扫描电镜的主要结构主要包括有电子光学系统共32页
- 格式:ppt
- 大小:3.18 MB
- 文档页数:32
扫描电镜的结构及原理一、简介1特点:扫描电子显微镜主要特点是电子束在样品上进行逐点扫描,获得三维立体图像,图像观察视野大、景深长、富有立体感。
在观察样品表面形貌的同时,进行晶体学分析及成分分析。
常规的扫描电镜分辨本领通常为7~10nm,加速电压在1~50 kV范围。
生物样品一般用10~20kV,成像放大率几十倍至几十万倍。
2用途:扫描电镜可对样品进行综合分析,已成为重要分析工具,纤维、纸张、钢铁质量等,观察矿石结构、检测催化剂微观结构、观看癌细胞与正常细胞差异等。
3日本日立公司产品S-5200型为超高分辨率(ultra-highresolutio n)扫描电镜,加速电压为1k V时,分辨率可达1.8nm,加速电压为30kV时,分辨率高达0.5nm。
此外,还具有独特的电子信号探测系统,不但能观察样品三维形态结构甚至能看到样品的原子或分子结构,在使用性能方面已超越任何一种常规扫描电镜。
二、扫描电镜的结构扫描电镜的组成:(1)、电子光学系统:组成:①电子枪与透镜系统;②电子探针扫描偏转系统作用:产生直径为几十埃的扫描电子束,即电子探针,使样品表面作光栅状扫描。
①电子枪组成:阴极、阳极、栅极。
直径约为0.1mm钨丝制成,加热后发射的电子在栅极和阳极作用下,在阳极孔附近形成交叉点光斑,其直径约几十微米。
扫描电镜没有成像电镜,成像原理与透射电镜截然不同。
所有透镜皆为缩小透镜,起缩小光斑的作用。
缩小透几十镜将电子枪发射的直径约为30μm电子束缩小成几十埃,由两个聚光镜和一个末透镜完成三个透镜的总缩小率为2000~3000倍。
两个聚光镜分别是第一聚光镜和第二聚光镜,可将在阳极孔附近形成的交叉点缩小。
聚光镜可动光阑位于第二聚光镜和物镜之间,用于控制选区衍射时电子书的发散角。
1.辐射的发射:指物质吸收能量后产生电磁辐射的现象。
2.俄歇电子:X 射线或电子束激发固体中原子内层电子使原子电离,此时原子(实际是离子)处于激发态,将发生较外层电子向空位跃迁以降低原子能量的过程,此过程发射的电子。
3、背散射电子:入射电子被样品原子散射回来的部分;它包括弹性散射和非弹性散射部分;背散射电子的作用深度大,产额大小取决于样品原子种类和样品形状。
4.溅射:入射离子轰击固体时,当表面原子获得足够的动量和能量背离表面运动时,就引起表面粒子(原子、离子、原子团等)的发射,这种现象称为溅射。
5.物相鉴定:指确定材料(样品)由哪些相组成。
6.电子透镜:能使电子束聚焦的装置。
7.质厚衬度:样品上的不同微区无论是质量还是厚度的差别,均可引起相应区域透射电子强度的改变,从而在图像上形成亮暗不同的区域,这一现象称为质厚衬度。
8.蓝移:当有机化合物的结构发生变化时,其吸收带的最大吸收峰波长或位置(最大)向短波方向移动,这种现象称为蓝移(或紫移,或“向蓝” )。
9.伸缩振动:键长变化而键角不变的振动,可分为对称伸缩振动和反对称伸缩振动。
10.差热分析:指在程序控制温度条件下,测量样品与参比物的温度差随温度或时间变化的函数关系的技术。
11、球差:即球面像差,是由于电磁透镜的中心区域和边缘区域对电子的折射能力不同造成的。
轴上物点发出的光束,经电子光学系统以后,与光轴成不同角度的光线交光轴于不同位置,因此,在像面上形成一个圆形弥散斑,这就是球差。
12、明场像:用另外的装置来移动物镜光阑,使得只有未散射的透射电子束通过他,其他衍射的电子束被光阑挡掉,由此得到的图像13、暗场像:或是只有衍射电子束通过物镜光阑,投射电子束被光阑挡掉,由此得到的图像14、X射线的强度:是指行垂直X射线传播方向的单位面积上在单位时间内所通过的光子数目的能量总和。
常用的单位是J/ 。
15、衍射衬度:主要是由于晶体试样满足布拉格条件程度差异以及结构振幅不同而形成电子图像反差。
扫描电镜对比以及扫描电镜基础知识点扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
一、特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
二、基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
图2:扫描电子显微镜结构图(图片来源:西南石油大学能源材料实验教学中心)其中最重要的三个系统是电子光学系统、信号探测处理和显示系统以及真空系统。
1、电子光学系统电子光学系统包括电子枪、电磁透镜、扫描线圈、样品室等,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成象。
电子枪:用于产生电子,主要分类如下:电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
材料分析测试技术A卷一、选择题(每题1分,共15分)1、x射线衍射方法中,最常用的是()a.劳厄法b.粉末多晶法c.转晶法2、未知x射线定性分析中存有三种索引,未知物质名称可以使用()a.哈式无机相数值索引b.无机相字母索引c.芬克无机数值索引3、电子束与液态样品相互作用产生的物理信号中能用作测试1nm厚度表层成分分后析的信号是()a.背散射电子b.俄歇电子c.特征x射线4、测定钢中的奥氏体含量,若采用定量x射线物相分析,常用的方法是()a.外标法b.内标法c.轻易比较法d.k值法5、以下分析方法中分辨率最低的就是()a.semb.temc.特征x射线6、表面形貌分析的手段包括()a.semb.temc.wdsd.dsc7、当x射线将某物质原子的k层电子打出去后,l层电子回迁k层,多余能量将另一个l层电子拿下核外,这整个过程将产生()a.光电子b.二次电子c.俄歇电子d.背散射电子8、透射电镜的两种主要功能()a.表面形貌和晶体结构b.内部组织和晶体结构c.表面形貌和成分价键d.内部组织和成分价键9、已知x射线光管是铜靶,应选择的滤波片材料是()a.cob.nic.fed.zn10、采用复型技术测得材料表面组织结构的式样为()a.非晶体样品b.金属样品c.粉末样品d.陶瓷样品11、在电子探针分析方法中,把x射线谱仪固定在某一波长,使电子束在样品表面读取获得样品的形貌阴之木元素的成分原产像是,这种分析方法就是()第1页/共6页a.点分析b.线分析c.面分析12、下列分析测试方法中,能够进行结构分析的测试方法是()a.xrdb.temc.semd.a+b13、在x射线定量分析中,不需要做标准曲线的分析方法是()a.外标法b.内标法c.k值法14、热分析技术无法测试的样品就是()a.固体b.液体c.气体15、以下热分析技术中,()就是对样品池及滴定法池分别冷却的测试方法a.dtab.dscc.tga二、填空题(每空1分,共20分)1、由x射线管升空出的x射线可以分成两种类型,即为和。
扫描电镜的结构与操作透射电子显微镜与光学显微镜一样,照明束穿过样品経过透镜的放大后,整个像是同时形成的。
而扫描电子显微镜(Scanning Electron Microscope,简称扫描电镜或SEM)则以完全不同的方式成像。
其基本要点是:用极狭窄的电子束去扫描样品,即电子束在样品上作光栅运动。
电子束与样品相互作用将会产生各种信息,例如样品的二次电子发射,发射出来的电子称为二次电子。
使用我们下面将讨论的方法,二次电子能产生样品表面放大的形貌像。
这个像是在样品被扫描时按时序地建立起来的,即使用逐点成像的方法获得放大的像。
早在1935年,透射电镜发明后不久,Knoll就提出利用一个扫描电子束从固体表面获得图像的原理。
但由于技术上的原因,直至1965年扫描电镜才成为商品而被利用。
此后,由于扫描电镜具有许多优点,使它在许多学科包括生物学的各个方面获得广泛的应用,成为极有价值的工具。
结构扫描电镜主要是由电子光学系统和显示单元组成,电子光学系统也称为镜筒,它的外观与透射电镜的镜筒相似,实际上相当于透射电镜的照明系统(SEM不需要成像系统),它是由电子枪、几个磁透镜、扫描线圈以及样品室组成(见图2-1)电子枪与透射电镜的电子枪基体相同,只是加速电压较低,一般在40kV以下。
磁透镜一般有三个:第一、二聚光镜和物镜,其作用与透射电镜的聚光镜相同:缩小电子束的直径,把来自电子枪的约30μm大小的电子束经过第一、二聚光镜和物镜的作用,缩小成直径约为几十埃的狭窄电子束。
这是因为扫描电镜的分辨率主要取决于电子束的直径,所以要尽可能缩小它,为此物镜还装备有物镜可动光栏和消散器。
一个带有扫描电路的偏转线圈通以锯齿波的电流,产生的磁场作用于电子束上使它在样品上扫描。
扫描的区域、扫描速率和每厘米的扫描线数都可以选择。
这个电路同时输送锯齿波电流给显示部分的显像管(CRT)的偏转线圈,所以镜筒的电子束与显像管的电子束是严格同步的。
出于与透射电镜同样的理由,镜筒也是被真空系统排气至高真空,一般为10-3Pa的真空度。
一、扫描电子显微镜的工作原理扫描电镜(Scanning Electron Microscope)是用聚焦电子束在试样表面逐点扫描成像。
试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。
其中二次电子是最主要的成像信号。
由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。
聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。
二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。
二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。
(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。
(3) 放大倍数变化范围大,一般为15 ~200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。
(4) 具有相当高的分辨率,一般为3.5 ~6nm。
(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。
采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。
(6) 可进行多种功能的分析。
与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。
(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。
三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。
简述扫描电镜的构造及成像原理,试分析其与透射电镜在样品表征方面的异同1、扫描电镜的构造扫描电镜由电子光学系统、信号收集与图像显示系统、与真空系统三部分组成。
1.1 电子光学系统(镜筒)电子光学系统包括电子枪、电磁透镜、扫描线圈与样品室。
1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。
1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。
扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。
布置这个末级透镜(习惯上称之物镜)的目的在于使样品室与透镜之间留有一定空间,以便装入各种信号探测器。
扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。
采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。
若采用六硼化镧阴极与场发射电子枪,电子束束径还可进一步缩小。
1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作与显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
1.1.4 样品室样品室内除放置样品外,还安置信号探测器。
各种不同信号的收集与相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。
样品台本身是一个复杂而精密的组件,它应能夹持一定尺寸的样品,并能使样品作平移、倾斜与转动等运动,以利于对样品上每一特定位置进行各种分析。
新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却与进行机械性能试验(如拉伸与疲劳)。
1.2 信号的收集与图像显示系统二次电子、背散射电子与透射电子的信号都可采用闪烁计数器来检测。
扫描电镜的基本结构和工作原理扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。
扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。
扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。
扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。
扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。
扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。
扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。
这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。
三、扫描电镜图像衬度观察1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可以直接进行观察。
但在有些情况下需对样品进行必要的处理。
1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。
2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。
清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。
3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm为宜。
2.表面形貌衬度观察二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。