D.抛物线 [答案] A[解析] ∵PQ 平分∠F 1P A ,且PQ ⊥AF 1,∴Q 为AF 1的中点,且|PF 1|=|P A |,∴|OQ |=12|AF 2|=12(|P A |+|PF 2|)=a , ∴Q 点轨迹是以O 为圆心,a 为半径的圆.5.直线y =x +3与曲线y 29-x |x |4=1( ) A.没有交点B.只有一个交点C.有两个交点D.有三个交点 [答案] D[解析] 当x >0时,双曲线y 29-x 24=1的渐近线为:y =±32x ,而直线y =x +3斜率为1,1<32, ∴y =x +3与x 轴上半部分的一支双曲线有一交点.当x ≤0时,曲线y 29+x 24=1为椭圆, 又∵直线y =x +3过椭圆顶点,∴直线y =x +3与椭圆左半部分有两交点,共计3个交点,选D.6.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( )A.33B.22C.14D.12 [答案] D[解析] 由题意可得⎩⎪⎨⎪⎧ c 2=m 2+n 2,c 2=am ,2n 2=2m 2+c 2,解得c 2a 2=14,∴e =c a =12. 7.与抛物线x 2=4y 关于直线x +y =0对称的抛物线的焦点坐标是( )A.(1,0)B.(116,0)C.(-1,0)D.(0,-116) [答案] C[解析] x 2=4y 关于x +y =0对称的曲线为y 2=-4x ,其焦点为(-1,0).8.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62[答案] D[解析] |F 1F 2|=2 3.设双曲线的方程为x 2a 2-y 2b2=1. ∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a ,∴|AF 2|=2+a ,|AF 1|=2-a .在Rt △F 1AF 2中,∠F 1AF 2=90°,∴|AF 1|2+|AF 2|2=|F 1F 2|2,即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a =32=62.故选D. 9.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1 B.x 28+y 26=1 C.x 22+y 2=1 D.x 24+y 2=1 [答案] A[解析] ∵抛物线焦点为(-1,0),∴c =1, 又椭圆的离心率e =12,∴a =2,b 2=a 2-c 2=3, ∴椭圆的方程为x 24+y 23=1,故选A. 10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2B.2 2C.4D.8 [答案] C[解析] 设C :x 2a 2-y 2a2=1. ∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a 2=1和x =-4得A (-4,16-a 2),B (-4,-16-a 2),∴|AB |=216-a 2=43, ∴a =2,∴2a =4.∴C 的实轴长为4.11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A.2B.3C.6D.8[答案] C[解析] 由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20.∵P 为椭圆上一点,∴x 204+y 203=1. ∴OP →·FP →=x 20+x 0+3(1-x 204) =x 204+x 0+3=14(x 0+2)2+2. ∵-2≤x 0≤2,∴OP →·FP →的最大值在x 0=2时取得,且最大值等于6.12.从双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1引圆x 2+y 2=a 2的切线,切点为T .延长F 1T 交双曲线右支于P 点,若M 为线段F 1P 的中点,O 为坐标原点,则|MO |-|MT |与b -a 的大小关系为( )A.|MO |-|MT |>b -aB.|MO |-|MT |=b -aC.|MO |-|MT |<b -aD.不确定[答案] B[解析] 如图,设双曲线的右焦点为F 2,连接PF 2.∵O 、M 分别为F 1F 2、F 1P 的中点,∴OM 是△PF 1F 2的中位线,∴|OM |=12|PF 2|, 由双曲线的定义,知|PF 1|-|PF 2|=2a ,∴|PF 2|=|PF 1|-2a ,∴|MO |-|MT |=12(|PF 1|-2a )-|MT | =12|PF 1|-|MT |-a =|MF 1|-|MT |-a =|TF 1|-a =|OF 21|-|OT |2-a =c 2-a 2-a =b -a .二、填空题(本大题共4小题,每小题5分,共20分)13.双曲线x 216-y 29=1的两条渐近线的方程为________. [答案] y =±34x [解析] 双曲线x 216-y 29=1的渐近线方程为x 216-y 29=0,即y =±34x . 14.如图,椭圆的中心在坐标原点,当FB →⊥AB →时,此类椭圆称为“黄金椭圆”,可推算出“黄金椭圆”的离心率e =________.[答案] 5-12[解析] 设椭圆方程为x 2a 2+y 2b2=1(a >b >0).由题意得⎩⎪⎨⎪⎧ |AB |2=a 2+b 2,|BF |=b 2+c 2=a ,|AF |=a +c .∵BF →⊥BA →,∴|AB |2+|BF |2=|AF |2,∴(a +c )2=a 2+b 2+a 2,∴c 2+ac -a 2=0.∴e 2+e -1=0,又0<e <1,∴e =5-12. 15.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=________.[答案] 2[解析] 由y 2=4x ,知p =2,F (1,0),由抛物线定义,x A +p 2=|AF |, ∴x A =2-1=1,因此AB ⊥x 轴,F 为AB 中点,从而|BF |=|AF |=2.16.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是________.[答案] x 24-y 2=1 [解析] 由PF 1⊥PF 2,有|PF 1|2+|PF 2|2=|F 1F 2|2⇒(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=|F 1F 2|2, 由已知,得||PF 1|-|PF 2||=2a ,|F 1F 2|=2c =25,|PF 1|·|PF 2|=2⇒(2a )2+2×2=(25)2⇒a 2=4⇒b 2=c 2-a 2=5-4=1.则双曲线方程为x 24-y 2=1. 三、解答题(本大题共6小题,共70分)17.(10分)双曲线x 2a 2-y 2b2=1(a >0,b >0),过焦点F 1的弦AB (A ,B 在双曲线的同支上)长为m ,另一焦点为F 2,求△ABF 2的周长.解 ∵|AF 2|-|AF 1|=2a ,|BF 2|-|BF 1|=2a ,∴(|AF 2|-|AF 1|)+(|BF 2|-|BF 1|)=4a ,又|AF 1|+|BF 1|=|AB |=m ,∴|AF 2|+|BF 2|=4a +(|AF 1|+|BF 1|)=4a +m .∴△ABF 2的周长等于|AF 2|+|BF 2|+|AB |=4a +2m .18.(12分)如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.解 (1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y得x 2-4x -4b =0,(*)因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b )=0,解得b =-1.(2)由(1)可知b =-1,故方程(*)即为x 2-4x +4=0,解得x =2,代入x 2=4y ,得y =1.故点A (2,1),因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-1)|=2, 所以圆A 的方程为(x -2)2+(y -1)2=4.19.(12分)过抛物线y 2=4x 的焦点F 作直线l 与抛物线交于A 、B 两点.求证:△AOB 是钝角三角形.证明 ∵焦点F 为(1,0),过点F 且与抛物线交于点A 、B 的直线可设为ky =x -1,代入抛物线y 2=4x ,得y 2-4ky -4=0,则有y A y B =-4,则x A x B =y 2A 4·y 2B 4=1. 又|OA |·|OB |cos ∠AOB =OA →·OB →=x A x B +y A y B =1-4=-3<0,得∠AOB 为钝角,故△AOB 是钝角三角形.20.(12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上;(3)在(2)的条件下求△F 1MF 2的面积.(1)解 ∵离心率e =2,∴双曲线为等轴双曲线,可设其方程为x 2-y 2=λ(λ≠0),则由点(4,-10)在双曲线上,可得λ=42-(-10)2=6,∴双曲线方程为x 2-y 2=6.(2)证明 ∵点M (3,m )在双曲线上,∴32-m 2=6,∴m 2=3,又双曲线x 2-y 2=6的焦点为F 1(-23,0),F 2(23,0),∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m )=(-3)2-(23)2+m 2=9-12+3=0,∴MF 1⊥MF 2,∴点M 在以F 1F 2为直径的圆上.(3)解 S △F 1MF 2=12×43×|m |=6. 21.(12分)已知椭圆G :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△P AB 的面积.解 (1)由已知得c =22,c a =63. 解得a =23,又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧ y =x +m x 212+y 24=1,得4x 2+6mx +3m 2-12=0.① 设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2) (x 1<x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4; 因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m 4-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322, 所以△P AB 的面积S =12|AB |·d =92. 22.(12分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1、PF 2的斜率分别为k 1、k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值. 解 (1)由已知得e =c a =32,c 2a 2+14b2=1, 又c 2=a 2-b 2,所以a 2=4,b 2=1.故椭圆C 的方程为:x 24+y 2=1. (2)方法一 如图,由题意知 |F 1M ||MF 2|=|PF 1||PF 2|即|PF 1|4-|PF 1|=c +m c -m =3+m 3-m,整理得: m =32(|PF 1|-2). 又a -c <|PF 1|<a +c ,即2-3<|PF 1|<2+ 3.∴-32<m <32.故m 的取值范围为m ∈⎝⎛⎭⎫-32,32. 方法二 由题意知:PF 1→·PM →|PF 1→||PM →|=PF 2→·PM →|PF 2→||PM →|, 即PF 1→·PM →|PF 1→|=PF 2→·PM →|PF 2→|. 设P (x 0,y 0),其中x 20≠4,将向量坐标化得:m (4x 20-16)=3x 30-12x 0.所以m =34x 0,而x 0∈(-2,2),所以m ∈⎝⎛⎭⎫-32,32. (3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 所以Δ=64(ky 0-k 2x 0)2-16(1+4k 2)(y 20-2kx 0y 0+k 2x 20-1)=0.即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0. 故k =-x 04y 0,又1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0. 所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2 =⎝⎛⎭⎫-4y 0x 0·⎝⎛⎭⎫2x 0y 0=-8. 所以1kk 1+1kk 2为定值,这个定值为-8.。
12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。
选修2-1第二章《圆锥曲线与方程》单元测试题一.选择题1 以椭圆1162522=+y x 的焦点为顶点,离心率为2的双曲线的方程( ) A1481622=-y x B 127922=-y x C 1481622=-y x 或127922=-y x D 以上都不对 2.已知两点)45,4(),45,1(--N M ,给出下列曲线方程:①0124=-+y x ;②322=+y x ;③1222=+y x ;④1222=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④3.圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .041222=+--+y x y x4.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点,MN 中点横坐标为32-,则此双曲线的方程是( ) (A) 14322=-y x (B) 13422=-y x (C)12522=-y x (D) 15222=-y x 5.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( )A .28B .14-82C .14+82D .8 26.设P 是椭圆x 29+y 24=1上一动点,F 1、F 2是椭圆的两个焦点,则cos∠F 1PF 2的最小值是( )A.12B.19C .-19D .-597.定义:离心率e =5-12的椭圆为“黄金椭圆”,已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点为F (c,0)(c >0),P 为椭圆E 上的任意一点,若a ,b ,c 不是等比数列,则( )A .E 是“黄金椭圆”B. E 一定不是“黄金椭圆”C. E 不一定是“黄金椭圆”D. 可能不是“黄金椭圆”8.已知F 1、F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 1且垂直于x 轴的直线交椭圆C 于A ,B两点,若△ABF 2为钝角三角形,则椭圆C 的离心率e 的取值范围为( ) A .(0,2-1)B .(0,3-1) C .(2-1,1) D .(3-1,1)9.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上 C .必在圆x 2+y 2=2外D .以上三种情形都有可能10.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A .2 B .3C.115D.3716二.填空题11.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________12.当以椭圆上一点和椭圆两焦点为顶点的三角形的面积的最大值为1时,椭圆长轴的最小值为.13.椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,壁反射后第一次回到点A 时,小球经过的路程是________.14.以双曲线的实轴为虚轴,虚轴为实轴的双曲线叫做原双曲线的共轭双曲线,若一条双曲线与它的共轭双曲线的离心率分别为e 1,e 2,则当它们的实、虚轴都在变化时,e 21+e 22的最小值是________. 15.点P 到A (1,0)和直线x =-1的距离相等,且点P 到直线l :y =x 的距离等于22,则这样的点P 的个数为________. 三.解答题16. k 代表实数,讨论方程22280kx y +-=所表示的曲线.17.已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点到直线022=+-y x 的距离为3. (1)求椭圆的方程;(2)设椭圆与直线)0(≠+=k m kx y 相交于不同的两点M 、N.当AN AM =时,求m 的取值范围.18.已知椭圆方程为1822=+y x ,射线x y 22=(x ≥0)与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于A 、B 两点(异于M ). (1)求证直线AB 的斜率为定值; (2)求△AMB 面积的最大值.19.已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程.20.抛物线的顶点在原点,它的准线过双曲线22221x y a b-=的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为362⎛⎫⎪⎝⎭,.求抛物线与双曲线的方程.21.某隧道横断面由抛物线和矩形的三边组成,尺寸如图2所示,某卡车载一集装箱,箱宽3m ,车与箱共高4m ,此车能否通过此隧道?请说明理由.选修2-1第二章《圆锥曲线与方程》单元测试题命题人:王琴 审题人:朱杏平答案 一.选择题 1.B2. D 3. D 4. D 5.解析:|PF 2|+|PQ |+|QF 2|=|PF 2|-|PF 1|+|QF 2|-|QF 1|+2·|PQ | =14+8 2. 答案:C6.解析:设|PF 1|=m ,|PF 2|=n ,由题意m +n =6,c =5,则cos∠F 1PF 2=m 2+n 2-(2c )22mn =(m +n )2-4c 2-2mn 2mn =4b 22mn -1≥2×4⎝ ⎛⎭⎪⎫m +n 22-1=-19.答案:C7. 解析:假设E 为黄金椭圆,则e =c a =5-12, 即c =5-12a , ∴b 2=a 2-c 2=a 2-⎝⎛⎭⎪⎫5-12a 2=5-12a 2=ac . 即a ,b ,c 成等比数列,与已知矛盾,故椭圆E 一定不是“黄金椭圆”. 答案:B8.解析:由△ABF 2为钝角三角形,得AF 1>F 1F 2,∴b 2a>2c ,化简得c 2+2ac -a 2<0,∴e 2+2e -1<0,又0<e <1,解得0<e <2-1,选A.答案:A9.解析:∵x 1+x 2=-b a ,x 1·x 2=-c a,∴x 21+x 22=(x 1+x 2)2-2x 1·x 2=b 2a 2+2c a =b 2+2aca 2,∵e =c a =12,∴c =12a ,∴b 2=a 2-c 2=a 2-⎝ ⎛⎭⎪⎫12a 2=34a 2,∴x 21+x 22=34a 2+2a ×12a a 2=74<2. ∴P (x 1,x 2)在圆x 2+y 2=2内.故应选A. 答案:A10.解析:如图所示,动点P 到l 2:x =-1的距离可转化为P 到F 的距离,由图可知,距离和的最小值即F 到直线l 1的距离d =|4+6|32+42=2,故选A.答案:A 二.填空题11.221205x y -=± 12. 2213.解析:设靠近A 的长轴端点为M ,另一长轴的端点为N .若小球沿AM 方向运动,则路程应为2(a -c );若小球沿AN 方向运动,则路程为2(a +c );若小球不沿AM 与AN 方向运动,则路程应为4a .答案:4a 或2(a -c )或2(a +c )14.解析:∵e 21=a 2+b 2a 2,e 22=a 2+b 2b2,∴e 21+e 22=a 2+b 2a 2+a 2+b 2b2=2+b 2a 2+a 2b2≥2+2=4(当且仅当a =b 时等号成立). 答案:415.解析:由抛物线定义,知点P 的轨迹为抛物线,其方程为y 2=4x ,设点P 的坐标为⎝ ⎛⎭⎪⎫y 204,y 0,由点到直线的距离公式,知⎪⎪⎪⎪⎪⎪y 204-y 02=22,即y 20-4y 0±4=0,易知y 0有三个解,故点P 个数有三个. 答案:3三.解答题16.解:当0k <时,曲线22184y x k-=-为焦点在y 轴的双曲线; 当0k =时,曲线2280y -=为两条平行于x 轴的直线22y y ==-或;当02k <<时,曲线22184x y k+=为焦点在x 轴的椭圆; 当2k =时,曲线224x y +=为一个圆;当2k >时,曲线22184y x k+=为焦点在y 轴的椭圆 17.(1)依题意可设椭圆方程为 1222=+y ax ,则右焦点F (0,12-a )由题设322212=+-a 解得32=a 故所求椭圆的方程为1322=+y x . 1322=+y x (2)设P 为弦MN 的中点,由⎪⎩⎪⎨⎧=++=1322y x mkx y 得 0)1(36)13(222=-+++m mkx x k 由于直线与椭圆有两个交点,,0>∆∴即 1322+<k m ①13322+-=+=∴k mkx x x N M p 从而132+=+=k m m kx y p pmkk m x y k pp Ap 31312++-=+=∴ 又MN AP AN AM ⊥∴=,,则 kmk k m 13132-=++- 即 1322+=k m ②把②代入①得 22m m > 解得 20<<m 由②得 03122>-=m k 解得21>m .故所求m 的取范围是(2,21) 18.解析:(1)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线AB 方程为)22(2--=-x k y . 分别与椭圆方程联立,可解出2284222-+-=k k k x A ,2284222-++=k k k x B . ∴22)(=--=--BA B A B A B A x x x x k x x y y . ∴22=AB k (定值). (2)设直线AB 方程为m x y +=22,与1822=+y x 联立,消去y 得mx x 24162+ 0)8(2=-+m .由0>∆得44<<-m ,且0≠m ,点M 到AB 的距离为3||m d =. 设AMB ∆的面积为S .∴2)216(321)16(321||41222222=≤-==⋅m m d AB S . 当22±=m 时,得2max =S .19.解:直线l 与x 轴不平行,设l 的方程为 a ky x += 代入双曲线方程 整理得012)1(222=-++-a kay y k而012≠-k ,于是122--=+=k ak y y y B A T 从而12--=+=k a a ky x T T 即 )1,1(22kak ak T -- 点T 在圆上 012)1()1(22222=-+-+-∴kak a k ak 即22+=a k ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=k 或 122+=a k当0=k 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a k 时,由①得1=a l K ∴±=,3的方程为13+±=y x .故所求直线l 的方程为2-=x 或13+±=y x20.解:由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为22(0)y px p =>, 将交点32⎛ ⎝,代入得2p =,故抛物线方程为24y x =,焦点坐标为(10),, 这也是双曲线的一个焦点,则1c =. 又点32⎛ ⎝,也在双曲线上,因此有229614a b -=. 又221a b +=,因此可以解得221344a b ==,,因此,双曲线的方程为224413y x -=.21.解:取抛物线顶点为原点,水平向右为x 轴正方向建立直角坐标系,设抛物线方程为22(0)x py p =->,当3x =时,3y =-,即取抛物线与矩形的结合点(33)-,, 代入22x py =-,得96p =,则32p =, 故抛物线方程为23x y =-. 已知集装箱的宽为3m ,取32x =, 则21334y x =-=-.而隧道高为5m ,35m m 4-14m 4m 4=>.所以卡车可以通过此隧道.。
阶段水平测试(二)一、选择题:本大题共12小题,每小题5分,共60分. 1. 已知θ∈R ,则方程x 2+y 2cos θ=4表示的曲线不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线解析:本题主要考查cos θ的取值范围和各种圆锥曲线的标准方程.因为θ∈R ,所以若cos θ=1,方程表示圆;若cos θ>0且不等于1,方程表示椭圆;若cos θ<0,方程表示双曲线,所以方程表示的曲线不可能是抛物线,故选D.答案:D2. 如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A. (3,+∞)B. (-∞,-2)C. (3,+∞)∪(-∞,-2)D. (3,+∞)∪(-6,-2)解析:本题考查焦点在不同坐标轴上的椭圆方程的特征.由于椭圆的焦点在x 轴上,所以⎩⎨⎧a 2>a +6,a +6>0,即⎩⎨⎧(a +2)(a -3)>0,a >-6.解得a >3或-6<a <-2,故选D.答案:D3. 以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1D.x 24+y 216=1解析:方程可化为y 212-x 24=1,∴焦点为(0,±4),顶点为(0,±23).从而椭圆方程中,a =4,c =23,∴b =2.∵焦点在y 轴上,∴椭圆方程为x 24+y 216=1. 答案:D4. 斜率为3的直线与双曲线x 2a 2-y 2b 2=1(a >0,b >0)恒有两个公共点,则双曲线离心率的取值范围是( )A. 2014·四川省成都七中期中考试2014·课标全国卷Ⅰ2014·山东济南三模2014·河北省衡水中学月考2014·安徽师大附中月考2014·江苏高考hslx3y3h 如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为(43,13),且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.解:设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a .又BF 2=2,故a = 2.因为点C (43,13)在椭圆上,所以169a 2+19b 2=1. 解得b 2=1.故所求椭圆的方程为x 22+y 2=1. (2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb =1. 解方程组⎩⎪⎨⎪⎧x c +y b =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c2,⎩⎨⎧x 2=0,y 2=b .所以点A 的坐标为(2a 2c a 2+c 2,b (c 2-a 2)a 2+c2).又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为(2a 2ca 2+c2,b (a 2-c 2)a 2+c2). 因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c3·(-b c )=-1. 又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15. 因此e =55.。
高中数学选修2-1第二章——圆锥曲线与方程典型题型讲练测一、椭圆、双曲线与抛物线二、曲线与方程求轨迹方程的主要方法:直接法,定义法,相关点法(代入法),参数法,交轨法,待定系数法等.1.已知点(0,1)A -,B 在直线3y =-上,点M 满足M B ∥O A ,MA AB MB BA =,则点M 的轨迹方程为 .变式1:点P 到点(3,0)F 的距离的4倍与它到直线2x =的距离的3倍之和记为d ,当点P 运动时,d 恒等于点P 的横坐标与18之和,则点P 的轨迹C 为 .变式2:已知定点(1,0)A -,(2,0)F ,定直线l :12x =,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍,则动点P 的轨迹方程为 .2.(2,0)M -和(2,0)N 是平面上的两点,动点P 满足6P M P N +=,则点P 的轨迹方程为 ;若动点Q 满足QM QN -=Q 的轨迹方程为 .变式1:动圆P 与定圆C :22(2)1x y ++=外切,与定直线l :1x =相切,则点P 的轨迹方程为 .变式2:1F 、2F 是椭圆C :22221(0)x y a b ab+=>>的左右焦点,点P 在椭圆上,过焦点2F 向12F PF ∠的外角平分线作垂线,垂直为D ,并延长2F D 交1F P 于点Q ,则点D 的轨迹方程为 ;点Q 的轨迹方程为 .变式3:1F 、2F 是双曲线的左右焦点,点P 在双曲线上(不是顶点),过焦点1F 引12F PF ∠的平分线的垂线,垂直为Q ,并延长2F D 交1F P 于点Q ,则点Q 的轨迹方程为 .变式4:在正方体1111ABC D A B C D -中,点P 是侧面11BCC B 内一动点,若点P 到直线B C 与到直线11C D 的距离相等,则动点P 的轨迹为 .变式5:正三棱锥S A B C -中,侧面SA B 与底面ABC 所成的锐二面角为α,顶点P 在侧面SA B 内,PQ ⊥底面ABC ,垂足为Q ,若sin PQ PS α=,则动点P 的轨迹为 .变式6:线段A B 的长度为定值,A α∈,B α∉,C α∈,若A B C ∆的面积为定值S ,则点C 的轨迹为 .变式7:已知直线l 、m 是两条互相垂直的异面直线,两异面直线间的距离为定值d ,过直线l 作平面α,使m ∥α,点P 是平面α内一动点,点P 到直线l 、m 的距离分别为1d 和2d ,若12d d =,则点P的轨迹为 .3.已知A 为椭圆2212516xy+=上的点,点(2,1)B 为定点,若2AP PB =,则点P 的轨迹方程为 .变式1:C 在抛物线2y x =上,(1,1)A -、(2,4)B 是两个定点,则A B C ∆的重心G 的轨迹方程为 .变式2:设0λ>,点(1,1)A ,点B 在抛物线2y x =上,点Q 满足B Q Q A λ=,经过点Q 与x 轴垂直的直线交抛物线与点M ,点P 满足Q M M P λ=,则点P 的轨迹方程为 .变式3:椭圆的中心为原点O ,离心率e =2x =(Ⅰ)求该椭圆的标准方程;(Ⅱ)设动点P 满足:O P O M O N =+2uu u r uuur uuu r,其中,M N 是椭圆上的点,直线O M 与O N 的斜率之积为1-2,问:是否存在两个定点,F F 12,使得PF PF 12+为定值?若存在,求,F F 12的坐标;若不存在,说明理由.4.过点(0,1)M 的直线与椭圆2214xx +=交于A 、B 两点,点O 是坐标原点,点P 满足1()2O P O A O B =+,则动点P 的轨迹方程为 .变式1:已知圆C :2224222(21)4510x y m x m y m m m +-+-++-+=,则圆心C 的轨迹方程为 .变式2:已知圆C :22221122()2()210x y t x t y t ttt+-+--++-=(0t >),则圆心C 的轨迹方程为 .5.过点(0,)M p 作直线l 与抛物线22(0)x py p =>交于A 、B 两点,分别过点A 、B 作抛物线的两条切线1l 和2l ,且1l 和2l 相较于点P .(Ⅰ)求证:直线1l 和2l 的斜率的乘积为定值; (Ⅱ)求点P 的轨迹方程. 变式:已知双曲线2212xy -=的左右顶点为1A 、2A ,点00(,)P x y 和00(,)Q x y -是双曲线上不同的两个动点,则直线1A P 和直线2A Q 的交点E 的轨迹方程为 .。
第二章 圆锥曲线
[基础训练A 组]
一、选择题
1. 已知椭圆116
252
2=+y x 上的一点P 到椭圆一个焦点的距离为3, 则P 到另一焦点距离为( )
A .2
B .3
C .5
D .7
2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )
A .116922=+y x
B .116
252
2=+y x C .1162522=+y x 或125
162
2=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( )
A .双曲线
B .双曲线的一支
C .两条射线
D .一条射线
4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,
那么双曲线的离心率e 等于( )
A .2
B .3
C .2
D .3
5.抛物线x y 102
=的焦点到准线的距离是( ) A .
25 B .5 C .2
15 D .10 6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。
A .(7,
B .(14,
C .(7,±
D .(7,-±
二、填空题
1.若椭圆221x my +=的离心率为2
,则它的长半轴长为_______________. 2.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。
3.若曲线22
141x y k k
+=+-表示双曲线,则k 的取值范围是 。
4.抛物线x y 62
=的准线方程为_____.
5.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
三、解答题
1.k 为何值时,直线2y kx =+和曲线22
236x y +=有两个公共点?有一个公共点?
没有公共点?
2.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。
3.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
4.若动点(,)P x y 在曲线22
21(0)4x y b b
+=>上变化,则22x y +的最大值为多少?
[综合训练B 组]
一、选择题
1.如果22
2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )
A .()+∞,0
B .()2,0
C .()+∞,1
D .()1,0 2.以椭圆116
252
2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127
92
2=-y x C .1481622=-y x 或127
92
2=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=
Q PF ,
则双曲线的离心率e 等于( )
A .12-
B .2
C .12+
D .22+ 4.21,F F 是椭圆17
92
2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( )
A .7
B .47
C .2
7 D .257 5.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的
方程是( )
A .23x y =或23x y -=
B .23x y =
C .x y 92-=或23x y =
D .23x y -=或x y 92=
6.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )
A .2
p B .p C .p 2 D .无法确定
二、填空题
1.椭圆22189x y k +=+的离心率为12
,则k 的值为______________。
2.双曲线22
88kx ky -=的一个焦点为(0,3),则k 的值为______________。
3.若直线2=-y x 与抛物线x y 42=交于A 、B 两点,则线段AB 的中点坐标是______。
4.对于抛物线2
4y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。
5.若双曲线142
2=-m
y x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22
221x y a b
+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ⋅=____________。
三、解答题
1.已知定点(A -,F 是椭圆22
11612
x y +=的右焦点,在椭圆上求一点M , 使2AM MF +取得最小值。
2.k 代表实数,讨论方程22
280kx y +-=所表示的曲线
3.双曲线与椭圆136
272
2=+y x 有相同焦点,且经过点4),求其方程。
4. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。
[提高训练C 组]
一、选择题
1.若抛物线x y =2
上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )
A .1
(,44± B .1(,)84± C .1(44 D .1(84
2.椭圆124
492
2=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为( )
A .20
B .22
C .28
D .24
3.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在 抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )
A .()0,0
B .⎪⎭⎫ ⎝⎛1,21
C .()
2,1 D .()2,2 4.与椭圆14
22
=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13
32
2=-y x D .1222=-y x 5.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,
那么k 的取值范围是( )
A .(315,315-)
B .(315,0)
C .(0,315-)
D .(1,3
15--) 6.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称, 且2
121-
=⋅x x ,则m 等于( ) A .23 B .2 C .25 D .3 二、填空题
1.椭圆14
92
2=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横
坐标的取值范围是 。
2.双曲线22
1tx y -=的一条渐近线与直线210x y ++=垂直,则这双曲线的离心率为___。
3.若直线2y kx =-与抛物线28y x =交于A 、B 两点,若线段AB 的中点的横坐标是2,则AB =______。
4.若直线1y kx =-与双曲线224x y -=始终有公共点,则k 取值范围是 。
5.已知(0,4),(3,2)A B -,抛物线28y x =上的点到直线AB 的最段距离为__________。
三、解答题
1.当000180α从到变化时,曲线22
cos 1x y α+=怎样变化?
2.设12,F F 是双曲线116
92
2=-y x 的两个焦点,点P 在双曲线上,且01260F PF ∠=, 求△12F PF 的面积。
3.已知椭圆)0(122
22>>=+b a b
y a x ,A 、B 是椭圆上的两点,线段AB 的垂直 平分线与x 轴相交于点0(,0)P x .证明:.2
2022a
b a x a b a -<<--
4.已知椭圆22
143
x y +=,试确定m 的值,使得在此椭圆上存在不同 两点关于直线4y x m =+对称。