玻尔假设
- 格式:doc
- 大小:44.50 KB
- 文档页数:6
三大假设如下:第一,轨道定则:假设电子只能在一些特定的轨道上运动,而且在这样的轨道上运动时电子不向外辐射能量,因而解决了原子的稳定问题(按照经典电磁理论,电子绕原子核做变速运动,会向外辐射电磁波,致使电子向原子核靠近,最后导致原子结构的破坏)第二,跃迁定则:在上述轨道运动时,如果电子从一个轨道跃迁到另一个轨道,就要相应吸收或放出相应的能量。
这个定则很好的解释了原子光谱问题。
第三,角动量定则:电子绕核运动的角动量,必须是普朗克常量的整数倍。
这个定则用于判定哪些轨道是允许的。
综上所述,波尔理论的三大假设,已经初步显示出量子的威力,不过还带有明显的经典物理色彩,比如轨道的概念,无论如何,这三个假设已经向我们展示出了微观世界不连续的特征。
波尔理论的重要性(1)它正确地指出了原子能级的存在,即原子能量是量子化的,只能取某些分立的值。
这个观点不仅为氢原子、类氢离子的光谱所证实,而且夫兰克——赫兹实验证明,对于汞那样的复杂原子也是正确的。
这说明玻尔关于原子能量量子化的假设比他氢原子理论具有更为普遍的意义。
(2)玻尔正确地提出了定态的概念,即处于某一些能量状态En 上的院子并不辐射电磁波,只有当原子从一些能量状态En 跃迁到亮一些能量状态Em 时才发射光子,光子频率v 由Hv= En - Em 决定。
事实证明这一结论对于各种院子是普遍正确的。
(3)由玻尔的量子化条件L=n?,引出了角动量量子化这一普遍正确的结论。
波尔理论的优缺点它很成功地解释了氢原子光谱,对复杂的却有困难。
此理论的成功之处是把量子论引入原子模型,不过对于电子的运动及位置它承认了经典物理的观点,并用经典力学来计算的。
总得来说玻尔引入量子论是个很了不起的成就。
关于波尔理论电子撞击原子使其跃迁,那么E=E1+E2+△E,E表示电子的动能,E1表示原子的动能,E2表示原电子的动能.△E全部转化为原子里电子的动能,那么电子变到更高一级后库伦力的改变导致其动能的改变,这个动能与撞击而得到的动能是一回事吗,如果不是,又怎么样解释呢,请详细说明.绕原子核旋转的电子由于获得光能能量上升而跃迁到较高能级,彼时该电子能量为En=-(13.6*e)/(n^2)伏特,仅与电子所在电子层数(即主量子数n)有关。
玻尔模型(Bohr model)玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。
玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,很好地解释了氢原子光谱和元素周期表,取得了巨大的成功。
玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。
玻尔模型的提出丹麦物理学家尼尔斯·玻尔(1885—1962)20世纪初期,德国物理学家普朗克为解释黑体辐射现象,提出了量子论,揭开了量子物理学的序幕。
19世纪末,瑞士数学教师巴耳末将氢原子的谱线表示成巴耳末公式,瑞典物理学家里德伯总结出更为普遍的光谱线公式里德伯公式:其中λ为氢原子光谱波长,R为里德伯常数。
然而巴耳末公式和式里德伯公式都是经验公式,人们并不了解它们的物理含义。
1911年,英国物理学家卢瑟福根据1910年进行的α粒子散射实验,提出了原子结构的行星模型。
在这个模型里,电子像太阳系的行星围绕太阳转一样围绕着原子核旋转。
但是根据经典电磁理论,这样的电子会发射出电磁辐射,损失能量,以至瞬间坍缩到原子核里。
这与实际情况不符,卢瑟福无法解释这个矛盾。
1912年,正在英国曼彻斯特大学工作的玻尔将一份被后人称作《卢瑟福备忘录》的论文提纲提交给他的导师卢瑟福。
在这份提纲中,玻尔在行星模型的基础上引入了普朗克的量子概念,认为原子中的电子处在一系列分立的稳态上。
回到丹麦后玻尔急于将这些思想整理成论文,可是进展不大。
1913年2月4日前后的某一天,玻尔的同事汉森拜访他,提到了1885年瑞士数学教师巴耳末的工作以及巴耳末公式,玻尔顿时受到启发。
后来他回忆到“就在我看到巴耳末公式的那一瞬间,突然一切都清楚了,”“就像是七巧板游戏中的最后一块。
”这件事被称为玻尔的“二月转变”。
1913年7月、9月、11月,经由卢瑟福推荐,《哲学杂志》接连刊载了玻尔的三篇论文,标志着玻尔模型正式提出。
这三篇论文成为物理学史上的经典,被称为玻尔模型的“三部曲”。
玻尔模型(Bohr model)玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。
玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,很好地解释了氢原子光谱和元素周期表,取得了巨大的成功。
玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。
玻尔模型的提出丹麦物理学家尼尔斯·玻尔(1885—1962)20世纪初期,德国物理学家普朗克为解释黑体辐射现象,提出了量子论,揭开了量子物理学的序幕。
19世纪末,瑞士数学教师巴耳末将氢原子的谱线表示成巴耳末公式,瑞典物理学家里德伯总结出更为普遍的光谱线公式里德伯公式:其中λ为氢原子光谱波长,R为里德伯常数。
然而巴耳末公式和式里德伯公式都是经验公式,人们并不了解它们的物理含义。
1911年,英国物理学家卢瑟福根据1910年进行的α粒子散射实验,提出了原子结构的行星模型。
在这个模型里,电子像太阳系的行星围绕太阳转一样围绕着原子核旋转。
但是根据经典电磁理论,这样的电子会发射出电磁辐射,损失能量,以至瞬间坍缩到原子核里。
这与实际情况不符,卢瑟福无法解释这个矛盾。
1912年,正在英国曼彻斯特大学工作的玻尔将一份被后人称作《卢瑟福备忘录》的论文提纲提交给他的导师卢瑟福。
在这份提纲中,玻尔在行星模型的基础上引入了普朗克的量子概念,认为原子中的电子处在一系列分立的稳态上。
回到丹麦后玻尔急于将这些思想整理成论文,可是进展不大。
1913年2月4日前后的某一天,玻尔的同事汉森拜访他,提到了1885年瑞士数学教师巴耳末的工作以及巴耳末公式,玻尔顿时受到启发。
后来他回忆到“就在我看到巴耳末公式的那一瞬间,突然一切都清楚了,”“就像是七巧板游戏中的最后一块。
”这件事被称为玻尔的“二月转变”。
1913年7月、9月、11月,经由卢瑟福推荐,《哲学杂志》接连刊载了玻尔的三篇论文,标志着玻尔模型正式提出。
这三篇论文成为物理学史上的经典,被称为玻尔模型的“三部曲”。
三大假设如下:第一,轨道定则:假设电子只能在一些特定的轨道上运动,而且在这样的轨道上运动时电子不向外辐射能量,因而解决了原子的稳定问题(按照经典电磁理论,电子绕原子核做变速运动,会向外辐射电磁波,致使电子向原子核靠近,最后导致原子结构的破坏)第二,跃迁定则:在上述轨道运动时,如果电子从一个轨道跃迁到另一个轨道,就要相应吸收或放出相应的能量。
这个定则很好的解释了原子光谱问题。
第三,角动量定则:电子绕核运动的角动量,必须是普朗克常量的整数倍。
这个定则用于判定哪些轨道是允许的。
综上所述,波尔理论的三大假设,已经初步显示出量子的威力,不过还带有明显的经典物理色彩,比如轨道的概念,无论如何,这三个假设已经向我们展示出了微观世界不连续的特征。
xx理论的重要性(1)它正确地指出了原子能级的存在,即原子能量是量子化的,只能取某些分立的值。
这个观点不仅为氢原子、类氢离子的光谱所证实,而且夫兰克——赫兹实验证明,对于汞那样的复杂原子也是正确的。
这说明玻尔关于原子能量量子化的假设比他氢原子理论具有更为普遍的意义。
(2)玻尔正确地提出了定态的概念,即处于某一些能量状态En上的院子并不辐射电磁波,只有当原子从一些能量状态En跃迁到亮一些能量状态Em时才发射光子,光子频率v由Hv= En - Em决定。
事实证明这一结论对于各种院子是普遍正确的。
(3)由玻尔的量子化条件L=n?,引出了角动量量子化这一普遍正确的结论。
xx理论的优缺点它很成功地解释了氢原子光谱,对复杂的却有困难。
此理论的成功之处是把量子论引入原子模型,不过对于电子的运动及位置它承认了经典物理的观点,并用经典力学来计算的。
总得来说玻尔引入量子论是个很了不起的成就。
关于xx理论电子撞击原子使其跃迁,那么E=E1+E2+△E,E表示电子的动能,E1表示原子的动能,E2表示原电子的动能.△E全部转化为原子里电子的动能,那么电子变到更高一级后库伦力的改变导致其动能的改变,这个动能与撞击而得到的动能是一回事吗,如果不是,又怎么样解释呢,请详细说明.绕原子核旋转的电子由于获得光能能量上升而跃迁到较高能级,彼时该电子能量为En=-(13.6*e)/(n^2)伏特,仅与电子所在电子层数(即主量子数n)有关。
三大假设如下:第一,轨道定则:假设电子只能在一些特定的轨道上运动,而且在这样的轨道上运动时电子不向外辐射能量,因而解决了原子的稳定问题(按照经典电磁理论,电子绕原子核做变速运动,会向外辐射电磁波,致使电子向原子核靠近,最后导致原子结构的破坏)第二,跃迁定则:在上述轨道运动时,如果电子从一个轨道跃迁到另一个轨道,就要相应吸收或放出相应的能量。
这个定则很好的解释了原子光谱问题。
第三,角动量定则:电子绕核运动的角动量,必须是普朗克常量的整数倍。
这个定则用于判定哪些轨道是允许的。
综上所述,波尔理论的三大假设,已经初步显示出量子的威力,不过还带有明显的经典物理色彩,比如轨道的概念,无论如何,这三个假设已经向我们展示出了微观世界不连续的特征。
波尔理论的重要性(1)它正确地指出了原子能级的存在,即原子能量是量子化的,只能取某些分立的值。
这个观点不仅为氢原子、类氢离子的光谱所证实,而且夫兰克——赫兹实验证明,对于汞那样的复杂原子也是正确的。
这说明玻尔关于原子能量量子化的假设比他氢原子理论具有更为普遍的意义。
(2)玻尔正确地提出了定态的概念,即处于某一些能量状态En 上的院子并不辐射电磁波,只有当原子从一些能量状态En 跃迁到亮一些能量状态Em 时才发射光子,光子频率v 由Hv= En - Em 决定。
事实证明这一结论对于各种院子是普遍正确的。
(3)由玻尔的量子化条件L=n?,引出了角动量量子化这一普遍正确的结论。
波尔理论的优缺点它很成功地解释了氢原子光谱,对复杂的却有困难。
此理论的成功之处是把量子论引入原子模型,不过对于电子的运动及位置它承认了经典物理的观点,并用经典力学来计算的。
总得来说玻尔引入量子论是个很了不起的成就。
关于波尔理论电子撞击原子使其跃迁,那么E=E1+E2+△E,E表示电子的动能,E1表示原子的动能,E2表示原电子的动能.△E全部转化为原子里电子的动能,那么电子变到更高一级后库伦力的改变导致其动能的改变,这个动能与撞击而得到的动能是一回事吗,如果不是,又怎么样解释呢,请详细说明.绕原子核旋转的电子由于获得光能能量上升而跃迁到较高能级,彼时该电子能量为En=-(13.6*e)/(n^2)伏特,仅与电子所在电子层数(即主量子数n)有关。
玻尔假设一、教学目标1.了解玻尔的三条假设.和量子数n的关系.3.了解玻尔理论的重要意义.二、重点、难点分析1.玻尔理论是本节课的重点内容,通过学习玻尔的三条假设使学生了解玻尔把原子结构的理论向前推进了一步.2.电子在可能的轨道上的能量是指电子总的能量,即动能和电势能的和,这点学生容易产生误解;对原子发光现象的解释也是学生学习的难点.三、主要教学过程(一)新课引入前一节提到卢瑟福的原子核式结构学说跟经典的电磁理论产生了矛盾,这说明了经典的电磁理论不适用于原子结构.那么怎么解释原子是稳定的?又怎么解释原子发光的光谱不是连续光谱呢?(二)教学过程设计1.玻尔的原子模型.(1)原子的稳定性.经典的电磁理论认为电子绕原子核旋转,由于电子辐射能量,因此随着它的能量减少,电子运行的轨道半径也减小,最终要落入原子核中.玻尔在1913年结合普朗克的量子理论针对这一问题提出新的观点.玻尔假设一:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.这些状态叫做定态.说明:这一说法和事实是符合得很好的,电子并没有被库仑力吸引到核上,就像行星绕着太阳运动一样.这里所说的定态是指原子可能的一种能量状态,有某一数值的能量,这些能量包含了电子的动能和电势能的总和.(2)原子发光的光谱.经典的电磁理论认为电子绕核运行的轨道不断的变化,它向外辐射电磁波的频率应该等于绕核旋转的频率.因此原子辐射一切频率的电磁波,大量原子的发光光谱应该是连续光谱.玻尔针对这一问题提出新的观点.玻尔假设二:原子从一种定态(E初)跃迁到另一种定态(E终)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即hυ=E初-E终.说明:这一说法也和事实符合得很好,原子发光的光谱是由一些不连续的亮线组成的明线光谱.(3)原子能量状态和电子轨道.玻尔假设三:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的.2.氢原子的轨道半径和能量.玻尔从上述假设出发,利用库仑定律和牛顿运动定律,计算出了氢的电子可能的轨道半径和对应的能量.根据计算结果概括为公式:说明公式中r1、E1和 r n、E n的意义,并说明 n是正整数,叫做量子数,r1=0.53×10-10m,E1=-13.6eV.n=2,3,4…时,相应的能量为E2=-3.4eV、E3=-1.51 eV、E4=-0.85eV…E∞=0.3.氢原子的能级.氢原子的各种定态时的能量值叫做能极,根据以上的计算,可画出示意的能级图.原子最低能级所对应的状态叫做基态,比基态能量高的状态叫激发态.原子从基态向激发态跃迁,电子克服库仑引力做功增大电势能,原子的能量增加要吸收能量.原子也可以从激发态向基态跃迁,电子所受库仑力做正功减小电势能,原子的能量减少要辐射出能量,这一能量以光子的形式放出.明确:原子的能量增加是因为电子增加的电势能大于电子减少的动能;反之原子的能量减少是因为电子减少的电势能大于电子增加的动能.原子无论吸收能量还是辐射能量,这个能量不是任意的,而是等于原子发生跃迁的两个能级间的能量差.明确:一个原子可以有许多不同的能量状态和相应的能级,但在某一时刻,一个原子不可能既处于这一状态也处于那一状态.如果有大量的原子,它们之中有的处于这一状态,有的处于那一状态.氢光谱的观测就说明了这一事实,它的光谱线不是一个氢原子发出的,而是不同的氢原子从不同的能级跃迁到另一些不同能级的结果.例1 氢原子的基态能量为E1,电子轨道半径为r1,电子质量为m,电量大小为e.氢原子中电子在n=3的定态轨道上运动时的速率为v3,氢原子从n=3的定态跃迁到n=1的基态过程中辐射光子的波长为λ,则以下结果正确的是[ ].C.电子的电势能和动能都要减小D.电子的电势能减小,电子的动能增大分析:玻尔理论虽然解决了一些经典电磁学说遇到的困难,但在玻尔的原子模型中仍然认为原子中有一很小的原子核,电子在核外绕核做匀速圆周运动,电子受到的库仑力作向心力.根据玻尔理论r n=n2r1即r3=9r1.氢原子从n=3跃迁到n=1,电子受到的库仑力做正功,电势能减小;越大,所以 D正确,C错误.例2 有大量的氢原子,吸收某种频率的光子后从基态跃迁到n=3的激发态,已知氢原子处于基态时的能量为E1,则吸收光子的频率υ=_______,当这些处于激发态的氢原子向低能态跃迁发光时,可发出_______条谱线,辐射光子的能量为____.分析:根据玻尔的第二条假设,当原子从基态跃迁到n=3的激发态当原子从n=3的激发态向低能态跃迁时,由于是大量的原子,可能的跃迁有多种,如从n=3到n=1,从n=3到n=2,再从n=2到n=1,因本节总结:玻尔的原子模型是把卢瑟福的学说和量子理论结合,以原子的稳定性和原子的明线光谱作为实验基础而提出的.认识玻尔理论的关键是从“不连续”的观点理解电子的可能轨道和能量状态.玻尔理论对氢光谱的解释是成功的,但对其他光谱的解释就出现了较大的困难,显然玻尔理论有一定的局限性.。
玻尔假设
一、教学目标
1.了解玻尔的三条假设.
和量子数n的关系.
3.了解玻尔理论的重要意义.
二、重点、难点分析
1.玻尔理论是本节课的重点内容,通过学习玻尔的三条假设使学生了解玻尔把原子结构的理论向前推进了一步.
2.电子在可能的轨道上的能量是指电子总的能量,即动能和电势能的和,这点学生容易产生误解;对原子发光现象的解释也是学生学习的难点.
三、主要教学过程
(一)新课引入
前一节提到卢瑟福的原子核式结构学说跟经典的电磁理论产生了矛盾,这说明了经典的电磁理论不适用于原子结构.那么怎么解释原子是稳定的?又怎么解释原子发光的光谱不是连续光谱呢?
(二)教学过程设计
1.玻尔的原子模型.
(1)原子的稳定性.
经典的电磁理论认为电子绕原子核旋转,由于电子辐射能量,因此随着它的能量减少,电子运行的轨道半径也减小,最终要落入原子核中.
玻尔在1913年结合普朗克的量子理论针对这一问题提出新的观点.
玻尔假设一:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.这些状态叫做定态.
说明:这一说法和事实是符合得很好的,电子并没有被库仑力吸引到核上,就像行星绕着太阳运动一样.这里所说的定态是指原子可能的一种能量状态,有某一数值的能量,这些能量包含了电子的动能和电势能的总和.
(2)原子发光的光谱.
经典的电磁理论认为电子绕核运行的轨道不断的变化,它向外辐射电磁波的频率应该等于绕核旋转的频率.因此原子辐射一切频率的电磁波,大量原子的发光光谱应该是连续光谱.
玻尔针对这一问题提出新的观点.
玻尔假设二:原子从一种定态(E初)跃迁到另一种定态(E终)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即
hυ=E初-E终.
说明:这一说法也和事实符合得很好,原子发光的光谱是由一些不连续的亮线组成的明线光谱.
(3)原子能量状态和电子轨道.
玻尔假设三:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的.
2.氢原子的轨道半径和能量.
玻尔从上述假设出发,利用库仑定律和牛顿运动定律,计算出了氢的电子可能的轨道半径和对应的能量.
根据计算结果概括为公式:
说明公式中r1、E1和 r n、E n的意义,并说明 n是正整数,叫做量子数,r1=0.53×10-10m,E1=-13.6eV.
n=2,3,4…时,相应的能量为
E2=-3.4eV、E3=-1.51 eV、E4=-0.85eV…
E∞=0.
3.氢原子的能级.
氢原子的各种定态时的能量值叫做能极,根据以上的计算,可画出示意的能级图.
原子最低能级所对应的状态叫做基态,比基态能量高的状态叫激发态.
原子从基态向激发态跃迁,电子克服库仑引力做功增大电势能,原子的能量增加要吸收能量.
原子也可以从激发态向基态跃迁,电子所受库仑力做正功减小电势能,原子的能量减少要辐射出能量,这一能量以光子的形式放出.
明确:原子的能量增加是因为电子增加的电势能大于电子减少的动能;反之原子的能量减少是因为电子减少的电势能大于电子增加的动能.
原子无论吸收能量还是辐射能量,这个能量不是任意的,而是等于原子发生跃迁的两个能级间的能量差.
明确:一个原子可以有许多不同的能量状态和相应的能级,但在某一时刻,一个原子不可能既处于这一状态也处于那一状态.如果有大量的原子,它们之中有的处于这一状态,有的处于那一状态.氢光谱的观测就说明了这一事实,它的光谱线不是一个氢原子发出的,而是不同的氢原子从不同的能级跃迁到另一些不同能级的结果.
例1 氢原子的基态能量为E1,电子轨道半径为r1,电子质量为m,电量大小为e.氢原子中电子在n=3的定态轨道上运动时的速率为v3,氢原子从n=3的定态跃迁到n=1的基态过程中辐射光子的波长为λ,则以下结果正确的
是
[ ].
C.电子的电势能和动能都要减小
D.电子的电势能减小,电子的动能增大
分析:玻尔理论虽然解决了一些经典电磁学说遇到的困难,但在玻尔的原子模型中仍然认为原子中有一很小的原子核,电子在核外绕核做匀速圆周运动,电子受到的库仑力作向心力.
根据玻尔理论r n=n2r1即r3=9r1.
氢原子从n=3跃迁到n=1,电子受到的库仑力做正功,电势能减小;
越大,所以 D正确,C错误.
例2 有大量的氢原子,吸收某种频率的光子后从基态跃迁到n=3的激发态,已知氢原子处于基态时的能量为E1,则吸收光子的频率υ=_______,当这些处于激发态的氢原子向低能态跃迁发光时,可发出_______条谱线,辐射光子的能量为____.
分析:根据玻尔的第二条假设,当原子从基态跃迁到n=3的激发态
当原子从n=3的激发态向低能态跃迁时,由于是大量的原子,可能的跃迁有多种,如从n=3到n=1,从n=3到n=2,再从n=2到n=1,因
本节总结:玻尔的原子模型是把卢瑟福的学说和量子理论结合,以原子的稳定性和原子的明线光谱作为实验基础而提出的.认识玻尔理论的关键是从“不连续”的观点理解电子的可能轨道和能量状态.玻尔理论对氢光谱的解释是成功的,但对其他光谱的解释就出现了较大的困难,显然玻尔理论有一定的局限性.。