计算方法课件-第5章-数值微分与数值积分讲解
- 格式:ppt
- 大小:979.00 KB
- 文档页数:47
第五章 数值积分与数值微分在高等数学中我们学过定积分⎰badx x f )(的计算方法,若找到被积函数)(x f 在],[b a 区间上的一个原函数)(x F ,利用Newton-Leibniz 公式⎰-=baa Fb F dx x f )()()(可以轻易得计算出积分值,但在实际问题中,往往会遇到一些困难。
1) 有些函数虽然能找到原函数, 但表达式过于复杂,例如411)(x x f +=的原函数为 )]12arctan()12[arctan(2211212ln 241)(22-++++-++=x x x x x x x F2) 有些函数找不到初等函数形式的原函数,例如积分⎰⎰-1102,sin dx edx x x x3) 有些情况下,函数值是用表格形式给出的,例如:6.1178.876.651.496.364.275.203.1587654321y x对于以上这些积分问题,解决的方法就是使用数值积分方法。
其实数值积分方法不仅可以解决上述问题,最为重要的优点是对任意被积函数任意积分区间的积分问题都可以采用统一的数值积分公式,非常便于计算机编程实现。
对于微分问题,虽然对每一个初等函数都可以求出其导数,但是不同函数其求导方法依赖于各自不同的求导公式,没有简单、统一的处理方法,而数值微分法却可以对不同的函数使用统一的数值微分公式或数值微分算法。
本章首先介绍一些数值积分公式,最后再简单的介绍数值微分问题。
5.1 数值积分公式1. 数值积分的基本思想我们知道定积分⎰badx x f )(的几何意义就是{})(,0,,x f y y b x a x ====所围成的曲边形面积,而数值积分的基本思想是利用函数)(x f y =在区间],[b a 上某些点处函数值的线性组合来计算其定积分的近似值,把计算定积分这一复杂问题转换为仅仅涉及到函数值的计算问题,而无需考虑函数本身的结构以及函数值的真实来源,这样就很便于计算机编程实现。
数值分析中的数值微分与数值积分数值微分和数值积分是数值分析领域中两个重要的概念。
它们在计算机科学、工程学和物理学等领域中有广泛的应用。
本文将介绍数值微分和数值积分的概念、原理以及一些常用的方法和技巧。
一、数值微分数值微分是通过数值方法来计算函数的导数。
导数是描述函数变化率的工具,它在物理学、经济学和生物学等领域中具有重要的作用。
1. 前向差分法(Forward Difference)前向差分法是一种简单而常用的计算导数的方法。
它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x))/h其中,h为步长,为了提高精度,需要选择足够小的步长。
2. 后向差分法(Backward Difference)后向差分法与前向差分法类似,不同之处在于它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x) - f(x-h))/h同样地,步长h需要选择足够小。
3. 中心差分法(Central Difference)中心差分法是一种更加准确的数值微分方法,它利用函数在某一点上的前后两个点的值来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x-h))/(2h)中心差分法相对于前向差分法和后向差分法而言,具有更高的精度。
二、数值积分数值积分是通过数值方法来计算函数的积分。
积分在物理学、经济学和统计学等领域中起着重要的作用,它可以用来计算面积、体积以及概率等。
1. 矩形法(Rectangle Method)矩形法是一种简单的数值积分方法,它利用多个矩形来逼近曲线下的面积。
具体来说,将积分区间等分为若干子区间,然后在每个子区间上选择一个点作为高度,从而构造出多个矩形。
最后,将各个矩形的面积相加,即可得到近似的积分值。
2. 梯形法(Trapezoidal Method)梯形法是一种更加准确的数值积分方法,它利用多个梯形来逼近曲线下的面积。
数值积分与数值微分数值积分和数值微分是数值计算中重要的概念和方法,它们在科学、工程和统计等领域有广泛的应用。
本文将介绍数值积分和数值微分的基本概念、原理和方法,并对其在实际问题中的应用进行讨论。
一、数值积分数值积分是求解定积分的数值近似值的方法。
定积分是函数在给定区间内的面积,表示为∫f(x)dx。
在实际计算中,由于很多函数的原函数求解十分困难或不可求得,因此需要借助数值积分方法来进行求解。
1.1 矩形法矩形法是最基本的数值积分方法之一。
它将积分区间等分为若干小区间,并在每个小区间上取一点,然后用这些小区间上的函数值的平均值来近似积分值。
具体而言,对于等分为n个小区间的积分,矩形法可以表示为:∫f(x)dx ≈ Δx * (f(x0) + f(x1) + ... + f(xn-1))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。
矩形法的计算简单,但精度较低。
1.2 梯形法梯形法是另一种常用的数值积分方法,它通过用梯形面积来逼近积分值。
类似于矩形法,梯形法将积分区间等分为若干小区间,并在每个小区间上取两个点,然后用这些小区间上的梯形面积之和来逼近积分值。
具体而言,梯形法可以表示为:∫f(x)dx ≈ Δx/2 * (f(x0) + 2f(x1) + 2f(x2) + ... + 2f(xn-1) + f(xn))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。
梯形法相对于矩形法有更高的精度,但计算复杂度也相应提高。
1.3 辛普森法则辛普森法则是一种更加精确的数值积分方法,它利用三次多项式来逼近积分值。
辛普森法则将积分区间等分为若干小区间,并在每个小区间上取三个点,然后通过构造一个三次多项式,利用多项式的积分近似面积来逼近积分值。
具体而言,辛普森法则可以表示为:∫f(x)dx ≈ Δx/3 * (f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ... + 2f(xn-2) +4f(xn-1) + f(xn))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。