扫描电镜的主要结构主要包括有电子光学系统
- 格式:ppt
- 大小:4.64 MB
- 文档页数:30
扫描电镜的结构及原理一、简介1特点:扫描电子显微镜主要特点是电子束在样品上进行逐点扫描,获得三维立体图像,图像观察视野大、景深长、富有立体感。
在观察样品表面形貌的同时,进行晶体学分析及成分分析。
常规的扫描电镜分辨本领通常为7~10nm,加速电压在1~50 kV范围。
生物样品一般用10~20kV,成像放大率几十倍至几十万倍。
2用途:扫描电镜可对样品进行综合分析,已成为重要分析工具,纤维、纸张、钢铁质量等,观察矿石结构、检测催化剂微观结构、观看癌细胞与正常细胞差异等。
3日本日立公司产品S-5200型为超高分辨率(ultra-highresolutio n)扫描电镜,加速电压为1k V时,分辨率可达1.8nm,加速电压为30kV时,分辨率高达0.5nm。
此外,还具有独特的电子信号探测系统,不但能观察样品三维形态结构甚至能看到样品的原子或分子结构,在使用性能方面已超越任何一种常规扫描电镜。
二、扫描电镜的结构扫描电镜的组成:(1)、电子光学系统:组成:①电子枪与透镜系统;②电子探针扫描偏转系统作用:产生直径为几十埃的扫描电子束,即电子探针,使样品表面作光栅状扫描。
①电子枪组成:阴极、阳极、栅极。
直径约为0.1mm钨丝制成,加热后发射的电子在栅极和阳极作用下,在阳极孔附近形成交叉点光斑,其直径约几十微米。
扫描电镜没有成像电镜,成像原理与透射电镜截然不同。
所有透镜皆为缩小透镜,起缩小光斑的作用。
缩小透几十镜将电子枪发射的直径约为30μm电子束缩小成几十埃,由两个聚光镜和一个末透镜完成三个透镜的总缩小率为2000~3000倍。
两个聚光镜分别是第一聚光镜和第二聚光镜,可将在阳极孔附近形成的交叉点缩小。
聚光镜可动光阑位于第二聚光镜和物镜之间,用于控制选区衍射时电子书的发散角。
无机材料测试基础1.产生X射线的条件:①产生自由电子②使电子作定向高速运动③在其运动的路径上设置一个障碍物,使电子突然减速2.X射线的性质:沿直线传播;经过电场或磁场不发生偏转;具有很强的穿透力;通过物质时可以被吸收使其强度衰减,还能杀伤生物细胞,具有波粒二象性。
3.连续X射线谱产生机理:当高速电子流轰击阳极表面时,电子运动突然受到阻击,产生极大的负加速度,一个带有负电荷的电子在受到这样一种加速度时,电子周围的电磁场发生急剧的变化,必然要产生一个电磁波,该电磁波具有一定的波长,而数量极大的电子流射到阳极靶上时,由于到达靶面上的时间和被减速的情况各不相同,因此产生的电磁波将具有连续的各种波长,形成连续X射线谱。
4.特征X射线谱产生机理:当X射线管电压加大到某一临界值V K时高速运动的电子动能足以将阳极物质原子的K层电子给激发出来。
于是在低能级上出现空位,原子系统能量升高,处于不稳定状态,随后高能级电子跃迁到K层空位,使原子系统能量降低重新趋于稳定,在这个过程中,原子系统内电子从高能级向低能级的这种跃迁,多余的能量将以光子的形式辐射出特征X射线。
5.请按波长由短到长的顺序对X射线,可见光,红外线,紫外线进行排练:X射线<紫外线<可见光<红外线。
6.X射线本质上是一种电磁波。
7.波可以绕过障碍物继续传播,这种现象叫做波的衍射。
8.相对于波长而言,障碍物的尺寸越大,衍射现象越不明显。
9.系统消光包括点阵消光和结构消光。
10.X射线衍射分析时,晶胞的形状和尺寸与衍射线的分布规律有关;原子的种类及其在晶胞中的位置与衍射线的强度有关。
11.X射线衍射分析时,衍射线的低角度线和高角度线中比较重要的是低角度线,强线和弱线更重要的是强线。
12.在扫描电镜中,可以利用会聚透镜和电磁透镜两种透镜对电子进行会聚。
13.在波谱仪和能谱仪中,能同时测量所有元素的是能谱仪,定量分析准确度高的是波谱仪。
14.扫描电镜的二次电子像和背散射电子像中,分辨率较高的是二次电子像,形成原序数衬度的是背散射电子像。
扫描电镜工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种高分辨率的显微镜,利用电子束与样品相互作用来获取样品表面形貌和成份信息。
它在材料科学、生物科学、纳米科学等领域具有广泛的应用。
一、扫描电镜的基本原理扫描电镜主要由电子光学系统、扫描系统和检测系统三部份组成。
1. 电子光学系统电子光学系统是扫描电镜的核心部份,它由电子枪、准直系统和透镜系统组成。
电子枪产生高能电子束,准直系统用于将电子束聚焦成细束,透镜系统用于将聚焦的电子束聚焦到样品表面。
2. 扫描系统扫描系统由扫描线圈和样品台组成。
扫描线圈通过控制电子束的扫描轨迹,使其在样品表面上进行扫描。
样品台用于支撑和定位样品。
3. 检测系统检测系统用于探测样品表面反射、散射的电子信号,并将其转化为图象。
常用的检测器包括二次电子检测器和反射电子检测器。
二、扫描电镜的工作过程扫描电镜的工作过程可以分为样品制备、样品加载、参数设置、扫描和图象获取等步骤。
1. 样品制备样品制备是扫描电镜观察的前提,样品需要具备一定的导电性和稳定性。
常用的样品制备方法包括金属镀膜、碳膜覆盖、冷冻断裂、离子切割等。
2. 样品加载样品加载是将待观察的样品放置在样品台上,并通过样品夹具或者导电胶固定。
加载过程需要注意避免样品表面的污染和损伤。
3. 参数设置在进行观察之前,需要设置扫描电镜的工作参数,包括加速电压、放大倍数、扫描速度等。
这些参数的选择会影响到观察的分辨率和深度。
4. 扫描和图象获取设置好参数后,开始进行扫描和图象获取。
电子束在样品表面进行扫描,扫描线圈控制电子束的挪移轨迹。
同时,检测器会探测样品表面反射、散射的电子信号,并将其转化为图象。
三、扫描电镜的应用领域扫描电镜在材料科学、生物科学、纳米科学等领域有着广泛的应用。
1. 材料科学扫描电镜可以用于材料表面形貌的观察和分析,例如金属的晶体结构、陶瓷的微观结构等。
同时,扫描电镜还可以用于材料成份的分析,通过能谱仪可以获取样品的元素组成信息。
扫描电镜(SEM)超全知识汇总真空技术扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
▲图1. 扫描电子显微镜特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
3、真空系统真空系统主要包括真空泵和真空柱两部分。
真空柱是一个密封的柱形容器。
真空泵用来在真空柱内产生真空。
有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。
扫描电镜对比以及扫描电镜基础知识点扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
一、特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
二、基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
图2:扫描电子显微镜结构图(图片来源:西南石油大学能源材料实验教学中心)其中最重要的三个系统是电子光学系统、信号探测处理和显示系统以及真空系统。
1、电子光学系统电子光学系统包括电子枪、电磁透镜、扫描线圈、样品室等,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成象。
电子枪:用于产生电子,主要分类如下:电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
简述扫描电子显微镜(SEM)
扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。
二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。
扫描电镜的结构主要包括:
1.真空系统和光源系统;
2.电子光学系统——电子强、电磁透镜、扫描线圈、样品室;
3.信号放大系统。
扫描电镜的优点是:
1.有较高的放大倍数,20-20万倍之间连续可调;
2.有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;
3.试样制备简单。
扫描电镜的应用范围是:
1.生物——种子、花粉、细菌……
2.医学——血球、病毒……
3.动物——大肠、绒毛、细胞、纤维……
4.材料——陶瓷、高分子、粉末、金属、金属夹杂物、环氧树脂……
5.化学、物理、地质、冶金、矿物、污泥(杆菌)、机械、电机及导电性样品,如半导体(IC、线宽量测、断面、结构观察……)电子材料等。
主流厂家:
美国FEI(赛默飞)——Apreo SEM扫描电镜
德国蔡司——EVO MA 25/LS 25
日本日立——TM4000、SU8220,SU8230,SU8240日本电子——JSM-7900F 热场发射扫描电子显微镜捷克TESCAN——S8000系列
韩国COXEN——CX-200系列
中科院KYKY——KYKY-2800系列。
扫描电镜工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,通过利用电子束与样品的相互作用来获取样品表面的形貌和成分信息。
其工作原理基于电子光学和电子物理的原理。
一、电子光学系统扫描电镜的电子光学系统由电子源、透镜系统和检测系统组成。
1. 电子源扫描电镜的电子源通常采用热阴极电子枪,通过加热阴极产生热电子。
热电子经过加速电压加速形成高速电子束。
2. 透镜系统透镜系统由几个磁透镜组成,包括聚焦透镜和扫描透镜。
聚焦透镜用于将电子束聚焦到极小的尺寸,提高分辨率。
扫描透镜用于控制电子束在样品表面的扫描。
3. 检测系统检测系统用于测量电子束与样品相互作用后的信号。
常用的检测器有二次电子检测器和反射电子检测器。
二次电子检测器用于观察样品表面形貌,反射电子检测器用于获得样品的成分信息。
二、扫描控制系统扫描控制系统由扫描线圈和扫描发生器组成。
扫描线圈用于控制电子束在样品表面的扫描范围和速度。
扫描发生器则产生扫描信号,控制电子束的扫描。
三、样品准备在进行扫描电镜观察之前,样品需要进行一系列的准备工作。
首先,样品需要被固定在样品架上,以保持稳定。
然后,样品需要被表面处理,如金属镀膜或碳镀膜,以提高导电性。
最后,样品需要被放置在真空环境中,以避免电子束与空气分子的相互作用。
四、工作过程1. 准备好样品并放置在样品架上。
2. 打开扫描电镜,并进行必要的预热和真空泵抽气。
3. 调整电子光学系统,使得电子束聚焦到最佳状态。
4. 设置扫描控制系统,确定扫描范围和速度。
5. 开始扫描,观察样品表面形貌和成分信息。
6. 根据需要,可以调整扫描参数和检测器,以获得更详细的信息。
7. 观察结束后,关闭扫描电镜并进行必要的清洁和维护。
五、应用领域扫描电镜在许多领域都有广泛的应用。
在材料科学中,它可以用于观察材料的晶体结构、表面缺陷和纳米结构。
在生物学中,它可以用于观察细胞和组织的形态和结构。
扫描电镜的结构与操作透射电子显微镜与光学显微镜一样,照明束穿过样品経过透镜的放大后,整个像是同时形成的。
而扫描电子显微镜(Scanning Electron Microscope,简称扫描电镜或SEM)则以完全不同的方式成像。
其基本要点是:用极狭窄的电子束去扫描样品,即电子束在样品上作光栅运动。
电子束与样品相互作用将会产生各种信息,例如样品的二次电子发射,发射出来的电子称为二次电子。
使用我们下面将讨论的方法,二次电子能产生样品表面放大的形貌像。
这个像是在样品被扫描时按时序地建立起来的,即使用逐点成像的方法获得放大的像。
早在1935年,透射电镜发明后不久,Knoll就提出利用一个扫描电子束从固体表面获得图像的原理。
但由于技术上的原因,直至1965年扫描电镜才成为商品而被利用。
此后,由于扫描电镜具有许多优点,使它在许多学科包括生物学的各个方面获得广泛的应用,成为极有价值的工具。
结构扫描电镜主要是由电子光学系统和显示单元组成,电子光学系统也称为镜筒,它的外观与透射电镜的镜筒相似,实际上相当于透射电镜的照明系统(SEM不需要成像系统),它是由电子枪、几个磁透镜、扫描线圈以及样品室组成(见图2-1)电子枪与透射电镜的电子枪基体相同,只是加速电压较低,一般在40kV以下。
磁透镜一般有三个:第一、二聚光镜和物镜,其作用与透射电镜的聚光镜相同:缩小电子束的直径,把来自电子枪的约30μm大小的电子束经过第一、二聚光镜和物镜的作用,缩小成直径约为几十埃的狭窄电子束。
这是因为扫描电镜的分辨率主要取决于电子束的直径,所以要尽可能缩小它,为此物镜还装备有物镜可动光栏和消散器。
一个带有扫描电路的偏转线圈通以锯齿波的电流,产生的磁场作用于电子束上使它在样品上扫描。
扫描的区域、扫描速率和每厘米的扫描线数都可以选择。
这个电路同时输送锯齿波电流给显示部分的显像管(CRT)的偏转线圈,所以镜筒的电子束与显像管的电子束是严格同步的。
出于与透射电镜同样的理由,镜筒也是被真空系统排气至高真空,一般为10-3Pa的真空度。