变压整流滤波
- 格式:ppt
- 大小:1.08 MB
- 文档页数:14
常用的整流滤波电路
改善滤波特性的方法:实行多级滤波。
如:RC–型滤波电路:在电容滤波后再接一级RC滤波电路。
L-C型滤波电路:在电感滤波后面再接一电容。
LC–型滤波电路:在电容滤波后面再接L-C 型滤波电路。
性能及应用场合分别与电容滤波和电感滤波相像。
1.RC–型滤波器
改善滤波特性的方法:实行多级滤波
R愈大,C2愈大,滤波效果愈好。
但R太大,将使直流压降增加。
主要适用于负载电流较小而又要求输出电压脉动很小的场合。
2.L-C 型滤波电路
设uo1的直流重量为U′O,沟通重量的基波的幅值为U′O1m,:3.LC –型滤波电路
明显,LC –型滤波电路输出电压的脉动系数比只有LC滤波时更小,波形更加平滑;由于在输入端接入了电容,因而较只有LC滤波时,提高了输出电压。
滤波效果比LC滤波器更好,但整流二极管中的冲击电流较大。
4.倍压整流电路
利用滤波电容的充放电作用,将多个电容和二极管组合可获得倍数于变压器附边电压的输出电压。
1、二倍压整流电路
u2的正半周时:D1导通,D2截止,抱负状况下,电容C1的电压:u2的负半周时:D2导通,D1截止,抱负状况下,电容C2的电压:输出端的电压:即二倍压电压。
138.怎样利用整流方式得到平稳的直流电?答:整流是利用二极管的单向导电性,把正负交变的交流电变为单向的脉动直流电,再经过滤波电路使波形变得平滑,然后再经过稳压电路的作用,最后得到波形平直、电压稳定的直流电。
由交流电得到平稳的直流电需经以下四个环节(见图1-55):(1)电源(整流)变压器将电网的交流电压的大小变换成符合整流电路的工作电压。
(2)整流二极管将交流电变换成单向脉动直流电。
(3)滤波装置将脉动的直流电变换成平直的直流电。
(4)稳压电路将波动的直流电压变为稳定的直流电压,使直流输出电压保持稳定。
139.单相半波整流电路是怎样工作的?答:单相半波整流电路如图l-56所示。
图中,TR是整流变压器,υ2是变压器的二次电压,在时间0~π时,υ2的A端为正,B端为负,这时VD承受正向电压而导通,电流从TR的二次侧上端流出,经二极管VD流过负载R1回到TR二次侧的下端,负载RL上有电压。
当时间为X~2π时,υ2的A端为负,B端为正,VD上加反向电压,这时VD不导通,所以在RL上没有电压。
当时间为2π~3π时,VD又导通,RL上又有电压……,从上述现象我们可以看出,电源电压虽然是忽正忽负,但是由于二极管的单向导电性,使RL上得到了单方向的脉动电压,这就将交流电变为直流电了。
这种电路只是在电源电压υ2的正半周时才有电流流过,故称为单相半波整流电路。
140.单相全波整流电路是怎样工作的?答:单相全波整流电路如图1-57所示。
它是由两个半波整流电路组合而成的。
在变压器TR的二次侧具有中心抽头,引出大小相等的两个电压υ2A、υ2B,在时间0~π内,υ2A上端为正,下端为负,υ2A经过VD1、RL、变压器TR的中心抽头构成回路,VD2因加反向电压作用而截止。
在时间π~2π内,υ2B下端为正,上端为负,υ2B经VD2、RL、变压器中心抽头构成回路,VD1因加反向电压而截止。
所以在交变电压的整个周期内,由两个整流器件构成的两个单相半波整流电路轮流导通,从而使负载RI,上得到了单一方向的全波脉动电压。
整流与滤波电路实验报告整流与滤波电路实验报告一、引言整流与滤波电路是电子电路中常用的两种基本电路。
整流电路用于将交流电信号转换为直流电信号,滤波电路则用于去除电路中的噪声和波动,使电路输出更加稳定。
本实验旨在通过实际操作,深入理解整流与滤波电路的原理和应用。
二、实验目的1. 学习整流电路和滤波电路的基本原理;2. 掌握整流电路和滤波电路的实验操作方法;3. 分析整流电路和滤波电路的性能指标。
三、实验器材和仪器1. 电源:直流电源、交流电源;2. 电阻:可变电阻、固定电阻;3. 电容:可变电容、固定电容;4. 示波器;5. 连接线等。
四、实验原理1. 整流电路原理:整流电路用于将交流电信号转换为直流电信号。
常见的整流电路有半波整流电路和全波整流电路。
半波整流电路仅利用正半周或负半周的信号,而全波整流电路则同时利用正负半周的信号。
2. 滤波电路原理:滤波电路用于去除电路中的噪声和波动,使电路输出更加稳定。
常见的滤波电路有低通滤波电路和高通滤波电路。
低通滤波电路能够通过低频信号,而阻断高频信号;高通滤波电路则相反。
五、实验步骤1. 搭建半波整流电路:将交流电源连接到二极管的正端,将负端接地。
连接一个负载电阻,并通过示波器观察输出波形。
2. 搭建全波整流电路:将交流电源连接到两个二极管的正端,将负端接地。
连接一个负载电阻,并通过示波器观察输出波形。
3. 搭建低通滤波电路:将交流电源连接到一个电容的正极,将负极接地。
连接一个负载电阻,并通过示波器观察输出波形。
4. 搭建高通滤波电路:将交流电源连接到一个电容的负极,将正极接地。
连接一个负载电阻,并通过示波器观察输出波形。
六、实验结果与分析1. 半波整流电路:观察示波器上的波形,可以发现输出信号仅包含正半周的波形。
这是因为二极管在正向导通时,电流可以流过,而在反向截止时,电流无法通过。
2. 全波整流电路:观察示波器上的波形,可以发现输出信号包含正负半周的波形。
一、整流电路的工作原理整流电路是将交流电信号转换成直流电信号的电路。
其工作原理主要通过二极管的导通和截止来实现。
在正半周的电压周期内,二极管处于导通状态,电流可以顺利通过;而在负半周的电压周期内,二极管处于截止状态,电流无法通过。
这样,交流电信号经过整流电路后,就可以转化为直流电信号输出。
二、滤波电路的工作原理滤波电路是用来去除整流后直流电信号中的脉动成分,使得输出的电压更加平稳。
其主要原理是通过电容器的充放电来吸收和释放交流电信号中的高频脉动成分。
在充电时,电容器可以吸收一部分脉动成分;在放电时,电容器则会释放出积累的电荷,从而使输出的电压更加稳定。
三、稳流电路的工作原理稳流电路是为了在负载变化时,仍然能够保持输出电流恒定的电路。
其原理是通过负反馈控制电路的工作点,使得在负载变化时,电路可以自动调整输出电流,从而避免因负载变化而导致的输出电流波动。
四、稳压电路的工作原理稳压电路是为了在输入电压波动时,能够保持输出电压恒定的电路。
其工作原理主要包括串联稳压和并联稳压两种方式。
串联稳压是通过调整输出电压与输入电压之间的电压差,以维持输出电压稳定;而并联稳压则是通过电容器和电感器等元件来减小输入电压的波动,从而实现输出电压的稳定。
五、结论整流、滤波、稳流、稳压电路是电子电路中常见的几种基本电路,它们通过不同的原理和组合方式,可以实现对交流电信号的转换和处理,从而得到稳定的直流电信号输出。
在实际应用中,这些电路通常会被应用于各种电子设备和电源系统中,起到了至关重要的作用。
对这些电路的工作原理有深入的了解,对于电子工程领域的从业者来说,是非常重要的。
六、整流、滤波、稳流、稳压电路在电子设备中的应用上文我们已经介绍了整流、滤波、稳流、稳压电路的工作原理,接下来我们将重点谈谈这些电路在电子设备中的应用。
1. 整流电路的应用整流电路是将交流电信号转换成直流电信号的关键电路之一,广泛应用于各种电源设备和电子设备中。
整流滤波的工作原理
整流滤波是一种电子电路技术,用于将交流信号转换成直流信号。
其工作原理如下:
1. 整流:整流滤波器的第一步是将输入的交流信号转换为直流信号。
这通常通过使用二极管来实现。
二极管只允许电流在一个方向上通过,因此它可以将交流信号的负半周去除,只保留正半周。
2. 平滑滤波:经过整流之后,输出信号仍然包含了部分脉动,因为交流信号的频率较高。
平滑滤波的作用是减小这些脉动,使输出信号更接近直流信号。
平滑滤波通常使用电容器来实现。
电容器可以储存电荷,并且在负半周期间释放电荷,从而平滑输入信号。
综合起来,整流滤波的工作原理是将输入的交流信号经过整流得到只包含正半周的信号,然后通过平滑滤波来减小信号中的脉动,最终得到一个近似直流的输出信号。
(C)L-C电感滤波(D)π型滤波或叫C-L-C滤波图1 无源滤波电路的基本形式为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。
电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。
电感滤波的波形图如图2所示。
根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。
图2电感滤波电路在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。
当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。
当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。
由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。
图3电感滤波电路波形图已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。
电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。
如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。
电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。
采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。
电容滤波原理详解1.空载时的情况当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。
电源电路中变压、整流、滤波电路详解基础电路一般直流稳压电源都使用220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进行稳压,最终成为稳定的直流电源。
这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将无法正常工作。
1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图1。
图1变压器电路图符号2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见下图。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图2所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在 2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图3所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
图2半波整流电路图图3半波整流波形图设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
交流电经过二极管半波整流电容滤波后的变化过程交流电经过二极管半波整流电容滤波后的变化过程可以分为三个阶段:整流、滤波和稳压。
首先,我们来看整流阶段。
交流电是一种周期性变化的电流,包含正半周和负半周两个部分。
在整流阶段,二极管只允许正向电流通过,而阻止反向电流的流动。
所以在正半周中,交流电可以直接通过二极管流动;而在负半周中,二极管会截断电流,不允许其通过。
这样,经过整流后,负半周的部分被截断,而正半周的部分得以保留。
接下来是滤波阶段。
由于交流电是周期性变化的,经过整流后的电流仍然是波动的,存在着纹波。
为了消除这种纹波,需要进行滤波处理。
在半波整流电路中,通常会使用电容来进行滤波。
当正半周的电流通过二极管流入电容时,电容会充电,此时电容器被放在交流电源输出端。
当负半周的电流无法通过二极管时,电容器不会被放电。
由于电容的特性,它可以储存电荷并保持电压的稳定性,所以在整流后的电流通过电容器时,电容器会释放电荷,使得输出端的电压维持在一定水平,从而消除了交流电的纹波。
最后是稳压阶段。
经过滤波后的电压仍然存在一定的波动,但已经明显减小。
在稳压阶段,我们通常会使用稳压二极管(Zener二极管)或者稳压器来进一步将电压稳定下来。
稳压二极管是一种特殊的二极管,其结构使得它在一定的工作电压下,可以平稳地将电压稳定在一个固定的水平。
而稳压器则是一种电路,通过一系列电子元件的组合,将不稳定的电压转化为稳定的输出电压。
这样,经过稳压阶段后,输出端的电压会变得更加稳定,减小电压的波动。
总结起来,交流电经过二极管半波整流电容滤波后的变化过程包括整流、滤波和稳压三个阶段。
整流阶段通过二极管将正半周的电流流动保留下来,而滤波阶段通过电容将波动的输出电流转化为稳定的输出电压,最后在稳压阶段通过稳压二极管或稳压器进一步稳定输出电压。
这样,经过这些变化过程,我们可以得到稳定的直流电压输出。
整流、滤波和稳压电路第一节整流电路电力网供给用户的是交流电,而各种无线电装置需要用直流电。
整流,就是把交流电变为直流电的过程。
利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。
下面介绍利用晶体二极管组成的各种整流电路。
一、半波整流电路图5-1、是一种最简单的整流电路。
它由电源变压器B、整流二极管D和负载电阻R fz,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。
变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。
在0~π时间内,e2为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,R fz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压U sc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
图5-3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。
裂解整流变压器的工作原理整流变压器是一种将交流电转化为直流电的电力设备。
它主要由输入绕组、输出绕组、铁心和整流管组成。
其工作原理可以分为三个步骤:变压、整流和滤波。
首先是变压阶段。
当输入的交流电通过输入绕组,产生的磁感应线圈会穿过铁心,从而形成了磁场。
这个磁场会通过铁心传导到输出绕组,从而引起在输出绕组中产生电势差。
变压比由输入绕组和输出绕组的匝数比决定,可以通过改变输入绕组和输出绕组的匝数比来调节输出电压的大小。
接下来是整流阶段。
整流是将交流电转换为直流电的过程。
在整流阶段中,输出绕组的电压会通过整流管进行激励。
整流管作为半导体元件,在正向偏置电压下,具有导电性,当输入电压的极性与整流管的正向偏置电压相同时,整流管处于导通状态,电流可以通过整流管;当输入电压的极性与整流管的正向偏置电压相反时,整流管处于截止状态,电流无法通过整流管。
最后是滤波阶段。
在整流阶段中,整流管只能将交流电转换为脉动直流电,这种脉动直流电还不能直接供给一些对电压要求比较高的负载。
滤波器的作用就是平滑输出电流,使其变为稳定直流电。
常见的滤波器有电容器滤波器和电感滤波器。
电容器滤波器通过将电容器连接在电路中,使得脉动直流电通过电容器时,能够产生电势差的降低,从而使输出电压更均匀。
电感滤波器则是通过电感线圈将脉动直流电的波形变为平滑直流电,进一步过滤掉高频干扰信号,实现更纯净的输出直流电。
总结来说,整流变压器的工作原理是将交流电转化为直流电。
通过变压阶段实现电压的变换,通过整流阶段将交流电转化为脉动直流电,然后通过滤波阶段平滑输出电流,最终获取稳定的直流电。
整流变压器在电力系统中起到了重要作用,被广泛应用于工业生产、电源供应等领域。
整流柜工作原理
整流柜是一种用于变换交流信号为直流信号的设备。
它的工作原理可以分为以下几个步骤:
1. 输入交流电信号进入整流柜。
输入信号通常为三相交流电,其电压和频率可以根据需要进行调整。
2. 通过输入的交流电信号经过变压器进行变压变换。
变压器可以将输入的高电压交流信号变换为合适的电压级别,并配合整流器的工作进行调节。
3. 整流器是整流柜的核心部件,用于将交流信号转换为直流信号。
常见的整流方式有单相整流和三相整流。
整流器通常由多个二极管或晶体管组成的整流桥,通过将正负半周分别导通来实现信号的单向导通,达到整流的目的。
4. 经过整流器转换的直流信号通过滤波电容进行平滑处理。
滤波电容可以去除转换过程中可能存在的噪声和纹波,使输出信号更稳定。
5. 输出的直流信号用于供电或储存。
整流柜可以连接到不同的负载设备或电池组,以满足不同的应用需求。
综上所述,整流柜通过变压变换、整流转换和滤波处理将交流信号转换为直流信号,用于供电或储存。
这种设备在电力系统、工业生产和轨道交通等领域中起着重要的作用。
⼏种滤波整流电路的介绍总结⼀、有源滤波电路为了提⾼滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互⽭盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所⽰,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接⽽成的电路。
该电路的优点是:1.滤波电阻Rb 接于晶体管的基极回路,兼作偏置电阻,由于流过Rb 的电流⼊很⼩,为输出电流Ie的1/(1+β),故Rb可取较⼤的值(⼀般为⼏⼗k Ω),既使纹波得以较⼤的降落,⼜不使直流损失太⼤。
2.滤波电容C2接于晶体管的基极回路,便可以选取较⼩的电容,达到较⼤电容的滤波效果,也减⼩了电容的体积,便于⼩型化。
如图中接于基极的电容C2 折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因 ie = (1+ β)ib之故)。
3.由于负载凡接于晶体管的射极,故 RL上的直流输出电压UE≈UB,即基本上同RC⽆源滤波输出直流电压相等。
这种滤波电路滤波特性较好,⼴泛地⽤于⼀些⼩型电⼦设备之中。
⼆、复式滤波电路复式滤波电路常⽤的有LCГ型、LCπ型和RCπ型3种形式,如图Z0715所⽰。
它们的电路组成原则是,把对交流阻抗⼤的元件(如电感、电阻)与负载串联,以降落较⼤的纹波电压,⽽把对交流阻抗⼩的元件(如电容)与负载并联,以旁路较⼤的纹波电流。
其滤波原理与电容、电感滤波类似,这⾥仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加⼀级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含⼀个直流分量与交流分量,作为RC2滤波的输⼊电压。
对直流分量⽽⾔,C2 可视为开路,RL上的输出直流电压为:对于交流分量⽽⾔,其输出交流电压为:若满⾜条件则有由式可见,R愈⼩,输出的直流分量愈⼤;由式可见,RC2愈⼤,输出的交流分量愈⼩。