重庆市2012年中考数学模拟试题四及答案
- 格式:doc
- 大小:1.03 MB
- 文档页数:6
1. 如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②b=-2a;③a-b+c=0;④b>5a.其中正确结论是.2.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①b<0;②(a+c)2>b2;③2a+b-c>0;④3b<2c.其中正确的结论有①③④(填上正确结论的序号).3.已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A、①⑤B、①②⑤C、②⑤D、①③④4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A、1 B、2 C、3 D、45如图,已知二次函数y=ax2+bx+c(a≠0)的图象,则下列结论正确序号是(只填序号).①abc>0,②c=-3a,③b2-4ac>0,④a+b<m(am+b)(m≠1的实数).6.二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac-b2<0;⑤当x≠2时,总有4a+2b>ax2+bx其中正确的有(填写正确结论的序号).7.已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,有下列5个结论:①abc<0;②a-b+c>0;③2a+b=0;④b2-4ac>0⑤a+b+c>m(am+b)+c,(m>1的实数),其中正确的结论有()A.1个B.2个C.3个D.4个8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(x1,0),-3<x1<-2,对称轴为x=-1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④a-b>m(ma+b)(m≠-1的实数);⑤3b+2c>0.其中正确的结论有()A.2个B.3个C.4个D.5个9.已知:如图所示,抛物线y=ax2+bx+c的对称轴为x=-1,与x轴交于A、B两点,交y轴于点C,且OB=OC,则下列结论正确的个数是()①b=2a ②a-b+c>-1 ③0<b2-4ac<4 ④ac+1=b.A.1个B.2个C.3个D.4个10.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标为x1、x2,其中-2<x1<-1,0<x2<1,下列结论:①abc>0;②4a-2b+c<0;③2a-b>0;④b2+8a>4ac,正确的结论是11.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,下列结论:①9a-3b+c>0;②b<a;③3a+c>0.其中正确结论的个数是()A.0 B.1 C.2 D.312.如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,AB>AO,下列几个结论:(1)abc<0;(2)b>2a;(3)a-b=-1;(4)4a-2b+1<0.其中正确的个数是()A.4 B.3 C.2 D.113.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标为x1、x2,其中-2<x1<-1、0<x2<1.下列结论:①4a-2b+c<0,②2a-b<0,③a<-1,④b2+8a>4ac中,正确的结论是14.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a<;④b>1.其中正确的结论是()A.①②B.②③C.③④D.②④15.(2003•武汉)已知:抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正确的个数有()A.1个B.2个C.3个D.4个1解:①∵图象与x轴有交点,对称轴为x==-1,与y轴的交点在y轴的正半轴上,又∵二次函数的图象是抛物线,∴与x轴有两个交点,∴b2-4ac>0,即b2>4ac,正确;②∵抛物线的开口向下,∴a<0,∵与y轴的交点在y轴的正半轴上,∴c>0,∵对称轴为x==-1,∴2a=b,∴2a+b=4a,a≠0,错误;③∵x=-1时y有最大值,由图象可知y≠0,错误;④把x=1,x=-3代入解析式得a+b+c=0,9a-3b+c=0,两边相加整理得5a-b=-c<0,即5a<b.故正确的为①④.2解:∵抛物线的开口方向向上,∴a>0,∵对称轴为x=$-\frac{b}{2a}$=1,得2a+b=0,2a=-b,∴a、b异号,即b<0,∴①正确;∵抛物线与轴的交点在y轴负半轴,∴c<0,∴2a+b-c=-c >0,∴③正确;∵当x=1时,y=a+b+c<0,∵当x=-1时,y=a-b+c>0,∴2a-2b+2c>0,∴-b-2b+2c>0,∴3b<2c,∴④正确;∵a+b+c<0,a-b+c>>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,②错误.正确答案:①③④.3解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=>0,∴a、b异号,即b<0,又∵c<0,∴abc>0,故本选项正确;②∵对称轴为x=>0,a>0,-<1,∴-b<2a,∴2a+b>0;故本选项错误;③当x=1时,y1=a+b+c;当x=m时,y2=m(am+b)+c,当m>1,y2>y1;当m<1,y2<y1,所以不能确定;故本选项错误;④当x=1时,a+b+c=0;当x=-1时,a-b+c>0;∴(a+b+c)(a-b+c)=0,即(a+c)2-b2=0,∴(a+c)2=b2故本选项错误⑤当x=-1时,a-b+c=2;当x=1时,a+b+c=0,∴a+c=1,∴a=1+(-c)>1,即a>1;故本选项正确;综上所述,正确的是①⑤.故选A.4解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故本选项正确;②根据图示知,该函数图象的开口向上,∴a>0;又对称轴x=-=1,∴<0,∴b<0;又该函数图象交于y轴的负半轴,∴c<0;∴abc>0;故本选项正确;③∵对称轴x=-=1,∴b=-2a,可将抛物线的解析式化为:y=ax2-2ax+c(a≠0);由函数的图象知:当x=-2时,y>0;即4a-(-4a)+c=8a+c>0,故本选项正确;也可以:当x=4时,从图像上看y>0,此时16a+4b+c>0,而从对称性看出-b2a=1,解得b=-2a,代入上式得8a+c >0;④根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故本选项正确;所以这四个结论都正确.故答案为:4.5解:①正确,∵与y轴交于负半轴,所以c<0,∵开口向上,∴a>0,又∵对称轴在y轴右侧,∴->0,∴b<0,∴abc>0.②正确,∵ax2+bx+c=0(a≠0)的两根为x1=-1,x2=3,根据根与系数的关系,=3×(-1)=-3,即c=-3a.③正确,∵函数图象与x轴有两个点,∴b2-4ac>0;④正确,由函数图象可知,对称轴为x=1,此时y取最小值为:a+b+c;∵当x=m时,y值为:am2+bm+c;∴am2+bm+c>a+b+c,(m≠1的实数),∴a+b<m(am+b).故结论正确序号是①②③④.6解:①由图象可知:当x=1时y<0,∴a+b+c<0.②由图象可知:对称轴x=-=2,∴4a+b=0,∴正确;由抛物线与x轴有两个交点可以推出b2-4ac>0,正确;③由抛物线的开口方向向下可推出a<0因为对称轴在y轴右侧,对称轴为x=->0,又因为a<0,b>0;由抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0,错误;④由抛物线与x轴有两个交点可以推出b2-4ac>0∴4ac-b2<0正确;⑤∵对称轴为x=2,∴当x=2时,总有y=ax2+bx+c=4a+2b+c>0,∴4a+2b>ax2+bx正确.故答案为:①②④⑤.7解:由图象可知:开口向下,与Y轴交点在X轴的上方,对称轴是x=1,∴c>0,a<0,-=1,∴2a+b=0,b>0,∴(1)abc<0(正确),(3)2a+b=0(正确),(2)当x=-1时,y=ax2+bx+c=a-b+c,由图象可知当x=-1时y<0,即a-b+c<0,∴(2)a-b+c>0(不正确),(4)由图象知与X轴有两个交点,∴b2-4ac>0,即(4)b2-4ac>0(正确),∵m>1,当x=1时,y1=ax2+bx+c=a+b+c,当x=m时,y2=ax2+bx+c=am2+bm+c=m(am+b)+c,由图象知y1>y2,即(5)a+b+c>m(am+b)+c(正确),综合上述:(1)(3)(4)(5)正确有4个正确.8解:①由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为x==-1,得2a=b,∴a、b同号,即b<0,∴abc>0;故本选项正确;②∵对称轴为x==-1,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本选项错误;③从图象知,该函数与x轴有两个不同的交点,所以根的判别式△=b2-4ac>0,即b2>4ac;故本选项正确;④图象开口向下,与y轴交于正半轴,对称轴为x=-1,能得到:a<0,c>0,-=-1,∴b=2a,∴a-b=a-2a=-a,m(ma+b)=m(m+2)a,假设a-b>m(am+b),(m≠1的实数)即-a>m(m+2)a,所以(m+1)2>0,满足题意,所以假设成立,故本选项正确;⑤∵-3<x1<-2,∴根据二次函数图象的对称性,知当x=1时,y<0;又由①知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本选项错误.综上所述,①③④共有3个正确的.故选B9解:①∵抛物线y=ax2+bx+c的对称轴为x=-1,∴-=-1,整理得b=2a,故①正确;④由抛物线与y轴相交于点C,就可知道C点的坐标为(0,c),又因OC=OB,所以B(-c,0),把它代入y=ax2+bx+c,即ac2-bc+c=0,两边同时除以c,即得到ac-b+1=0,所以ac+1=b.②∵b=2a,ac+1=b,∴a=,∵0<c<1,∴0<a<1,∴0<b<2,∴a-b+c>-1∴当x=-1时,y=ax2+bx+c=a-b+c>-1,故②正确;③∵函数图象与x轴有两个交点,∴得到b2-4ac>0,∵0<b2<4,4ac>0,∴b2-4ac<4故③正确;故选D.10解:由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=->-1,且c>0;①∵对称轴x=-<0,a<0,∴b<0;又∵c>0,∴abc>0,故本选项正确;②由图可得:当x=-2时,y<0,即4a-2b+c<0,故本选项正确;③已知x=->-1,且a<0,所以2a-b<0,故本选项错误;④由于抛物线的对称轴大于-1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故本选项正确;因此正确的结论是②④;故答案是:①②④.11解:∵y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,∴x=-3时,y=9a-3b+c>0;∵对称轴是x=-1,则=-1,∴b=2a.∵a>0,∴b>a;再取x=1时,y=a+b+c=a+2a+c=3a+c>0.∴①、③正确.故选C.12解:(1)∵该抛物线的开口向上,∴a>0;又∵该抛物线的对称轴x=-<0,∴b>0;而该抛物线与y轴交于正半轴,故c>0,∴abc>0;故本选项错误;(2)由(1)知,a>0,-<0,∴b>-2a;故本选项错误;(3)∵OA=OC=1,∴由图象知:C(0,1),A(-1,0),把C(0,1)代入y=ax2+bx+c得:c=1,把A(-1,0)代入y=ax2+bx+c得:a-b=-1,故本选项正确;(4)由(3)知,点A的坐标是(-1,0).又∵AB>AO,∴当x=-2时,y<0,即4a-2b+1<0;故本选项正确.综上所述,正确的个数是2个.故选C.13解:由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=- >-1,且c>0;①由图可得:当x=-2时,y<0,即4a-2b+c<0,故①正确;②已知x=- >-1,且a<0,所以2a-b<0,故②正确;③已知抛物线经过(-1,2),即a-b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),由①知:4a-2b+c<0(3);联立(1)(2),得:a+c<1;联立(1)(3)得:2a-c<-4;故3a<-3,即a<-1;所以③正确;④由于抛物线的对称轴大于-1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正确;因此正确的结论是①②③④.14解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=<0,∴a、b同号,即b>0,∴abc<0,故本选项错误;②当x=1时,函数值为2,∴a+b+c=2;故本选项正确;③∵对称轴x=>-1,解得:<a,∵b>1,∴a>,故本选项错误;④当x=-1时,函数值<0,即a-b+c<0,(1)又a+b+c=2,将a+c=2-b代入(1),2-2b<0,∴b>1故本选项正确;综上所述,其中正确的结论是②④;故选D.15解:(1)因为抛物线y=ax2+bx+c(a<0)经过点(-1,0),所以原式可化为a-b+c=0----①,又因为4a+2b+c>0----②,所以②-①得:3a+3b>0,即a+b>0;(2)②+①×2得,6a+3c>0,即2a+c >0,∴a+c>-a,∵a<0,∴-a>0,故a+c>0;(3)因为4a+2b+c>0,可以看作y=ax2+bx+c(a<0)当x=2时的值大于0,草图为:可见c>0,∵a-b+c=0,∴-a+b-c=0,两边同时加2c得-a+b-c+2c=2c,整理得-a+b+c=2c>0,即-a+b+c>0;(4)∵过(-1,0),代入得a-b+c=0,∴c=b-a,再代入4a+2b+c=3b+3a>0,即b>-a∴b>0,a<0,c=b-a>0,又将c=b-a代入b2-2ac=b2-2a(b-a)=b2-2ab+2a2,∵b2-2ab=b(b-2a),b>-a,b-2a>-3a,并且b是正数,∴原式大于3a2.综上可知正确的个数有4个.故选D.。
2012重庆中考数学模拟试题5(本卷共五个大题,26个小题,满分150分,时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分)每个小题都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号填在答题卷上相应的空格中. 1. )7(4-- 等于( )A . 3B . 11C . -3D .-11 2. 计算)2(23x x ÷的结果是( )A.2x B. 2x C.2x D. 12x3. 函数21+=x y 的自变量取值范围是( )A .2->xB .2-<xC .2-≥xD .2-≠x4. 如图,已知直线AB CD ∥,115C ∠=°,25A ∠=°,则E ∠=( )A.70°B.80°C.90°D.100° 5.下列调查中,适宜采用抽样调查方式的是( )A .对我国首架大型民用直升机各零部件的检查B .对某校初三(5)班第一小组的数学成绩的调查C .对我市市民实施低碳生活情况的调查D .对2010年重庆市中考前200名学生的中考数学成绩的调查6.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ) A .32 B .22 C .5 D .537. 如下右图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形不可能是( )8.2011年3月10日12时58分在云南盈江发生5.8级地震,人民生命财产遭受重大损失.3月12日,重庆铁路局一列满载着救灾物资的专列向云南灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过40小时到达昆明.下面能反映描述上述过程中列车的速度v 与时间t 的函数关系的大致图象是( )第4题图主视图左视图ABCD第6题图9.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依此规律,拼搭第n 个图案需小木棒( )根.A .26-nB .22+n C .61222-+-n n D . n n 32+ 10.如图,在正方形ABCD 的对角线上取点E,使得∠BAE =︒15,连结AE ,CE.延长CE 到F ,连结BF ,使得BC=BF .若AB =1,则下列结论:①AE=CE ;②F 到BC 的距离为22;③BE +EC =EF ;④8241+=∆AED S ; ⑤123=∆EBF S .其中正确的个数是( ) A .2个 B .3个 C .4个 D .5个二.填空题(本大题6个小题,每小题4分,共24分)在每小题中,请把正确答案直接填在答题卷上相应的横线上.11.2011年4月6日,两江国际计算中心暨中国国际电子商务中心重庆数据产业园在水土高新技术产业园开建,总建筑面积2070000平方米,该数用科学记数法表示为 平方米.12.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 .13. 已知△ABC 与△DEF 相似且面积比为9:25,则△ABC 与△DEF 的相似比为___ _____.14.在平面内,⊙O 的半径为3cm ,点P 到圆心O 的距离为7cm ,则点P 与⊙O 的位置关系是 .15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,将该数字加2作为b 的值,则),(b a 使得关于x 的不等式组⎩⎨⎧>+-≥-002b x a x 恰好有两个整数解的概率是_____________.v t40O vt40 Ov t 40 OtvOA .B.C .D .40第1个第2个第3个第4个ABCDE F第10题图mB AC16.某学校九年级的一个研究性学习小组对学生中午在学校食堂的就餐时间进行了调查.发现在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部就餐的人数各是一个固定数.并且发现若开1个窗口,45分钟可使等待人都能买到午餐;若同时开2个窗口,则需30分钟.还发现,若在25分钟内等待的学生都能买到午餐,在单位时间内,外出就餐的人数可减少80%.在学校学生总人数不变且人人都要就餐的情况下,为了方便学生就餐,调查小组建议学校食堂20分钟内卖完午餐,则至少要同时开 个窗口.三.解答题(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.计算:()201102)1(5231221-+-⨯---⎪⎭⎫ ⎝⎛-π18.解分式方程:1232=+--x x x19.重庆两江新区于2011年3月22日启动修建最大森林公园——龙湾中央城市森林公园.在 公园内有两条交叉的公路AB ,AC ,准备在∠BAC 内部开一家超市P ,超市P 到两条公路 AB ,AC 的距离相等,且到点A 的距离等于线段m 的长.又准备在公路AB 上开一个游乐 场Q ,使得游乐场Q 到A 、P 距离相等.请在下图中作出超市P 及游乐场Q 的位置.(要 求尺规作图,保留作图痕迹,不写已知、求作和作法)20.已知:如图,同一直线上有四点B 、E 、C 、F ,且 AB ∥DE ,AC ∥DF ,BE=CF .求证:AB=DE四.解答题(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21.先化简,再求值:aa a a a a 2239622÷⎪⎪⎭⎫ ⎝⎛+--+-,其中a 是方程0132=--x x 的一个根.22.如图,一次函数b ax y +=的图象与反比例函数xky =的图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,点D 的坐标为()0,2-,点A 的横坐标是2,tan ∠CDO =21.(1)求点A 的坐标;(2)求一次函数和反比例函数的解析式; (3)求△AOB 的面积;23.我校的一个数学兴趣小组在本校学生中开展主题为“买房知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作A 、B 、C 、D ;并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:OxyABDC(1)求本次被调查的学生共有多少人?并将条形统计图和扇形统计图补充完整;(2)在“比较了解”的调查结果里,初三年级学生共有5人,其中2男3女,在这5人中,打算随机选出2位进行采访,请你用列表法或树状图的方法求出所选两位同学至少有一位是男同学的概率?24.在梯形ABCD 中,AD ∥BC ,AB=CD ,且DE ⊥AD 于D ,∠EBC=∠CDE ,∠ECB=45°.⑴求证:AB=BE ;⑵延长BE ,交CD 于F .若CE=2,tan∠CDE =31,求BF 的长.10%DAC30%BA B C D 等级2015 105 0人数1520备用图NMDCBA图1NMDCBA五.解答题(本大题共2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤25.现在互联网越来越普及,网上购物的人也越来越多,订购的商品往往通过快递送达.当当网上某“四皇冠”级店铺率先与“青蛙王子”童装厂取得联系,经营该厂家某种型号的童装.根据第一周的销售记录,该型号服装每天的售价x (元/件)与当日的销售量y (件)的相关数据如下表: 每件的销售价x (元/件) 200 190 180 170 160 150 140 每天的销售量y (件) 8090100110120130140已知该型号童装每件的进价是70元,同时为吸引顾客,该店铺承诺,每件服装的快递费10元由卖家承担.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求第一周销售中,y 与x 的函数关系式;(2)设第一周每天的赢利为w 元,求w 关于x 的函数关系式,并求出每天的售价为多少元时,每天的赢利最大?最大赢利是多少?(3)从第二周起,该店铺一直按第(2)中的最大日盈利的售价进行销售.但进入第三周后,网上其他购物店也陆续推出该型号童装,因此第三、四周该店铺每天的售价都比第二周下降了m %,销售量也比第二周下降了m 5.0%()20<m ;第五周开始,厂家给予该店铺优惠,每件的进价降低了16元;该店铺在维持第三、四周的销售价和销售量的基础上,同时决定每件童装的快递费由买家自付,这样,第五周的赢利相比第二周的赢利增加了2%,请估算整数m 的值. (参考数据:37.2601.5≈,49.701.56≈)26.如图1,在梯形ABCD 中,AD ∥BC ,AD =3,DC =5,AB =24,∠B =︒45,动点M 从点B 出发,沿线段BC以每秒1个单位长度的速度向终点C 运动;动点N 同时从C 点出发,沿C →D →A ,以同样速度向终点A 运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设运动的时间为t 秒.(1)求线段BC 的长度;(2)求在运动过程中形成的△MCN 的面积S 与运动的时间t 之间的函数关系式,并写出自变量t 的取值范围;并求出当t 为何值时,△MCN 的面积S 最大,并求出最大面积;(3)试探索:当M ,N 在运动过程中,△MCN 是否可能为等腰三角形?若可能,则求出相应的t 值,若不可能,说明理由.分分中和在分分即证明:6........................................................................................5..............................................................................2............................................................,//,//1.................................................,DE AB DEF ABC FACB EF BC DEFB DEF ABC F ACB DEF B DF AC DE AB EF BC EC CF EC BE CF BE =∴∆≅∆∴⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆∴∠=∠∠=∠∴=+=+∴= ()()()()。
年重庆市中考数学试卷一.选择题<本大题个小题,每小题分,共分)在每个小题地下面,都给出了代号为...地四个答案,其中只有一个是正确地,请将答题卡上题号右侧正确答案所对应地方框涂黑<或将正确答案地代号填人答题卷中对应地表格内)..<重庆)在﹣,﹣,,这四个数中,最小地数是< ).﹣.﹣..考点:有理数大小比较.解答:解:这四个数在数轴上地位置如图所示:由数轴地特点可知,这四个数中最小地数是﹣.故选..<重庆)下列图形中,是轴对称图形地是< )....考点:轴对称图形.解答:解:、不是轴对称图形,故本选项错误;、是轴对称图形,故本选项正确;、不是轴对称图形,故本选项错误;、不是轴对称图形,故本选项错误.故选..<重庆)计算地结果是< )....考点:幂地乘方与积地乘方.解答:解:原式.故选..<重庆)已知:如图,,是⊙地两条半径,且⊥,点在⊙上,则∠地度数为< ).°.°.°.°考点:圆周角定理.解答:解:∵⊥,∴∠°,∴∠°.故选..<重庆)下列调查中,适宜采用全面调查<普查)方式地是< ).调查市场上老酸奶地质量情况.调查某品牌圆珠笔芯地使用寿命.调查乘坐飞机地旅客是否携带了危禁物品.调查我市市民对伦敦奥运会吉祥物地知晓率考点:全面调查与抽样调查.解答:解:、数量较大,普查地意义或价值不大时,应选择抽样调查;、数量较大,具有破坏性地调查,应选择抽样调查;、事关重大地调查往往选用普查;、数量较大,普查地意义或价值不大时,应选择抽样调查.故选..<重庆)已知:如图,平分∠,点在上,∥.若∠°,则∠地度数为< ).°.°.°.°考点:平行线地性质;角平分线地定义.解答:解:∵∥,∠°,∴∠∠°,∵平分∠,∴∠∠×°°.故选..<重庆)已知关于地方程地解是,则地值为< )....考点:一元一次方程地解.解答:解;∵方程地解是,∴×﹣,解得.故选..<重庆)年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为,小丽与比赛现场地距离为.下面能反映与地函数关系地大致图象是< )....考点:函数地图象.解答:解:根据题意可得,与地函数关系地大致图象分为四段,第一段,小丽从出发到往回开,与比赛现场地距离在减小,第二段,往回开到遇到妈妈,与比赛现场地距离在增大,第三段与妈妈聊了一会,与比赛现场地距离不变,第四段,接着开往比赛现场,与比赛现场地距离逐渐变小,直至为,纵观各选项,只有选项地图象符合.故选..<重庆)下列图形都是由同样大小地五角星按一定地规律组成,其中第①个图形一共有个五角星,第②个图形一共有个五角星,第③个图形一共有个五角星,…,则第⑥个图形中五角星地个数为< )....考点:规律型:图形地变化类.解答:解:第①个图形一共有个五角星,第②个图形一共有个五角星,第③个图形一共有个五角星,…,则所以第⑥个图形中五角星地个数为×;故选..<重庆)已知二次函数地图象如图所示对称轴为.下列结论中,正确地是< )....考点:二次函数图象与系数地关系.解答:解:、∵开口向上,∴>,∵与轴交与负半轴,∴<,∵对称轴在轴左侧,∴﹣<,∴>,∴<,故本选项错误;、∵对称轴:﹣﹣,∴,故本选项错误;、当时,<,故本选项错误;、∵对称轴为﹣,与轴地一个交点地取值范围为>,∴与轴地另一个交点地取值范围为<﹣,∴当﹣时,﹣<,即<,故本选项正确.故选.二.填空题<本大题个小题,每小题分,共分)请将每小题地答案直接填在答题卡<卷)中对应地横线上,.<重庆)据报道,年重庆主城区私家车拥有量近辆.将数用科学记数法表示为.考点:科学记数法—表示较大地数.解答:解:×.故答案为:×..<重庆)已知△∽△,△地周长为,△地周长为,则与△地面积之比为.考点:相似三角形地性质.解答:解:∵△∽△,△地周长为,△地周长为,∴三角形地相似比是:,∴△与△地面积之比为:.故答案为::..<重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销地人数分别为:,,,,,,,则这组数据地中位数是.考点:中位数.解答:解:把这一组数据从小到大依次排列为,,,,,,,最中间地数字是,所以这组数据地中位数是;故答案为:..<重庆)一个扇形地圆心角为°,半径为,则这个扇形地面积为 <结果保留π)考点:扇形面积地计算.解答:解:由题意得,°,,故扇形π.故答案为:π..<重庆)将长度为厘地木棍截成三段,每段长度均为整数厘.如果截成地三段木棍长度分别相同算作同一种截法<如:,,和,,),那么截成地三段木棍能构成三角形地概率是.考点:概率公式;三角形三边关系.解答:解:因为将长度为厘地木棍截成三段,每段长度均为整数厘,共有种情况,分别是,,;,,;,,;,,;其中能构成三角形地是:,,一种情况,所以截成地三段木棍能构成三角形地概率是;故答案为:..<重庆)甲、乙两人玩纸牌游戏,从足够数量地纸牌中取牌.规定每人最多两种取法,甲每次取张或<﹣)张,乙每次取张或<﹣)张<是常数,<<).经统计,甲共取了次,乙共取了次,并且乙至少取了一次张牌,最终两人所取牌地总张数恰好相等,那么纸牌最少有张.考点:应用类问题.解答:解:设甲次取<﹣)张,乙次取<﹣)张,则甲<﹣)次取张,乙<﹣)次取张,则甲取牌<﹣)张,乙取牌<﹣)张则总共取牌:<﹣)<﹣)<﹣)<﹣)﹣<),从而要使牌最少,则可使最小,因为为正数,函数为减函数,则可使<)尽可能地大,由题意得,≤,≤,又最终两人所取牌地总张数恰好相等,故<﹣),而<<,﹣为整数,则由整除地知识,可得可为,,,①当时,﹣,因为≤,≤,所以这种情况舍去;②当时,﹣,因为≤,≤,所以这种情况舍去;③当时,﹣,此时可以符合题意,综上可得:要保证≤,≤,﹣,<)值最大,则可使,;,;,;当,时,最大,,继而可确定,<),所以﹣×张.故答案为:.三.解答题<共小题).<重庆)计算:.考点:实数地运算;零指数幂;负整数指数幂.解答:解:原式﹣..<重庆)已知:如图,,∠∠,∠∠.求证:.考点:全等三角形地判定与性质.解答:证明:∵∠∠,∴∠∠∠∠,即:∠∠,在△和△中,∴△≌△<),∴..<重庆)解方程:.考点:解分式方程.解答:解:方程两边都乘以<﹣)<﹣)得,<﹣)﹣,﹣﹣,,经检验,是原方程地解,所以,原分式方程地解是..<重庆)如图,在△中,∠°,点在边上,且△是等边三角形.若,求△地周长.<结果保留根号)考点:解直角三角形;三角形内角和定理;等边三角形地性质;勾股定理.解答:解:∵△是等边三角形,∴∠°,∵∠°,∴∠°﹣°﹣°°,∴,在△中,由勾股定理得:,∴△地周长是.答:△地周长是.四、解答题:<本大题个小题,每小题分,共分)解答时每小题必须给出必要地演算过程或推理步骤,请将解答书写在答题卡<卷)中对应地位置上..<重庆)先化简,再求值:,其中是不等式组地整数解.考点:分式地化简求值;一元一次不等式组地整数解.解答:解:原式•••,又,由①解得:>﹣,由②解得:<﹣,∴不等式组地解集为﹣<<﹣,其整数解为﹣,当﹣时,原式..<重庆)已知:如图,在平面直角坐标系中,一次函数地图象与反比例函数地图象交于一、三象限内地.两点,与轴交于点,点地坐标为<>,点地坐标为<,-),∠=.<)求该反比例函数和一次函数地解读式;<)在轴上有一点<点除外),使得△与△地面积相等,求出点地坐标.考点:反比例函数综合题.解答:解:<)过点作⊥轴,垂足为,∵<,﹣),∴,在△在,∠,即,解得,又∵点在第三象限,∴<﹣,﹣),将<﹣,﹣)代入中,得,∴反比例函数解读式为,将<,)代入中,得,∴<,),将<,),<﹣,﹣)代入中,得,解得,则一次函数解读式为;<)由得<﹣,),即,∵△△,∴,∴,即<﹣,)..<重庆)高中招生指标到校是我市中考招生制度改革地一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整地统计图:<)该校近四年保送生人数地极差是.请将折线统计图补充完整;<)该校年指标到校保送生中只有位女同学,学校打算从中随机选出位同学了解他们进人高中阶段地学习情况.请用列表法或画树状图地方法,求出所选两位同学恰好是位男同学和位女同学地概率.考点:折线统计图;扇形统计图;极差;列表法与树状图法.解答:解:<)因为该校近四年保送生人数地最大值是,最小值是,所以该校近四年保送生人数地极差是:﹣,折线统计图如下:<)列表如下:由图表可知,共有种情况,选两位同学恰好是位男同学和位女同学地有种情况,所以选两位同学恰好是位男同学和位女同学地概率是..<重庆)已知:如图,在菱形中,为边地中点,与对角线交于点,过作⊥于点,∠∠.<)若,求地长;<)求证:.考点:菱形地性质;全等三角形地判定与性质.解答:<)解:∵四边形是菱形,∴∥,∴∠∠,∵∠∠,∴∠∠,∴,∵⊥,∴,∵,∴,∴;<)证明:如图,∵为边地中点,∴,∴,在菱形中,平分∠,∴∠∠,在△和△中,∵,∴△≌△<),∴,延长交于点,∵∥,∴∠∠,∵∠∠,∴∠∠,∴,在△和△中,∵,∴△≌△<),∴,由图形可知,,∴..<重庆)企业地污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业地自身设备进行处理.某企业去年每月地污水量均为吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.至月,该企业向污水厂输送地污水量<吨)与月份<≤≤,且取整数)之间满足地函数关系如下表:至月,该企业自身处理地污水量<吨)与月份<≤≤,且取整数)之间满足二次函数关系式为.其图象如图所示.至月,污水厂处理每吨污水地费用:<元)与月份之间满足函数关系式:,该企业自身处理每吨污水地费用:<元)与月份之间满足函数关系式:;至月,污水厂处理每吨污水地费用均为元,该企业自身处理每吨污水地费用均为元.<)请观察题中地表格和图象,用所学过地一次函数、反比例函数或二次函数地有关知识,分别直接写出与之间地函数关系式;<)请你求出该企业去年哪个月用于污水处理地费用<元)最多,并求出这个最多费用;<)今年以来,由于自建污水处理设备地全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月地污水量都将在去年每月地基础上增加,同时每吨污水处理地费用将在去年月份地基础上增加<﹣),为鼓励节能降耗,减轻企业负担,财政对企业处理污水地费用进行地补助.若该企业每月地污水处理费用为元,请计算出地整数值.<参考数据:≈,≈,≈)考点:二次函数地应用.解答:解:<)根据表格中数据可以得出定值,则与之间地函数关系为反比例函数关系:,将<,)代入得:×,故<≤≤,且取整数);根据图象可以得出:图象过<,),<,)点,代入得:,解得:,故<≤≤,且取整数);<)当≤≤,且取整数时:<﹣)••<﹣)•<﹣),﹣﹣,∵﹣<,﹣,≤≤,∴当时,最大<元),当≤≤时,且取整数时,×<﹣)×<﹣﹣)<),﹣,∵﹣<,﹣,当≤≤时,随地增大而减小,∴当时,最大<元),∵>,∴去年月用于污水处理地费用最多,最多费用是元;<)由题意得:<)×××<﹣),设,整理得:﹣,解得:,∵≈,∴≈,≈﹣<舍去),∴≈,答:地值是..<重庆)已知:如图,在直角梯形中,∥,∠°,,,.为边上一点,以为边作正方形,使正方形和梯形在地同侧.<)当正方形地顶点恰好落在对角线上时,求地长;<)将<)问中地正方形沿向右平移,记平移中地正方形为正方形′,当点与点重合时停止平移.设平移地距离为,正方形′地边与交于点,连接′,′,,是否存在这样地,使△′是直角三角形?若存在,求出地值;若不存在,请说明理由;<)在<)问地平移过程中,设正方形′与△重叠部分地面积为,请直接写出与之间地函数关系式以及自变量地取值范围.考点:相似三角形地判定与性质;勾股定理;正方形地性质;直角梯形. 解答:解:<)如图①,设正方形地边长为,则,∵,,∴﹣﹣,∵∥,∴△∽△,∴,即,解得:,即;<)存在满足条件地,理由:如图②,过点作⊥于,则,,由题意得:′,′﹣,﹣,在△′中,′′<﹣)﹣,∵∥,∴△∽△,∴,即,∴﹣,在△′中,′′<﹣)﹣,过点作⊥于,∴﹣﹣<﹣),在△中,,<Ⅰ)若∠′°,则′′,即<﹣)<﹣),解得:,<Ⅱ)若∠′°,则′′,即﹣<﹣)<),解得:﹣,﹣﹣<舍去),∴﹣;<Ⅲ)若∠′°,则′′,即:﹣<﹣)<),此方程无解,综上所述,当或﹣时,△′是直角三角形;<)①如图③,当在上时,::,即::,∴,∴′﹣′﹣﹣﹣,∵﹣,∴,当≤≤时,△××,②当在上时,,∵•∠•<﹣)﹣,∴﹣﹣,∵,∴当<≤时,△﹣△﹣<﹣)<﹣)﹣﹣;③如图⑤,当在上时,′:′:,即′::,解得:′,∴﹣′﹣,∴,∵′′<﹣)﹣,∵′﹣′﹣,∴当<≤时,梯形﹣△××<﹣)﹣<﹣)<﹣)﹣﹣,④如图⑥,当<≤时,∵′′<﹣),<﹣),′′<﹣)<﹣),梯形梯形′﹣梯形′﹣.综上所述:当≤≤时,,当<≤时,﹣﹣;当<≤时,﹣﹣,当<≤时,﹣.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
重庆市2012年中考数学模拟试题一、选择题:(每题3分,共30分)1.红遍大江南北的2005“超级女声”活动,吸引了无数人的关注,据统计,其短信投票的总数约326800000条,将这个数写成科学计数法是()A.3.268×10 B.3.268×10C.3.268×10D.3.268×10 2.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图;若图中“快”字在正方体的前面,则这个正方体的后面是()A.乐B. 学C. 习D.中3.剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四副图案,不能用上述方法剪是()4.下图是5个城市的国际标准时间(单位:时)那么北京时间2006年11月27日上午9时是()A.伦敦时间2006年11月27日凌晨1时 B.纽约时间2006年11月27日晚上22时C.多伦多时间2006年11月26日晚上20时D.汉城时间2006年11月27日上午8时5.如果方程有两个同号的实数根,m的取值范围是()A、m<1B、0<m≤1C、0≤m<1D、m>06. 为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是()A. 1、2B. 2、1C. 2、3D. 3、27.正六边形ABCDEF中,H为AB边的中点,AC与EH相交于点G,则= ( )A. B.:5 C. D.:8.如图,一个等边三角形的边长和与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了A.4圈 B.3圈 C.5圈 D.3.5圈9.分式方程的解是()A. B.C. D.10.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x轴截得的线段长为2。
21(第4题)初2012级学生学业质量调研测试题数学试题读题卷(此卷不交)(本试题共五个大题,26个小题,满分150分,时间120分钟)参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标为)44,2(2ab ac a b --,对称轴公式为a b x 2-=.一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.下列四个数中,最大的数是A .2B .1-C .0D .22.下列运算中,计算正确的是A .a 3·a 2=a 6B .824a a a ÷=C . ()422ab ab =D .236()a a =3.下列图形中,既是轴对称图形,又是中心对称图形的是4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=28o ,那么∠2的度数是 A.60° B.62°C.68°D.72°5.下列说法中正确的是A.了解长江中鱼的种类适合采用全面调查B.数据1,1,2,2,3的众数是3C.了解某饮料中所含色素宜采用抽样调查D.一组数据的波动越大,方差越小 6. 如图,已知OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB =40°,则∠OBD =BACO(第6题)A AB CD俯视图左 视 图主视 图(第7题)A.80oB.50oC.40oD.60o7.一个几何体的三视图如图所示,这个几何体是 A .圆锥B .圆柱C .三棱锥D .三棱柱8. 如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O --- 路 线作匀速运动,设运动时间为t (秒),∠APB =y (度),则下列图象中表示y 与t 之间函数关系最恰当的是9.下图是由棋子组成的“正”字,则第6个图形需要棋子枚数为A .45B .46C .47D .4810.如图,为二次函数2y ax bx c =++的图象,给出的下列6个结论:①0ab <; ②方程20ax bx c ++=的根为1213x x =-=,; ③024<++c b a ; ④当1x >时,y 随x 值的增大而增大; ⑤当y >0时,―<x <3; ⑥a +b +c >0. 其中正确..的有 A .2个 B .3个 C .4个 D .5个初2012级学生学业质量调研测试题(第一次)数学试题 答题卷(此卷必须交)题号一二 三 四 五总 分总分人 复查人 1—1011—1617—2021—2425—26得分 评分人[机密]2012年 4月22日前(第8题) A B C D OPBty 045 90 Dty 045 90 Aty45 90 Cty45 90 (第10题)··· ····· · · (1)··· ··· ·· · (2) · ·· ····· ··· ··· · · (3) · ·· ···· ···· ·· · · · ………115233(第15题)一、选择题:(本大题共10个小题,每小题4分,共40分)题号 123 4 5678910 共对(个)答案二、填空题:(本题共6小题,每小题4分,共24分,请把下列各题的正确答案填写在横线上)11.全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是 .12.两个相似多边形的面积比是9:16,其中较小多边形周长为36cm ,则较大多边形周长为cm .13.某校九年级二班50名学生的年龄情况如下表所示:年 龄 14岁 15岁 16岁 17岁 人 数720167则该班学生年龄的中位数为 .14.已知扇形的圆心角为120°,半径为6,则扇形面积是 .15.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点(x ,y ).已知小华前二次掷得的两个点所确定的直线经过点P (4,7),则他第三次掷得的点也在这条直线上的概率为 .16. 自行车轮胎安装在前轮上行驶6 000千米后报废,若安装在后轮上只能行驶4 000千米.为了行驶尽可能远的路程,如果采用当自行车行驶一定路程后将前、后轮胎调换使用的方法,那么安装在自行车上的一对新轮胎最多可行驶 千米.三、解答题:(本大题共4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.计算: 18.解分式方程: 1111x x x -=+-. 解不等式 3513+<-x x ,并 ()0122012931231π-⨯-⎪⎭⎫ ⎝⎛+-+--.19.已知:如图,AC =DF ,AD =BE ,BC =EF .求证:∠C =∠F .20.已知:如图,在3×3(单位:cm )的正方形网格中,图形的各个顶点都在格点上求:图中阴影部分的面积.四、解答题:(本大题共个4小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值: 错误!未找到引用源。
2012年重庆市合川区中考数学模拟试卷一.选择题(本大题共10个小题,每小题4分,共40分,每小题只有一个选项是正确的,不选,多选,错选,均不给分) 1.4的倒数是( ) A .41- B .41 C .4 D .-42.下列计算正确的是( )A .4)2(22-=-a aB .236a a a =÷C .132-=-a aD .3)31(1=-3.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.函数x y 24-=中自变量x 的取值范围是( )A .x≥2B .21≥x C .x≤2 D .21-≤x5.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是21,则n 的值是( )A .6B .3C .2D .16.如图,PC 是⊙O 的切线,切点为C ,割线PAB 过圆心O ,交⊙O 于点A 、B ,PC=2,PA=1,则PB 的长为( )A .5B .4C .3D .27.神州7号运行1小时的行程约28 600 000m ,用科学记数法可表示为( )A .m 810286.0⨯ B .m 71086.2⨯ C .m 610628⨯。
D .m 51086.2⨯ 8.如图,已知D 、E 分别是△ABC 的AB 、AC 边上的点,DE ∥BC ,且9:1:=∆∆A B C A D E S S ,那么AE :AC 等于( )A .1:9B .1:3C .1:8D .1:29.如图,规格为60cm×60cm 的正方形地砖在运输过程中受损,断去一角,量得AF=30cm ,CE=45cm ,现准备从五边形地砖ABCDE 上截出一个面积为S 的矩形地砖PMBN ,则S 最大值是( ) A .1800 B .2700 C .2812 D .337510.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△AED ;②△ABE 是等边三角形;③AD=AF ;④CDE ABE S S ∆∆=;⑤CEF ABE S S ∆∆=.其中正确的是( ) A .①②③ B .①②④ C .①②⑤ D .①③④ 二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,已知AB ∥CD ,∠A=55°,∠C=20°,则∠P= .12.化简:=+--31922m m m .13.关于x 的一元二次方程05)2(22=-+-+m x m x 有一根为0,则另一根是 . 14.在半径为6的⊙O 中,60°的圆周角所对的弧长为 . 15.已知关于x 的方程)2)(1(32112+-=++--x x a x a x 只有整数解,则整数a 的值为 .16.如图,△ABC 为等腰直角三角形,∠BAC=90°,BC=1,E 为直角边AB上任意一点,以线段CE 为斜边做等腰Rt △CDE ,连接AD ,下列说法: ①AC ⊥ED ;②∠BCE=∠ACD ;③△AED ∽△ECB ;④AD ∥BC ;⑤四边形ABCD 面积的最大值为83.其中正确的是 . 三.解答题(共86分) 17.计算: 8+2×(π-2012)0+(-1)3-|-2 2|. 显示解析18.解方程组: 2x+y=54x-3y=15.显示解析19.如图,有分别过A、B两个加油站的公路l1、l2相交于点O,现准备在∠AOB 内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路l1、l2的距离也相等.请用尺规作图作出点P(不写作法,保留作图痕迹)显示解析20.已知一元二次方程x2-4x+k=0有两个实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.显示解析21.先化简(a2-4a2-4a+4-2a-2)÷a2+2aa-2,然后选取一个合适的a的值代入求值.显示解析22.如图,在矩形ABCD中,E是BC 边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:△ABE≌△DFA;(2)如果AD=10,AB=6,求sin∠EDF的值.☆☆☆☆☆显示解析23.如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.★★★☆☆显示解析24.如图,家住四层花园洋房的甲、乙二人同时从地下车库进入电梯回家,已知两人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)用树状图或列表法表示(a,b)的所有可能结果,并求甲、乙二人在同一层楼出电梯的概率:(2)小亮和小芳打赌,若甲、乙住在同层或相邻楼层,则小亮胜,否则小芳胜.判断上述游戏是否公平?若公平,请说明理由;若不公平,请说明理由,并修改游戏规则,使游戏公平.☆☆☆☆☆显示解析25.某地出产一种特色蔬菜,为了扩大生产规模,该地决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩蔬菜的收益会相应降低.经调查,种植亩数y(亩)和每亩蔬菜的收益z(元)与补贴数额x(元)之间均为一次函数关系,其对应值如表:x(元)0 100 200 300 …y(亩)400 600 800 1000 …z(元)2400 2100 1800 1500 …(1)在政府出台补贴措施前,该地种植这种蔬菜的总收益为多少?(2)政府出台补贴措施后,要使该地这种蔬菜的总收益w(元)最大,政府应该将每亩补贴数额x定为多少元?并求出总收益w的最大值和此时种植亩数.(3)若该地今年刚好取得最大总收益,为提高菜农的经济收入,农业部门通过对种子的技术改良,每亩收益将逐步提高,计划每年一亩今年、明年、后年三年共收益5460元,求明年、后年平均每年提高的百分率.显示解析26.如图,二次函数y=-x2+bx+c的图象与x 轴交于点B(-3,0),与y轴交于点C(0,-3).(1)求直线BC及二次函数的解析式;(2)设抛物线的顶点为D,与x轴的另一个交点为A.点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)连接CD,求∠OCA与∠OCD两角和的度数.。
2012年重庆市中考数学试卷一.选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012重庆)在﹣3,﹣1,0,2这四个数中,最小的数是( )A .﹣3B .﹣1C .0D .2考点:有理数大小比较。
解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .2.(2012重庆)下列图形中,是轴对称图形的是( )A .B .C .D .考点:轴对称图形。
解答:解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .3.(2012重庆)计算()2ab 的结果是( ) A .2ab B .b a 2 C .22b a D .2ab考点:幂的乘方与积的乘方。
解答:解:原式=a 2b 2.故选C .4.(2012重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°考点:圆周角定理。
解答:解:∵OA ⊥OB ,∴∠AOB=90°,∴∠ACB=45°.故选A .5.(2012重庆)下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 考点:全面调查与抽样调查。
解答:解:A 、数量较大,普查的意义或价值不大时,应选择抽样调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C .6.(2012重庆)已知:如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB .若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30°考点:平行线的性质;角平分线的定义。
2012年重庆市中考数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.22.(2012•重庆)下列图形中,是轴对称图形的是()A.B.C.D.3.(2012•重庆)计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab24.(2012•重庆)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°5.(2012•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.(2012•重庆)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.(2012•重庆)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.58.(2012•重庆)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.9.(2012•重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50B.64C.68D.7210.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣.下列结论中,正确的是()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上,11.(2012•重庆)据报道,2011年重庆主城区私家车拥有量近38000辆.将数380000用科学记数法表示为_________.12.(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为_________.13.(2012•重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_________.14.(2012•重庆)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为_________(结果保留π)15.(2012•重庆)将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是_________.16.(2012•重庆)甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有_________张.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.17.(2012•重庆)计算:.18.(2012•重庆)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19.(2012•重庆)解方程:.20.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(2012•重庆)先化简,再求值:,其中x是不等式组的整数解.22.(2012•重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.23.(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是_________.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.24.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD 于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且月份x(月) 1 2 3 4 5 6输送的污水量y1(吨)12000 6000 4000 3000 2400 20007至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)26.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.2012年重庆市中考数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2考点:有理数大小比较。
2012年重庆市中考数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.22.(2012•重庆)下列图形中,是轴对称图形的是()A.B.C.D.3.(2012•重庆)计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab24.(2012•重庆)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°5.(2012•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.(2012•重庆)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.(2012•重庆)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.58.(2012•重庆)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A. B.C. D.9.(2012•重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.7210.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上,11.(2012•重庆)据报道,2011年重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为.12.(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为.13.(2012•重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是.14.(2012•重庆)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)15.(2012•重庆)将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是.16.(2012•重庆)甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有张.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.17.(2012•重庆)计算:.18.(2012•重庆)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19.(2012•重庆)解方程:.20.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(2012•重庆)先化简,再求值:,其中x是不等式组的整数解.22.(2012•重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan ∠BOC=.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.23.(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.24.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)26.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.2012年重庆市中考数学试卷参考答案1.A 2.B 3.C 4.A 5.C 6.B 7.D 8.B 9.D 10.D11.3.8×105 12.9:1 13.28 14.3π 15. 16.10817.解:原式=2+1﹣5+1+9=8.18.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.19.解:方程两边都乘以(x﹣1)(x﹣2)得,2(x﹣2)=x﹣1,2x﹣4=x﹣1,x=3,经检验,x=3是原方程的解,所以,原分式方程的解是x=3.20.解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°﹣90°﹣60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC===2,∴△ABC的周长是AC+BC+AB=2+4+2=6+2.答:△ABC的周长是6+2.21.解:(﹣)÷=[﹣]•=•=•=,又,由①解得:x>﹣4,由②解得:x<﹣2,∴不等式组的解集为﹣4<x<﹣2,其整数解为﹣3,当x=﹣3时,原式==2.22.解:(1)过B点作BD⊥x轴,垂足为D,∵B(n,﹣2),∴BD=2,在Rt△OBD在,tan∠BOC=,即=,解得OD=5,又∵B点在第三象限,∴B(﹣5,﹣2),将B(﹣5,﹣2)代入y=中,得k=xy=10,∴反比例函数解析式为y=,将A(2,m)代入y=中,得m=5,∴A(2,5),将A(2,5),B(﹣5,﹣2)代入y=ax+b中,得,解得,则一次函数解析式为y=x+3;(2)由y=x+3得C(﹣3,0),即OC=3,∵S△BCE=S△BCO,∴CE=OC=3,∴OE=6,即E(﹣6,0).23.解:(1)因为该校近四年保送生人数的最大值是8,最小值是3,所以该校近四年保送生人数的极差是:8﹣3=5,折线统计图如下:(2)列表如下:由图表可知,共有12种情况,选两位同学恰好是1位男同学和1位女同学的有6种情况,所以选两位同学恰好是1位男同学和1位女同学的概率是=.24.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.25.解:(1)根据表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:y1=,将(1,12000)代入得:k=1×12000=12000,故y1=(1≤x≤6,且x取整数);根据图象可以得出:图象过(7,10049),(12,10144)点,代入得:,解得:,故y2=x2+10000(7≤x≤12,且x取整数);(2)当1≤x≤6,且x取整数时:W=y1•x1+(12000﹣y1)•x2=•x+(12000﹣)•(x﹣x2),=﹣1000x2+10000x﹣3000,∵a=﹣1000<0,x=﹣=5,1≤x≤6,∴当x=5时,W最大=22000(元),当7≤x≤12时,且x取整数时,W=2×(12000﹣y1)+1.5y2=2×(12000﹣x2﹣10000)+1.5(x2+10000),=﹣x2+1900,∵a=﹣<0,x=﹣=0,当7≤x≤12时,W随x的增大而减小,∴当x=7时,W最大=18975.5(元),∵22000>18975.5,∴去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)×1.5×[1+(a﹣30)%]×(1﹣50%)=18000,设t=a%,整理得:10t2+17t﹣13=0,解得:t=,∵≈28.4,∴t1≈0.57,t2≈﹣2.27(舍去),∴a≈57,答:a的值是57.26.解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.。
2012年初中毕业考试模拟试题数学试题姓名 得分一、选择题(本大题共10小题,每小题4分,满分40分)1.4的倒数是( )A .4B .-4C .14D .2 2.计算2a 2÷a 的结果是( )A .2B .2aC .2a 3D .2a 2 3.一次函数y =―3x ―2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列图形中,是轴对称图形的是()5、在三边分别为下列长度的三角形中,哪些不是直角三角形( )A 、5,13,12B 、2,3,5C 、4,7,5D 、1,3,26.为了描述我县城区某一天气温变化情况,应选择( )A .扇形统计图B .条形统计图C .折线统计图D .直方图 7.直角坐标系内点P (-2,3)关于原点的对称点Q 的坐标为( ) A .(2,-3) B .(2,3) C .(-2,3) D .(-2,-3)8.2012年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( ) A .30x -8=31x +26 B .30x +8=31x +26 C .30x -8=31x -26 D .30x +8=31x -269.如图,在矩形ABCD 中,AB =4,BC =3,点P 从起点B 出发,沿BC 、CD 逆时针方向向终点D 匀速运动.设点P 所走过的路程为x ,则线段AP 、AD 与矩形围成的图形面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )10.如图,△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、 AC 于E 、 F , 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形;③ABC AEPF S S ∆=21四边形; ④EF=AP. 当∠EPF 在△ABC 内绕顶点P旋转时(点E 不与A 、B 重合)上述结论始终正确的有( )A .1 个 B. 2个 C. 3个 D. 4个二、填空题(本大题共6小题,每小题4分,满分24分)11.伦敦奥运会的口号是:“城市,让生活更美好”.到2012年8月8日止,参观伦敦奥运会的人数累计为8004300人.数字8004300用科学记数法表示为 .12.不等式组⎩⎨⎧2x +1>-1x +2<≤3的整数解为 .13.已知反比例函数ky x =的图象过点(-4,3),则k = 。
2012年重庆市中考数学试卷一.选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内). 1.(2012重庆)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .2 考点:有理数大小比较。
解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3. 故选A . 2.(2012重庆)下列图形中,是轴对称图形的是( )A .B .C .D .考点:轴对称图形。
解答:解:A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项正确; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误. 故选B .3.(2012重庆)计算()2ab 的结果是( )A .2abB .b a 2C .22b a D .2ab 考点:幂的乘方与积的乘方。
解答:解:原式=a 2b 2. 故选C . 4.(2012重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20° 考点:圆周角定理。
解答:解:∵OA⊥OB, ∴∠AOB=90°, ∴∠ACB=45°. 故选A . 5.(2012重庆)下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 考点:全面调查与抽样调查。
解答:解:A 、数量较大,普查的意义或价值不大时,应选择抽样调查; B 、数量较大,具有破坏性的调查,应选择抽样调查; C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查. 故选C . 6.(2012重庆)已知:如图,BD 平分∠ABC,点E 在BC 上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30° 考点:平行线的性质;角平分线的定义。
重庆市2012年初中毕业暨高中招生考试数学试题答案解析一、选择题 1.【答案】A【解析】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是3-.【提示】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可. 【考点】有理数大小比较. 2.【答案】B【解析】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.【提示】根据轴对称图形的概念对各选项分析判断后利用排除法求解. 【考点】轴对称图形. 3.【答案】C 【解析】原式22a b =【提示】根据幂的乘方法则:底数不变,指数相乘,进行计算即可. 【考点】幂的乘方,积的乘方. 4.【答案】A【解析】∵OA OB ⊥,∴90AOB ∠=︒,∴45ACB ∠=︒. 【提示】直接根据圆周角定理进行解答即可. 【考点】圆周角定理. 5.【答案】C【解析】A.数量较大,普查的意义或价值不大时,应选择抽样调查; B.数量较大,具有破坏性的调查,应选择抽样调查; C.事关重大的调查往往选用普查;D.数量较大,普查的意义或价值不大时,应选择抽样调查.【提示】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【提示】先求出将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可. 【考点】概率公式,三角形三边关系. 16.【答案】108【解析】设甲a 次取(4)k -张,乙b 次取(6)k -张,则甲(15)a -次取4张,乙(17)b -次取6张,则甲取牌(60)ka -张,乙取牌(102)kb -张则总共取牌:(4)4(15)(6)6(17)()162N a k a b k b k a b =-+-+-+-=-++,从而要使牌最少,则可使N 最小,因为k 为正数,函数为减函数,则可使()a b +尽可能的大,由题意得,15a ≤,16b ≤,又最终两人所取牌的总张数恰好相等,故()42k b a -=,而04k <<,b a -为整数,则由整除的知识,可得k 可为1,2,3,①当1k =时,42b a -=,因为15a ≤,16b ≤,所以这种情况舍去; ②当2k =时,21b a -=,因为15a ≤,16b ≤,所以这种情况舍去;③当3k =时,14b a -=,此时可以符合题意,综上可得:要保证151614a b b a ≤≤-=,,,()a b +值最大,则可使162b a ==,;151b a ==,;140b a ==,当162b a ==,时,a b +最大,18a b +=,继而可确定3k =,()18a b +=,所以318162108N =-⨯+=张. 【提示】设甲a 次取(4)k -张,乙b 次取(6)k -张,则甲(15)a -次取4张,乙(17)b -次取6张,从而根据两人所取牌的总张数恰好相等,得出A 、B 之间的关系,再有取牌总数的表达式,讨论即可得出答案. 【考点】应用类问题. 三、解答题17.【答案】215198=+-++= 【解析】原式215198=+-++=.【提示】分别计算零指数幂、负整数指数幂、绝对值,然后将各部分的最简值合并即可得出答案. 【考点】实数的运算,零指数幂,负整数指数幂.18.【答案】证明:∵12∠=∠,∴12BAD BAD ∠+∠=∠+∠,即:EAD BAC ∠=∠,在EAD △和BAC△中B E AB AE BAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABC AED ASA △≌△,∴BC ED =. 【提示】由12∠=∠可得:EAD BAC ∠=∠,再有条件AB AE B E =∠=∠,可利用ASA 证明ABC AED △≌△,再根据全等三角形对应边相等可得BC ED =. 【考点】全等三角形的判定与性质. 19.【答案】3x =【解析】方程两边都乘以(1)(2)x x --得,2(2)1x x -=-,241x x -=-,3x =,经检验,3x =是原方程2图形可知,GM GF MF =+,∴AM DF ME =+.11/ 11。
2012年全新中考数学模拟试题四(时量:120分钟满分:120分)一.填空题(每小题3分,共24分)1. | 02的倒数是______________ 。
2. 分解因式:2x28 ________ 。
23. 在函数y 中,自变量x的取值范围是。
Jx 1x 1 24. 不等式组的解集是___________ 。
3x 65. 母线长为3cm底面半径为1cm的圆柱的侧面展开图的面积为_________________ cm2。
6. 如图所示,已知△ ABC中,P为AB上一点,连结PC,要使△ ACP^A ABC只需添加条件_____________ 。
(只需填入一种情况)7. 如图所示,P是O O的弦AB上的一点,AB= 10cm, AP= 4cm, OP= 5cm,则O O的半径为cm。
8. 观察下列各式:2111222 2 2 332 3 3 4请你将猜想到的规律用自然数n (n》1)表示出来____________ 。
.选择题(每题3分,共24分)「229.在实数18, 、21, —, 一,0.2121121112 …,(、、3 、、2)°,2 7sin60°• tan47°tan43°, 0.2 2中无理数有( )D. 5个A. 2个B. 3个C. 4个2 1x10.如用换兀法解方程3x 2 0, 并设y x21,那么原方程可2 “x x 1x化为()A. y2 3y 2 0B. y23y 2 0C. y 2y 3 0D.y22y 3 011.受季节的影响,某种商品每件按原售价降价10%又降价a元,现每件售价为b元, 那么该商品每件的原售价为()a b 一A. 兀B.(110%)(a b)元1 10%ba_ C. 兀D.(110%)(b a)元1 10%12. 在矩形ABCD中, AB= 3cm, AD= 2cm,则以AB所在直线为轴旋转一周所得的圆柱的表面积为()2 2A. 17 cmB.20 cmC. 21 cm2D. 30 cm213. 已知点P是半径为5的O O内一定点,且09 4,则过点P的所有弦中,弦长可能取到的整数值为()A. 5 , 4, 3B. 10 , 9, 8, 7, 6, 5, 4, 3C. 10 , 9, 8, 7, 6D. 12 , 11, 10, 9, 8, 7, 614. 下列说法错误的是()A. 直线y = x就是第一、三象限的角平分线2B. 反比例函数y —的图象经过点(1, 2)xC. 函数y 3x 10中,y随着x的增大而减小D. 抛物线y x2 2x 1的对称轴是x 1ax2 5ax 6 0的两个根,则这两圆的位置关系是()A.相离B.相交C.内切D.外切三.解答题(本题共6个小题,每小题6分,共36分)2 11厂0°17.计算:(2)2 2 2 2 cos60°320. 如图所示,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点。
初2012级毕业暨高中招生适应性考试数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟) 注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.参考公式:抛 物 线2(0)y ax bx c a =++≠的 顶点坐标为24(,)24b ac b a a --,对称轴公式为 2b x a=-. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.在2-,1-,0,3这四个数中,最小的数是A .2-B .1-C .0D .3 2.下面四个汽车标志图案中,是中心对称图形的是3.计算23)(a 的结果是 A .23a B .26a C .a 9 D .29a4.下列调查中,适宜采用全面调查(普查)方式的是A .调查我市市民的健康状况B .调查我区中学生的睡眠时间C .调查某班学生1分钟跳绳的成绩D .调查全国餐饮业用油的合格率5.如图,//AB ED , ︒=∠70ECF ,则BAF ∠的度数为A .︒130B .︒110C .︒70D .︒206.方程x x =2的解为 A .0或1B .0A .B. C .D .ABC DEF 5题图……图①图②图③图④C .0或1-D .17.如图,AB 是⊙O 的直径,点C 、D 都在⊙O 上,若∠C =20°, 则∠ABD 的度数等于 A .80°B .70°C .50 °D .40°8.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑥个图形中矩形的个数为A .30B .25C .28D .319.在学雷锋活动中,某校团支部组织团员步行到敬老院去服务.他们从学校出发,走了一段时间后,发现团旗忘带了,于是派团员小明跑步返回学校去拿,小明沿原路返回学校拿了团旗后,立即又以原跑步速度追上了队伍.设小明与队伍之间的距离为S ,小明随队伍从学校出发到再次追上队伍的时间为t .下面能反映S 与t 的函数关系的大致图象是 10.二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论中,正确的是 A .0<abc B .b c a <+ C .a b 2>D .c b a ->24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.AB C D7题图OOtSD .tS OA . SB . tOtSC .O10题图6 2815题图11.重庆市重大惠民工程——公租房建设已陆续竣工.截至2012年3月,重庆市公租房分配量已达130000余套.130000用科学记数法表示为 .12.在“创建国家环境保护模范城市”活动中,某班各小组制止了不文明行为的人数分别为:80,76,70,60,76,70,76.则这组数据的众数是 .13.已知△ABC ∽△DEF ,△ABC 的面积为4,△DEF 的面积为9,则△ABC 与△DEF 对应角平分线的比为____________.14.120°的圆心角所对的弧长是2π,则此弧所在的圆的半径为___________. 15.把一个转盘平均分成三等份,依次标上数字2、6、8.用力转动转盘两次,将第一次转动停止后指针指向的数字记作x ,第二次 转动停止后指针指向的数字的一半记作y .以长度为x 、y 、4 的三条线段为边长能构成三角形的概率为_____________.16.第八届中国(重庆)国际园林博览会吉祥物“山娃”深受市民喜欢.某特许商品零售商销售A 、B 两种山娃纪念品,其中A 种纪念品的利润率为10%,B 种纪念品的利润率为30%.当售出的A 种纪念品的数量比B 种纪念品的数量少40%时,该零售商获得的总利润率为20%;当售出的A 种纪念品的数量与B 种纪念品的数量相等时,该零售商获得的总利润率为____________.(利润率=利润÷成本)三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 17.计算:()201213131384-⎪⎭⎫⎝⎛---⨯---π.18.解方程:6122x x x +=-+.19.如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .A BE D1C2 19题图20.如图,△ABC 中,∠B =60°,∠C =30°, AM 是BC 边上的中线,且AM =4. 求△ABC 的周长.(结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.先化简,再求值:1441-222-+-÷⎪⎭⎫ ⎝⎛-x x x x x x ,其中x 是不等式组()⎩⎨⎧+≤->112,01-x x x 的整数解.22.如图,一次函数b kx y +=)0(≠k 的图象与x 轴、y 轴分别交于B 、C 两点,与反比例函数xmy =)0(≠m 的图象在第一象限内交于点A , AD 垂直平分OB ,垂足为D ,AD =2,tan ∠BAD =21. (1)求该反比例函数及一次函数的解析式; (2)求四边形ADOC 的面积.23.为了深化课堂教学改革,促进学生全面发展,某校积极进行课改实验.学校为了鼓励其中表现突出的同学,每学月进行“校园之星”评选活动.初2012级对本年级上学期五个学月的获奖人数进行了统计,并制成了如下不完整的折线统计图.(1)已知该年级这五个学月获选“校园之星”的平均人数为5人,求该年级这五个学月获选“校园之星”人数的中位数,并将折线统计图补充完整.1 2 3 4 5 6 第一 学月 学月人数7 第二 学月第三 学月 第四 学月 第五 学月 23题图ACBM 20题图22题图OD CAB xy(2)该年级第五学月评出的4位“校园之星”中男女同学各有2人,校广播站小记者打算从中随机选出2位同学进行采访,请你用列表法或画树状图的方法,求出所选两位同学恰好是1男1女的概率.24.如图,□ABCD 中,E 是BC 边的中点,连接AE ,F 为CD 边上一点,且满足∠DFA =2∠BAE . (1)若∠D =105°,∠DAF =35°.求∠FAE 的度数; (2)求证:AF =CD +CF .五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.受不法投机商炒作的影响,去年黑豆价格出现了大幅度波动.1至3月份,黑豆价格大幅度上涨,其价格y 1 (万元/吨)与月份x (1≤x ≤3,且x 取整数)之间的关系如下表:月份x 1 2 3 价格y 1 (万元/吨)2.62.83而从4月份起,黑豆价格大幅度走低,其价格y 2(万元/吨)与月份x (4≤x ≤6,且x 取整数)之间的函数关系如图所示.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出黑豆价格y 1 (万元/吨)与月份x 之间所满足的函数关系式;观察 右图,直接写出黑豆价格y 2 (万元/吨)与月份x 之间 所满足的一次函数关系式;(2)某食品加工厂每月均在上旬进货,去年1至3月份的黑豆进货量p 1 (吨)与月份x 之间所满足的函数关系式为p 1=-10x +180 (1≤x ≤3,且x 取整数);4至6月份黑豆进货量p 2(吨)与月份x 之间所满足的函数关系式为p 2=30x -30 (4≤x ≤6,且x 取整数).求在前6个月中该加工厂的黑豆进货金额最大的月份和该月的进货金额;(3)去年7月份黑豆价格在6月的基础上下降了a %,进货量在6月份的基础上增加了2a %.使得7月份进货金额为363万元,请你计算出a 的最大整数值. (参考数据:7.13≈,2.25≈,4.26≈,6.27≈)Ox654 25题图2.6 2.4 2.2 y 2BD24题图E AFC26.如图(1),在□ABCD 中,对角线CA ⊥AB ,且AB =AC =2.将□ABCD 绕点A 逆时针旋转45°得到□A 1B 1C 1D 1,A 1D 1过点C ,B 1C 1分别与AB 、BC 交于点P 、点Q . (1)求四边形CD 1C 1Q 的周长;(2)求两个平行四边形重合部分的四边形APQC 的面积;(3)如图(2),将□A 1B 1C 1D 1以每秒1个单位的速度向右匀速运动,当B 1C 1运动到直线AC时停止运动.设运动的时间为x 秒,两个平行四边形重合部分的面积为y ,求y 关于x 的函数关系式,并直接写出相应的自变量x 的取值范围.DCB 1PA C 1D 1 A 1 26题图(2)BQB 1 26题图(1)DC 1 PA (A 1) CD 1B Q沙坪坝区初2012级毕业暨高中招生适应性考试数学试题参考答案及评分意见一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案ADDCBABDCC二、填空题:11.5103.1⨯; 12.76; 13.3:2; 14.3; 15.94; 16.17.5%. 三、解答题:17.解:原式=13124-+⨯- ····················································································· (5分) =4. ········································································································ (6分) 18.解:()()()()22262+-=-++x x x x x . ·························································· (2分)4126222-=-++x x x x . ······································································ (3分)88=x . ··············································································· (4分)1=x . ················································································ (5分)经检验:1=x 是原方程的解.∴原方程的解是1=x . ················································································· (6分)19.证明:∵21∠=∠,∴DAE BAC ∠=∠. ························································· (2分)又∵AB =AD ,AC =AE , ∴ABC ∆≌ADE ∆. ··················································································· (5分) ∴DE BC =. ······························································································· (6分)20.解:∵︒=∠60B ,︒=∠30C ,∴︒=∠-∠︒=∠90-180C B CAB . ··········· (2分)又∵AM 是BC 边上的中线,∴BC AM 21=. 又∵AM =4,∴BC =2AM =8. ········································································· (3分) 在Rt △ABC 中,︒=∠30C , ∴BC AB 21==4, ························································································ (4分) 3422=-=AB BC AC . ···································································· (5分) ∴ABC ∆的周长为:AB+BC+AC =3412+. ··········································· (6分)四、解答题: 21.解:原式=()()()()221111--+⋅⎥⎦⎤⎢⎣⎡--x x x x x x································································ (4分)=()()()()22111)1(--+⋅---x x x x x x x x ··································································· (5分) =()()()()2221112--+⋅--x x x x x x x ········································································· (6分) =xx -+21. ·································································································· (7分) 由⎩⎨⎧+≤->112,01-x x x )(解得31≤<x . ······················································ (8分)∵x 是不等式组的整数解,∴x =2或3. 又∵2≠x ,∴x =3. ···················· (9分)当x =3时,原式=43213-=-+. ·································································· (10分) 22.解:(1)∵AD 垂直平分OB ,∴OD =BD ,︒=∠90ADB .∵在Rt ADB ∆中,ADDBBAD =∠tan ,又∵21tan =∠BAD ,2=AD ,∴221DB =,∴DB =1. ·················· (1分)∴OD =BD =1,∴OB =OD +DB =2.∴点A 的坐标为)2,1(,点B 的坐标为)0,2(. ······································· (3分) 将A )2,1(代入m y x =,得1m2=,∴m =2. ········································ (4分) ∴该反比例函数的解析式为xy 2=. ····················································· (5分)将A )2,1(和B )0,2(分别代入y kx b =+,得 ⎩⎨⎧=+=+.02,2b k b k 解得⎩⎨⎧==.4,2-b k ·································································· (7分) ∴该一次函数的解析式为42y +-=x . ················································· (8分) (2)在42y +-=x 中,令0=x ,∴4=y .∴点C 的坐标为)4,0(.∴4=OC . ·························································· (9分)∴3)O A 21ADOC =⨯+⨯=OD C D S (四边形.············································ (10分) 23.解:(1)设该年级第三学月的获奖人数为x .则554665=++++x .解得x =4. ·································································································· (1分) ∴该年级这五个学月获选“校园之星”人数的中位数为5人. ················· (2分) 补图如下:····························································································································· (4分) (2)设1A 、2A 为男同学,1B 、2B 为女同学.画树状图如下:····························································································································· (8分) 或列表:····························································································································· (8分) 所以,所选两位同学恰好是1男1女的概率为32128==P . ··················· (10分) 24.(1)解:∵∠D=105°,∠DAF=35°,∴∠DFA=180°-∠D-∠DAF=40°.∵□ABCD ,∴AB ∥CD ,AB=CD .∴∠DFA=∠FAB=40°. ················································································ (1分) ∵∠DFA =2∠BAE , ∴∠FAB =2∠BAE .1A 2A 1B 2B 1A(1A ,2A ) (1A ,1B ) (1A ,2B ) 2A (2A ,1A )(2A ,1B ) (2A ,2B ) 1B (1B ,1A ) (1B ,2A ) (1B ,2B ) 2B (2B ,1A ) (2B ,2A ) (2B ,1B ) 01 2 3 4 5 6 第一 学月 学月人数7 第二 学月第三 学月 第四 学月 第五 学月23题答图A 1 A 2B 1 B 2A 2 A 1B 1 B 2 B 1 A 1 A 2 B 2 B 2 A 1 A 2 B 1 BADF E 24题答图G C即∠FAE+∠BAE =2∠BAE .∴∠FAE=∠BAE .·························································································· (3分) 又∵∠FAB=∠FAE+∠BAE=40°,∴2∠FAE=40°,∴∠FAE=20°. ···· (4分) (2)证明:在AF 上截取AG=AB ,连接EG ,CG . ·············································· (5分)∵∠FAE=∠BAE ,AE=AE ,∴△AEG ≌△AEB .∴EG=BE ,∠B=∠AGE . ············································································ (6分)又∵E 为BC 中点,∴CE=BE .∴EG=EC ,∴∠EGC=∠ECG . ····································································· (7分) ∵AB ∥CD ,∴∠B+∠BCD=180°.又∵∠AGE+∠EGF=180°,∠AGE=∠B ,∴∠BCF=∠EGF .………………………………………………………………(8分) 又∵∠EGC=∠ECG ,∴∠FGC=∠FCG ,∴FG=FC .………………………(9分)又∵AG=AB ,AB=CD ,∴AF=AG+GF=AB+FC=CD+FC .………………(10分)五、解答题:25.解:(1)y 1=0.2x +2.4(1≤x ≤3,且x 取整数). ········································· (1分)y 2=-0.2x +3.4(4≤x ≤6,且x 取整数). ······································ (2分) (2)在前3个月中,设每月黑豆的进货金额为1w 万元,1w =)4.22.0)(18010(11++-=⋅x x y p4321222++-=x x 450)3(22+--=x (1≤x ≤3,且x 取整数). ··· (3分) ∴当x=3时,1w 最大=450万元. ········································································· (4分) 在4到6月份中,设每月黑豆的进货金额为2w 万元,2w =)4.32.0)(3030(22+--=⋅x x y p10210862-+-=x x 384)9(62+--=x (4≤x ≤6,且x 取整数). ······ (5分)∵96>,而当4≤x ≤6时,2w 随x 的增大而增大,∴当x=6时,w 2最大=330万元. ··········································································· (6分) ∵450>330, ∴在前6个月中,第3月份食品加工厂的黑豆进货金额最大, 最大金额为450万元. ······················································································· (7分) (3)6月份的进货量为:p 2=30×6-30=150(吨),黑豆价格为:y 2=-0.2×6+3.4=2.2 (万元/吨) ,由题意,得 363%)1(2.2%)21(150=-⨯+a a . ·········································· (8分)整理,得 0500502=+-a a .解得5525±=a . ·································· (9分) ∵2.25≈.∴3614≈≈a a 或.∵所求为最大整数值,∴a 取36.答:a 的最大整数值为36. ············································································· (10分)26.解:(1)由条件可知,△ABC 和△ADC 都是等腰直角三角形,∴ ∠BCA =∠D 1=45°,∴ CQ ∥D 1C 1,又∵CD 1∥QC 1,∴ 四边形CD 1C 1Q 是平行四边形.∴ C 1D 1=B 1A 1=AB =2. ··········································································· (1分) CD 1=A 1D 1-AC =22-2. ······································································· (2分) ∴ 四边形CD 1C 1Q 的周长为 [(22-2)+2]×2=42. ······················· (3分)(2) 如图①,在等腰直角△A 1B 1P 中,A 1B 1=2,∴ PA 1=2,PQ =BP =2-2. ···························································· (5分) ∴APQC S =四边形()1-22222-221=⨯+⨯. ··························· (7分)(3)当□A 1B 1C 1D 1运动到点C 1在BC 上时,如图②,则C 1与Q 重合,这时运动距离为C 1H (如图①), ∴C 1 H =QC 1=CD 1=22-2这时运动时间 x =22-2. ············································································· (8分)B 1 26题答图① DC 1 P A(A 1) CD 1 B Q D C B 1 P A C 1(Q ) D 1 A 1 26题答图② BC 2 A 2 HD B 1 C 1 P A C D 1 A 1 26题答图③B QA 2 C 2B 1 26题答图④D C 1 P A C D 1 A 1 A 2 C 2 C 3 B。
重庆南开中学初2012级毕业暨高中招生模拟试题数 学 试 题(本卷共五个大题,满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答卷上。
)1、有这样四个数:7,1,100,0--,其中最大的一个数是( )A 、7-B 、1C 、100-D 、0 2、计算()33a-的结果是( ) A 、27a - B 、6a - C 、9a D 、9a - 3、下列图形中,既是轴对称图形,又是中心对称图形的是( )4、如图,在Rt ABC ∆中,90,ACB DE ∠=o过点C ,且//DE AB ,若55ACD ∠=o ,则B ∠的度数是( )A 、35oB 、45oC 、55oD 、65o5、下列调查中,适宜采用普查方式的是( )A 、质检部门对市场上某品牌饮料的质量的调查B 、电视台对正在播出的某电视节目收视率的调查C 、环保部门对长江某段水域的水污染情况的调查D 、企业在给职工做工作服前进行尺寸大小的调查6、如图,AB O e 是的直径,点C 、D 都在O e 上,若50ABC ∠=o,则BDC ∠=( )A 、50oB 、45oC 、40oD 、30o7、点(),2P a a -在每四象限,则a 的取值范围是( )A 、20a -<<B 、02a <<C 、2a >D 、0a <8、某厂的矩形蓄水池有A 、B 、C 三种水管,已知A 为进水管,B C 和均为出水管,且流量为A B C V V V >>,在0~2分钟时,打开A 、C 两管,关闭B 管。
在2~4分钟时,打开A 、B 两管,关闭C 管。
在4~6分钟时,打开B 、C 两管,关闭A 管。
若矩形蓄水池在第0分钟和第6分钟时均没有水,则下面能大致表示蓄水池中水的高度h (米)与时间t (分)的函数关系图象是( )9、下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中,第①个图形中一共有5个正多边形,第②个图形中一共有13个正多边形,第③个图形中一共有26个正多边形,……,则第⑥个图形中正多边形的个数为( )A 、90B 、91C 、115D 、116 10、已知二次函数()20y ax bx ca =++≠的图象如图,则下列结论中正确的是( )A 、0abc >B 、240b ac -<C 、930a b c ++>D 、80c a +<二、填空题(本大题共6小题,每小题4分,共24分。
A BC O数学试卷一、选择题(本大题共 小题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
请将答案写在答卷上。
).在- 、 、 、四个实数中,最大的实数是【 】 .- . . ..下列运算正确的是【 】. ·. - = . + =. =.下列图形中是中心对称图形的是【 】4.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是【 】 A .30° B .45° C .40° D .50°5.下列调查中,适宜采用全面调查方式的是【 】A .了解重庆市的空气质量情况B .了解长江流域的水污染情况C .了解重庆市居民的环保意识D .了解全班同学每周体育锻炼的时间6.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠BAC =36°,则劣弧BC 的长是【 】A .π51B .π52C .π53D .π547.如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是【 】a b 18.如图,正方形ABCD 的边长为1,E 、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是【】9.把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为【】色.。
A. 红B. 黄C. 蓝D. 紫10.如图所示的二次函数2y ax bx c=++的图像中,刘星同学观察得出了下面四条信息:(1)24b ac->0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有【】A. 2个B. 3个C. 4个D. 1个二、填空题(本大题共6小题,每小题4分,共24分。
请将答案写在答卷上。
)11.据统计局网上公布的数据显示,2011年第一季度我市完成工业总产值约为61 400 000 000元,用科学记数法表示约为元。
重庆市2012年中考数学模拟试题四
(全卷共五个大题,满分150分,考试时间120分钟)
一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中. 1.3的倒数是()
A .13
B .— 1
3 C .3 D .—3
2.计算2x 3·x 2的结果是()
A .2x
B .2x 5
C .2x 6
D .x 5 3.不等式组⎩⎨
⎧>≤-6
2,31x x 的解集为()
A .x >3
B .x ≤4
C .3<x <4
D .3<x ≤4
4.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,若∠C =50°,∠BDE =60°,则∠CDB 的度数等于()
A .70°
B .100°
C .110°
D .120° 5.下列调查中,适宜采用全面调查(普查)方式的是()
A .对全国中学生心理健康现状的调查
B .对冷饮市场上冰淇淋质量情况的调查
C .对我市市民实施低碳生活情况的调查
D .以我国首架大型民用直升机各零部件的检查
6.如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC 的度数等于() A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()
8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()
A .图①
B .图②
C .图③
D .图④
9.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步
回家。
下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是()
10.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE
的垂线交DE 于点P .若AE =AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正
方形ABCD
=4+ 6 .其中正确结论的序号是()
A .①③④
B .①②⑤
C .③④⑤
D .①③⑤
二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填在题后的横线上.
11.上海世界博览会自2010年5月1日开幕以来,截止到5月18日,累计参观人数约为324万人,
将324万用科学记数法表示为_____________万.
12.“情系玉树 大爱无疆” . 在为青海玉树的捐款活动中,某小组7位同学的捐款数额(元)分
别是:5,20,5,50,10,5,10. 则这组数据的中位数是_____________.
13.已知△ABC 与△DEF 相似且对应中线的比为2:3,则△ABC 与△DEF 的周长比为_____________. 14. 已知⊙O 的半径为3cm ,圆心O 到直线l 的距离是4cm ,则直线l 与⊙O 的位置关系是_____________.
15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外
其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是_____________.
16.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这
两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克
三、解答题:(本大题共4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.
17.计算:(-1)2010-| -7 |+ 9 ×( 5 -π)0+( 1
5
)-1
18.解方程:x x -1 + 1 x =1
19.尺规作图:请在原图上作一个∠AOC ,使其是已知∠AOB 的 3
2
倍(要求:写出已知、求作,
保留作图痕迹,在所作图中标上必有要的字母,不写作法和结论) 已知: 求作:
20. 已知:如图,在Rt △ABC 中,∠C =90°,AC = 3 .点D 为BC 边上一点,且BD =2AD ,∠
AD C =60°求△ABC 的周长(结果保留根号)
四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.
21.先化简,再求值:(x 2+4x -4)÷ x 2-4 x 2+2x ,其中x =-1
22.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在
第一象限内的图象的交于点B (2,n ),连结BO ,若S △AOB =4. (1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.
23.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,
并制成了如下两幅不完整的统计图:
(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整; (2)如果发了3条箴的同学中有两位同学,发了4条箴言的同学中有三位女同学. 现要从发了3
条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
24. 已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°.点E 是DC 的中点,过点E 作DC
的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足CF =AD ,MF =MA .
(1)若∠MFC =120°,求证:AM =2MB ;
(2)求证:∠MPB =90°- 1
2 ∠FCM .
25.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前
四周每周的平均销售价格变化如下表:
/千克)从5月第1周的2.8
元/千克下降至第2周的2.4元/千克,且y 与周数x 的变化情况满足二次函数y =- 1 20
x
2
+bx +c .
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月
份y 与x 的函数关系式,并求出5月份y 与x 的函数关系式;
(2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 1
4
x +1.2,5月
份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m =5
1
x +2.试问4月份与
5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a %.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)
26.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动
点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;
(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.。