2020年北京市顺义区中考数学二模试卷 (解析版)
- 格式:doc
- 大小:1.63 MB
- 文档页数:36
lAB CD顺义区2020届初三第二次统一练习数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如图所示,1l ∥2l ,则平行线1l 与2l 间的距离是(A )线段AB 的长度 (B )线段BC 的长度 (C )线段CD 的长度 (D )线段DE 的长度 2.-5的倒数是(A )-5 (B )5 (C )15-(D )153.如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点.若有一直线l 经过点(1,3)-且与y 轴垂直,则l 也会经过的点是 (A )点A (B )点B(C )点C (D )点D4.如果a 2+4a -4=0,那么代数式()()224231a a -+-+的值为(A )13 (B )-11 (C )3(D )-35.如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成 两个多边形,若这两个多边形的内角和分别为α和β, 则αβ+的度数是(A )360︒(B )540︒(C )720︒(D )900︒l2l 1A B C DE6.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有若干人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为(A )911616x y x y ì+=ïí+=ïî (B )911616x y x y ì-=ïí-=ïî(C )911616x y x y ì+=ïí-=ïî (D )911616x y x yì-=ïí+=ïî7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数x (单位:千克)及方差2S (单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是 (A )甲(B )乙 (C )丙 (D )丁8.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .设AE=x ,矩形ECFG 的面积为y ,则y 与x 之间的关系描述正确的是 A .y 与x 之间是函数关系,且当x 增大时,y 先增大再减小 B .y 与x 之间是函数关系,且当x 增大时,y 先减小再增大 C . y 与x 之间是函数关系,且当x 增大时,y 一直保持不变 D . y 与x 之间不是函数关系二、填空题(本题共16分,每小题2分) 9.分解因式:222mn m -= .10.右图中的四边形均为矩形,根据图形,写出一个正确的等式: .11.比较大小:12______0.5(填“>”或“<”).GF ED CB Aqxpx12.如图,在每个小正方形的边长为1cm 的网格中,画出了一个过格点A ,B 的圆,通过测量、计算,求得该圆的周长是 cm .(结果保留一位小数)13.如图,30MAN ∠=︒,点B 在射线AM 上,且2AB =,则点B 到射线AN 的距离是 .12题图 13题图 14题图14.如图,Rt △ABC 中,∠C=90°,在△ABC 外取点D ,E ,使AD=AB ,AE=AC ,且α+β=∠B ,连结DE .若AB =4,AC =3,则DE = .15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有 个红球.16.对于题目:“如图1,平面上,正方形内有一长为12 、宽为6 的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取n =14. 乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14.丙:如图4,思路是当x倍时就可移转过去;结果取n =13. 甲、乙、丙的思路和结果均正确的是 .A BCD EαββαEDCBABA AB三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题6分,第24题5分,第25-26题,每小题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:()022cos 453--︒-.18.解不等式:13x -≥212x -+,并把解集在数轴上表示出来.19.已知:关于x 的方程2410(0)mx x m -+=≠有实数根.(1)求m 的取值范围;(2)若方程的根为有理数,求正整数m 的值.20.下面是小东设计的“以线段AB 为一条对角线作一个菱形”的尺规作图过程. 已知:线段AB . 求作:菱形ACBD .作法:如图,①以点A 为圆心,以AB 长为半径作⊙A ; ②以点 B 为圆心,以AB 长为半径作⊙B , 交⊙A 于C ,D 两点;③连接AC ,BC ,BD ,AD . 所以四边形ACBD 就是所求作的菱形. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明.证明:∵点B ,C ,D 在⊙A 上,∴AB=AC=AD ( )(填推理的依据). 同理 ∵点A ,C ,D 在⊙B 上,∴AB=BC=BD .∴ = = = .∴四边形ACBD 是菱形. ( )(填推理的依据).EDCBA21.已知:如图,在四边形ABCD 中,90BAC ACD ∠=∠=︒,12AB CD =,点E 是CD 的中点.(1)求证:四边形ABCE 是平行四边形;(2)若4AC =,AD =ABCE 的面积.22.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出一人,求此人指标x 的值大于1.7的概率; (2)设这100名患者中服药者指标y 数据的方差为21S ,未服药者指标y 数据的方差为22S ,则21S 22S ;(填“>”、“=”或“<” ) (3)对于指标z 的改善情况,下列推断合理的是 .①服药4周后,超过一半的患者指标z 没有改善,说明此药对指标z 没有太大作用; ②在服药的12周内,随着服药时间的增长,对指标z 的改善效果越来越明显.23.已知:如图,AB 是⊙O 的直径,△ABC 内接于⊙O .点D 在⊙O 上,AD 平分∠CAB 交BC 于点E ,DF 是⊙O 的切线,交AC 的延长线于点F .(1)求证;DF ⊥AF ;(2)若⊙O 的半径是5, AD =8,求DF 的长.24.如图,在ABC ∆中,5AB AC ==cm ,6BC =cm ,点D 为BC 的中点,点E 为AB 的中点.点M 为AB 边上一动点,从点B 出发,运动到点A 停止,将射线DM 绕点D 顺时针旋转α度(其中BDE α=∠),得到射线DN ,DN 与边AB 或AC 交于点N .设B 、M 两点间的距离为x cm ,M ,N 两点间的距离为y cm . 小涛根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 与x 的几组对请你通过测量或计算,补全表格; (2)描点、连线:在平面直角坐标系xOy 中,描出补全后的表格中各组数值所对应的点(,)x y ,并画出函数y 关于x 的图象.(3)结合函数图象,解决问题:当MN BD =时,BM 的长度大约是 cm .(结果保留一位小数)BACB25. 已知:在平面直角坐标系xOy 中,点A (-1,2)在函数my x=(x<0)的图象上. (1)求m 的值;(2)过点A 作y 轴的平行线l ,直线2y x b =-+与直线l 交于点B ,与函数my x=(x<0)的图象交于点C ,与y 轴交于点D . ①当点C 是线段BD 的中点时,求b 的值; ②当BC <BD 时,直接写出b 的取值范围.26.在平面直角坐标系xOy 中,已知抛物线()()231210y mx m x m m =--+-≠. (1)当m =3时,求抛物线的顶点坐标; (2)已知点A (1,2).试说明抛物线总经过点A ; (3)已知点B (0,2),将点B 向右平移3个单位长度,得到点C ,若抛物线与线段BC只有一个公共点,求m 的取值范围.27.已知:在△ABC 中,∠ABC =90°,AB=BC ,点D 为线段BC 上一动点(点D 不与点B 、C 重合),点B 关于直线AD 的对称点为E ,作射线DE ,过点C 作BC 的垂线,交射线DE 于点F ,连接AE .(1)依题意补全图形; (2)AE 与DF 的位置关系是 ; (3)连接AF ,小昊通过观察、实验,提出猜想:发现点D 在运动变化的过程中,∠DAF 的度数始终保持不变,小昊 把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF = °,通过讨论,形成了证明该猜想的两种 想法: 想法1:过点A 作AG ⊥CF 于点G ,构造正方形ABCG ,然后可证△AFG ≌△AFE ……想法2:过点B 作BG ∥AF ,交直线FC 于点G ,构造□ABGF ,然后可证△AFE ≌△BGC ……请你参考上面的想法,帮助小昊完成证明(一种方法即可).EB28.已知:如图,⊙O 的半径为r ,在射线OM 上任取一点P (不与点O 重合),如果射线OM上的点P',满足OP ·OP'=r 2,则称点P'为点P 关于⊙O 的反演点.在平面直角坐标系xOy 中,已知⊙O 的半径为2. (1)已知点A (4,0),求点A 关于⊙O 的反演点A'的坐标;(2)若点B 关于⊙O 的反演点B'恰好为直线y =与直线x =4的交点,求点B 的坐标;(3)若点C 为直线y =上一动点,且点C 关于⊙O的反演点C'在⊙O 的内部,求点C 的横坐标m 的范围; (4)若点D 为直线x =4上一动点,直接写出点D 关于⊙O 的反演点D'的横坐标t 的范围.顺义区2020届初三数学第二次统一练习参考答案二、填空题(共8道小题,每小题2分,共16分)9.2(1)(1)m n n +-; 10.2()()x p x q x px qx pq ++=+++; 11.>; 12.8.9(8.7—9.0之间都算对); 13.1; 14.5; 15.3; 16.甲、乙.三、解答题(共12道小题,共68分) 17.解:原式=119- …………………………………… 4分 =89…………………………………………………………5分 18.解:去分母得 2(x -1)≥3(x -2)+6 ……………………………… 1分 去括号得 2x -2≥3x -6+6 ……………………………… 2分移项并合并同类项得 - x ≥2 ……………………………… 3分 系数化为1得 x ≤-2 ……………………………………… 4分 解集在数轴上表示为 …………………………………… 5分19.解:(1)原方程为一元二次方程.224(4)41164b ac m m ∆=-=--⨯⨯=- ………………1分∵原方程有实数根, ∴164m -≥0. ∴m ≤4.∴m 的取值范围是m ≤4且0m ≠.…………………………2分 (2)解:∵m 为正整数,∴m 可取1,2,3,4.……………………………………… 3分 当m =1时,16412m ∆=-=;当m =2时,1648m ∆=-=; 当m =3时,1644m ∆=-=;当m =4时,1640m ∆=-=; ∵方程为有理根,∴m =3或m =4.……………………………………………… 5分20.解:(1)补全图如图1所示. (1)分(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD( 同圆半径相等)(或圆的定义)(填推理的依据).………………………………2分同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AC = BC = BD = AD .………………4分∴四边形ACBD是菱形. ( 四条边相等的四边形是菱形)(填推理的依据).………………………………………………5分21.(1)证明:∵90BAC ACD∠=∠=︒,∴AB∥EC.………………………………………………1分∵点E是CD的中点,∴12EC CD=.∵12AB CD=,∴AB=EC.………………………………………………2分∴四边形ABCE是平行四边形.………………………………3分(2)解:∵90ACD∠=︒,4AC=,AD=∴4CD=. (4)分∵12AB CD=,图1∴AB =2.∴248ABCE S AB AC =⋅=⨯=Y . (5)分22.解:(1) 指标x 的值大于1.7的概率=335050÷=或6%. …………………… 2分(2)21S > 22S ;(填“>”、“=”或“<” )……………………………4分(3) 推断合理的是② . …………………………………………6分23.(1)证明:连接OD .∵DF 是⊙O 的切线,∴OD ⊥DF .∴∠ODF =90°. (1)分∵AD 平分∠CAB ,∴∠CAD =∠DAB .…………… 2分又∵OA=OD ,∴∠DAB =∠ADO . ∴∠CAD =∠ADO . ∴AF ∥OD .∴∠F +∠ODF =180°.∴∠F =180°-∠ODF=90°. ∴DF⊥AF . ………………………………………………………………3分 (2)解:连接DB .∵AB 是直径,⊙O 的半径是5,AD =8,∴∠ADB =90°,AB=10.∴6BD =.……………………4分∵∠F=∠ADB =90°,∠F AD=∠DAB , ∴△F AD ∽△DAB . …………5分 ∴DF AD BD AB=. ∴8624105AD BD DF AB ⨯===g .……6分BABA24.解:(1)表中所填的数值是3.2;(填3.1—3.3都可以) (1)分(2…………………………2分(3)结合函数图象,解决问题:当MN BD =时,BM 的长度大约是 1.7,1.9,4.7 cm .………………………………………………………………………………5分(填的数值上下差0.1都算对) 25.解:(1)把A (-1,2)代入函数my x=(x<∴ m = -2(2)① 过点 C 作 EF ⊥ y 轴于F ,∵直线 l ∥y 轴,∴EF ⊥直线 l . ∴∠BEC =∠DFC =90°.∵点A 到 y 轴的距离为 1, ∵直线 l ∥y 轴, ∴∠EBC =∠FDC . ∵点C 是BD 的中点, ∴CB=CD .∴ ΔEBC ≌ΔFDC (AAS ) ………………………………… 3分 ∴ EC=CF 即CE=CF=21. ∴点C 的横坐标为12-.把12x =-代入函数2y x=-中,得y = 4.∴点C 的坐标为(12-,4). ………………………………… 4分把点C 的坐标为(12-,4)代入函数 y = - 2x +b 中,得b =3.……………………………………………………………… 5分② b > -3. ………………………………………………………… 6分 26.解:(1)把m =3代入()23121y mx m x m =--+-中,得223653(1)2y x x x =-+=-+,∴抛物线的顶点坐标是(1,2). (2)分(2)当x =1时,3(1)2133212y m m m m m m =--+-=-++-=.∵点A (1,2),∴抛物线总经过点A . (3)分(3)∵点B (0,2),由平移得C (3,2).① 当抛物线的顶点是点A (1,2)时,抛物线与线段BC 只有一个公共点.由(1)知,此时,m =3.……………………………………4分 ② 当抛物线过点B (0,2)时,将点B (0,2)代入抛物线表达式,得2m -1=2.∴m =32>0.此时抛物线开口向上(如图1). ∴当0<m <32时,抛物线与线段BC 只有一个公共点. ………………………………………5分 ③当抛物线过点C (3,2)时, 将点C (3,2)代入抛物线表达式,得 9m -9(m -1)+2m -1=2. ∴m =-3<0.此时抛物线开口向下(如图2).图1∴当-3<m <0时,抛物线与线段BC 只有一个公共点. ………………… 6分 综上,m 的取值范围是m =3或0<m <32或-3<m <0.27.解:(1)补全图形如下: ……………………………………………………… 1分(2)AE 与DF 的位置关系是 互相垂直 ; ………………………… 2分(3)∠DAF = 45° ………………………………………………… 3分(想法1图形)证明如下:过点A 做AG ⊥CF 于点G ,依题意可知: ∠B =∠BCG =∠CGA =90°. ∵AB =BC ,∴四边形ABCG 是正方形.…………………………………… 4分∴AG =AB , ∠BAG =90°.∵点B 关于直线AD 的对称点为E , ∴AB =AE ,∠B =∠AED =90° ,∠BAD =∠EAD .……………5分∴AG =AE . ∵AF =AF ,∴Rt △AFG ≌Rt △AFE (HL) . …………………………………6分∴∠GAF =∠EAF . ∵∠BAG =90°,∴∠BAD +∠EAD +∠EAF +∠GAF =90°. ∵∠BAD =∠EAD , ∠EAF =∠GAF ,BB∴∠EAD +∠EAF =45°.即∠DAF =45°. ……………………………………………7分(想法2图形)证明如下:过点B 作BG ∥AF ,交直线FC 于点G ,依题意可知:∠ABC =∠BCF =90°. ∴AB ∥FG . ∵AF ∥BG ,∴四边形ABGF 是平行四边形.……………………………… 4分∴AF =BG ,∠BGC =∠BAF .∵点B 关于直线AD 的对称点为E ,∴AB =AE ,∠ABC =∠AED =90° ,∠BAD =∠EAD .…………5分∵AB =BC , ∴AE =BC .∴Rt △AEF ≌Rt △BCG (HL) …………………………………6分∴∠EAF =∠CBG . ∵∠BCG =90°,∴∠BGC +∠CBG =90°. ∴∠BAF +∠EAF =90°.∴∠BAD +∠EAD +∠EAF +∠EAF =90o . ∵∠BAD =∠EAD , ∴∠EAD +∠EAF =45°.即∠DAF =45°. (7)分28.解:(1)依题意得:OA =4,∵OA .OA ’=22=4, ∴ OA ’=1. (1)BA分则A’(1,0). (2)分(2)∵B’恰好为直线y=与直线x=4的交点,y=与x轴夹角为60°,∴B’点坐标为(4,.……………………………………………3分∴OB’=8..∵OB·OB’=22=4,∴OB=12∴B(1).………………………………………………………4分4(3)∵点C为直线y=上一动点,且点C关于⊙O的反演点C'在⊙O的内部,∴点C在⊙O的外部,直线y=与⊙O的两个交点坐标的横坐标为1±,∴m的取值范围是m >1或m <-1.…………………………………6分(4)t的取值范围是:0<t≤1. ……………………………………………7分注:本试卷中的各题若有其他合理的解法请酌情给分.。
北京市顺义区2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,已知△ADE 是△ABC 绕点A 逆时针旋转所得,其中点D 在射线AC 上,设旋转角为α,直线BC 与直线DE 交于点F ,那么下列结论不正确的是( )A .∠BAC =αB .∠DAE =αC .∠CFD =α D .∠FDC =α2.下列各点中,在二次函数2y x =-的图象上的是( ) A .()1,1B .()2,2-C .()2,4D .()2,4--3.如图,二次函数y =ax 2+bx +c(a≠0)的图象经过点A ,B ,C .现有下面四个推断:①抛物线开口向下;②当x=-2时,y 取最大值;③当m<4时,关于x 的一元二次方程ax 2+bx +c=m 必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A ,C ,当kx+c> ax 2+bx +c 时,x 的取值范围是-4<x<0;其中推断正确的是 ( )A .①②B .①③C .①③④D .②③④4.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .94m <B .94m …C .94m >D .94m …5.如图,在菱形ABCD 中,AB=BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB ;②S 四边形BCDG=;③若AF=2DF ,则BG=6GF ;④CG 与BD 一定不垂直;⑤∠BGE 的大小为定值.其中正确的结论个数为( )A .4B .3C .2D .16.下列各式正确的是( ) A .﹣(﹣2018)=2018B .|﹣2018|=±2018C .20180=0D .2018﹣1=﹣20187.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多 ③有15的人每周使用手机支付的次数在35~42次 ④每周使用手机支付不超过21次的有15人 其中正确的是( )A .①②B .②③C .③④D .④8.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( ) A .﹣2.5B .﹣0.6C .+0.7D .+59.﹣23的相反数是( ) A .﹣8B .8C .﹣6D .6102(3)3b b -=-,则( ) A .3b >B .3b <C .3b ≥D .3b ≤11.若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表: x﹣2﹣112y 8 3 0 ﹣1 0则抛物线的顶点坐标是()A.(﹣1,3)B.(0,0)C.(1,﹣1)D.(2,0)12.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM 是等腰三角形时,M点的坐标为_____.14.化简11 x-÷211x-=_____.15.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)16.如图,点,A B是反比例函数(0,0)ky k xx=>>图像上的两点(点A在点B左侧),过点A作AD x⊥轴于点D,交OB于点E,延长AB交x轴于点C,已知2125OABADCSS∆∆=,145OAES∆=,则k的值为__________.17.计算2x3·x2的结果是_______.18.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.20.(6分)某手机店销售10部A 型和20部B 型手机的利润为4000元,销售20部A 型和10部B 型手机的利润为3500元.(1)求每部A 型手机和B 型手机的销售利润;(2)该手机店计划一次购进A ,B 两种型号的手机共100部,其中B 型手机的进货量不超过A 型手机的2倍,设购进A 型手机x 部,这100部手机的销售总利润为y 元. ①求y 关于x 的函数关系式;②该手机店购进A 型、B 型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对A 型手机出厂价下调()0100m m <<元,且限定手机店最多购进A 型手机70部,若手机店保持同种手机的售价不变,设计出使这100部手机销售总利润最大的进货方案.21.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题: (1)共有 名同学参与问卷调查; (2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.22.(8分)关于x 的一元二次方程mx 2﹣(2m ﹣3)x+(m ﹣1)=0有两个实数根.求m 的取值范围;若m 为正整数,求此方程的根.23.(8分)先化简2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值. 24.(10分)如图,已知A (a ,4),B (﹣4,b )是一次函数与反比例函数图象的两个交点.(1)若a=1,求反比例函数的解析式及b的值;(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?(3)若a﹣b=4,求一次函数的函数解析式.25.(10分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100学生甲______ ______ ______ ______ ______ ______乙 1 1 4 2 1 1(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲______ 83.7 ______ 86 13.21乙24 83.7 82 ______ 46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.26.(12分)如图,正方形ABCD中,BD为对角线.(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求△DEF的周长.27.(12分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C 重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】利用旋转不变性即可解决问题.【详解】∵△DAE是由△BAC旋转得到,∴∠BAC=∠DAE=α,∠B=∠D,∵∠ACB=∠DCF,∴∠CFD=∠BAC=α,故A,B,C正确,故选D.【点睛】本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型. 2.D 【解析】 【分析】将各选项的点逐一代入即可判断. 【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象; 当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D . 【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式. 3.B 【解析】 【分析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案. 【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y 取最大值,则由于点A 和点B 到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A 和点B 的纵坐标显然不相等,所以②错误,从而排除掉A 和D ; 剩下的选项中都有③,所以③是正确的;易知直线y=kx+c (k≠0)经过点A ,C ,当kx+c >ax 2+bx+c 时,x 的取值范围是x <-4或x >0,从而④错误. 故选:B . 【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题. 4.A 【解析】 【分析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出m 的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<94,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB 于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F 分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.6.A【解析】【分析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=12018,故选项D错误.故选A.【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.7.B【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据8.B【解析】【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6, 故选B . 【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键. 9.B 【解析】∵32-=﹣8,﹣8的相反数是8,∴32-的相反数是8, 故选B . 10.D 【解析】 【分析】等式左边为非负数,说明右边3b 0-≥,由此可得b 的取值范围. 【详解】解:3b =-Q,3b 0∴-≥,解得b 3.≤故选D . 【点睛】()0a 0≥≥()a a 0=≥.11.C 【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标. 详解:Q 当0x =或2x =时,0y =,当1x =时,1y =-,04201c a b c a b c =⎧⎪∴++=⎨⎪++=-⎩,解得120a b c =⎧⎪=-⎨⎪=⎩ ,∴二次函数解析式为222(1)1y x x x =-=--, ∴抛物线的顶点坐标为()1,1-,故选C .点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键. 12.A 【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4,6),(8﹣2,6),(2,6).【解析】【分析】分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.【详解】解:当M为顶点时,AB长为底=8,M在DC中点上,所以M的坐标为(4,6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME==2所以M的坐标为(8﹣2,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF==2所以M的坐标为(2,6);综上所述,M的坐标为(4,6),(8﹣2,6),(2,6);故答案为:(4,6),(8﹣2,6),(2,6).【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用. 14.x+1分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可. 详解:解:原式=11x -÷1(1)(1)x x +- =11x -•(x+1)(x ﹣1) =x+1, 故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解. 15.下降 【解析】 【分析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的. 【详解】解:∵在232y x x =+中,30a =>, ∴抛物线开口向上,∴在对称轴左侧部分y 随x 的增大而减小,即图象是下降的, 故答案为下降. 【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论. 16.203【解析】 【分析】过点B 作BF ⊥OC 于点F ,易证S △OAE =S 四边形DEBF =145,S △OAB =S 四边形DABF ,因为2125OAB ADCS S ∆∆=,所以2125DABF ADC S S ∆=四边形,425BCF ADC S S ∆∆=,又因为AD ∥BF ,所以S △BCF ∽S △ACD ,可得BF:AD=2:5,因为S △OAD =S △OBF ,所以12×OD×AD =12×OF×BF ,即BF:AD=2:5= OD :OF ,易证:S △OED ∽S △OBF ,S △OED :S △OBF =4:25,S △OED :S 四边形EDFB =4:21,所以S △OED =815 ,S △OBF = S △OED + S 四边形EDFB =815+145=103, 即可得解:k=2 S △OBF =203. 【详解】解:过点B 作BF ⊥OC 于点F ,由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=145,S△OA B=S四边形DABF,∵2125OABADCSS∆∆=,∴2125DABFADCSS∆=四边形,425BCFADCSS∆∆=,∵AD∥BF∴S△BCF∽S△ACD,又∵425BCFADCSS∆∆=,∴BF:AD=2:5,∵S△OAD=S△OBF,∴12×OD×AD =12×OF×BF∴BF:AD=2:5= OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=145,∴S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103,∴k=2 S△OBF=20 3.故答案为20 3.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理. 17.52x【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5. 故答案为:2x518.512【解析】 【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可. 【详解】抬头看信号灯时,是绿灯的概率为2553025512=++.故答案为:512. 【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.(2)P (必然事件)=1.(3)P (不可能事件)=2. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1)证明见解析(2)四边形AFBE 是菱形 【解析】试题分析:(1)由平行四边形的性质得出AD ∥BC ,得出∠AEG=∠BFG ,由AAS 证明△AGE ≌△BGF 即可;(2)由全等三角形的性质得出AE=BF ,由AD ∥BC ,证出四边形AFBE 是平行四边形,再根据EF ⊥AB ,即可得出结论.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠BFG ,∵EF 垂直平分AB ,∴AG=BG ,在△AGEH 和△BGF 中,∵∠AEG=∠BFG ,∠AGE=∠BGF ,AG=BG ,∴△AGE ≌△BGF (AAS );(2)解:四边形AFBE 是菱形,理由如下:∵△AGE ≌△BGF ,∴AE=BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形,又∵EF ⊥AB ,∴四边形AFBE 是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.20. (1)每部A 型手机的销售利润为100元,每部B 型手机的销售利润为150元;(2)①5015000y x =-+;②手机店购进34部A 型手机和66部B 型手机的销售利润最大;(3)手机店购进70部A 型手机和30部B 型手机的销售利润最大. 【解析】 【分析】(1)设每部A 型手机的销售利润为a 元,每部B 型手机的销售利润为b 元,根据题意列出方程组求解即可;(2)①根据总利润=销售A 型手机的利润+销售B 型手机的利润即可列出函数关系式;②根据题意,得1002x x -≤,解得1003x ≥,根据一次函数的增减性可得当当34x =时,y 取最大值; (3)根据题意,()5015000y m x =-+,100703x ≤≤,然后分①当050m <<时,②当50m =时,③当50100m <<时,三种情况进行讨论求解即可. 【详解】解:(1)设每部A 型手机的销售利润为a 元,每部B 型手机的销售利润为b 元.根据题意,得1020400020103500a b a b +=⎧⎨+=⎩,解得100150a b =⎧⎨=⎩答:每部A 型手机的销售利润为100元,每部B 型手机的销售利润为150元. (2)①根据题意,得()100150100y x x =+-,即5015000y x =-+. ②根据题意,得1002x x -≤,解得1003x ≥. 5015000y x =-+Q ,500-<,y ∴随x 的增大而减小.x Q 为正整数,∴当34x =时,y 取最大值,10066x -=.即手机店购进34部A 型手机和66部B 型手机的销售利润最大. (3)根据题意,得()()100150100y m x x =++-. 即()5015000y m x =-+,100703x ≤≤. ①当050m <<时,y 随x 的增大而减小,∴当34x =时,y 取最大值,即手机店购进34部A 型手机和66部B 型手机的销售利润最大;②当50m =时,500m -=,15000y =,即手机店购进A 型手机的数量为满足100703x ≤≤的整数时,获得利润相同;③当50100m <<时,500m ->,y 随x 的增大而增大,∴当70x =时,y 取得最大值,即手机店购进70部A 型手机和30部B 型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性. 21.(1)100;(2)补图见解析;(3)570人. 【解析】 【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例. 【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人, 故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人, 读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 22.(1)98m £且0m ≠;(2)10x =,21x =-. 【解析】 【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦V ≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程. 【详解】(1)∵2=[(23)]4(1)m m m ∆----=89m -+.解得98m ≤且0m ≠. (2)∵m 为正整数,∴1m =.∴原方程为20x x +=. 解得10x =,21x =-. 【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根. 23.3xx -,当x=2时,原式=2-. 【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可. 试题解析:原式=()()2x x 1x 12x 1x 1x 3--⎛⎫-⋅ ⎪--⎝⎭-=()()2x x 1x 3x 1x 3--⋅--=x x 3- 当x=2时,原式=2223=--. 24. (1) 反比例函数的解析式为y =4x,b 的值为﹣1;(1) 当x <﹣4或0<x <1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y =x+1 【解析】 【分析】(1)由题意得到A (1,4),设反比例函数的解析式为y =kx(k≠0),根据待定系数法即可得到反比例函数解析式为y =4x;再由点B (﹣4,b )在反比例函数的图象上,得到b =﹣1; (1)由(1)知A (1,4),B (﹣4,﹣1),结合图象即可得到答案; (3)设一次函数的解析式为y =mx+n (m≠0),反比例函数的解析式为y =px,因为A (a ,4),B (﹣4,b )是一次函数与反比例函数图象的两个交点,得到44pap b ⎧=⎪⎪⎨⎪=⎪-⎩, 解得p =8,a =1,b =﹣1,则A (1,4),B (﹣4,﹣1),由点A 、点B 在一次函数y =mx+n 图象上,得到2442m n m n +=⎧⎨-+=-⎩,解得12m n =⎧⎨=⎩,即可得到答案. 【详解】(1)若a =1,则A (1,4), 设反比例函数的解析式为y =kx(k≠0), ∵点A 在反比例函数的图象上, ∴4=1k , 解得k =4,∴反比例函数解析式为y =4x; ∵点B (﹣4,b )在反比例函数的图象上, ∴b =44-=﹣1, 即反比例函数的解析式为y =4x,b 的值为﹣1; (1)由(1)知A (1,4),B (﹣4,﹣1),根据图象:当x <﹣4或0<x <1时,反比例函数大于一次函数的值; (3)设一次函数的解析式为y =mx+n (m≠0),反比例函数的解析式为y =px, ∵A (a ,4),B (﹣4,b )是一次函数与反比例函数图象的两个交点,∴44pap b ⎧=⎪⎪⎨⎪=⎪-⎩,即44a p b p =⎧⎨-=⎩①②, ①+②得4a ﹣4b =1p , ∵a ﹣b =4, ∴16=1p , 解得p =8,把p =8代入①得4a =8,代入②得﹣4b =8, 解得a =1,b =﹣1,∴A (1,4),B (﹣4,﹣1),∵点A 、点B 在一次函数y =mx+n 图象上,∴2442m n m n +=⎧⎨-+=-⎩解得12 mn=⎧⎨=⎩∴一次函数的解析式为y=x+1.【点睛】本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.25.(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】【分析】(1)根据折线统计图数字进行填表即可;(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较.【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,∴70⩽x⩽74无,共0个;75⩽x⩽79之间有75,共1个;80⩽x⩽84之间有84,82,1,83,共4个;85⩽x⩽89之间有89,86,86,85,86,共5个;90⩽x⩽94之间和95⩽x⩽100无,共0个.故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,∴中位数为12(84+85)=84.5;∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1.故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.26.(1)见解析;(2)22+1.【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF 的长度,从而得出答案.详解:(1)如图,EF为所作;(2)解:∵四边形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,∴∠DEF=90°,∠EDF=∠EFD=15°,DE=EF=12CD=2,∴DF=2DE=22,∴△DEF的周长=DF+DE+EF=22+1.点睛:本题主要考查的是中垂线的性质,属于基础题型.理解中垂线的性质是解题的关键.27.(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;(1)根据中点定义求出BC,利用勾股定理列式求出AB即可.详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.。
顺义区2020届初三数学第二次统一练习参考答案二、填空题(共8道小题,每小题2分,共16分)9.2(1)(1)m n n +-; 10.2()()x p x q x px qx pq ++=+++; 11.>; 12.8.9(8.7—9.0之间都算对); 13.1; 14.5; 15.3; 16.甲、乙. 三、解答题(共12道小题,共68分) 17.解:原式=11229+-- …………………………………… 4分 =89…………………………………………………………5分 18.解:去分母得 2(x -1)≥3(x -2)+6 ……………………………… 1分 去括号得 2x -2≥3x -6+6 ……………………………… 2分移项并合并同类项得 - x ≥2 ……………………………… 3分 系数化为1得 x ≤-2 ……………………………………… 4分 解集在数轴上表示为 …………………………………… 5分19.解:(1)原方程为一元二次方程.224(4)41164b ac m m ∆=-=--⨯⨯=- ………………1分∵原方程有实数根, ∴164m -≥0. ∴m ≤4.∴m 的取值范围是m ≤4且0m ≠.…………………………2分 (2)解:∵m 为正整数,∴m 可取1,2,3,4.……………………………………… 3分 当m =1时,16412m ∆=-=;当m =2时,1648m ∆=-=; 当m =3时,1644m ∆=-=;当m =4时,1640m ∆=-=; ∵方程为有理根,∴m =3或m =4.……………………………………………… 5分20.解:(1)补全图如图1所示.………… 1分(2)完成下面的证明.证明:∵点B ,C ,D 在⊙A 上,∴AB=AC=AD ( 同圆半径相等) (或圆的定义)(填推理的依据). ……………………………… 2分 同理 ∵点A ,C ,D 在⊙B 上, ∴AB=BC=BD.∴ AC = BC = BD = AD . ……………… 4分 ∴四边形ACBD 是菱形. ( 四条边相等的四边形是菱形 )(填推理的依据).……………………………………………… 5分21.(1)证明:∵90BAC ACD ∠=∠=︒,∴ AB ∥EC . ……………………………………………… 1分 ∵点E 是CD 的中点, ∴12EC CD =.∵12AB CD =,∴AB =EC . ……………………………………………… 2分 ∴四边形ABCE 是平行四边形. ………………………………3分(2)解:∵90ACD ∠=︒,4AC =,AD =,∴4CD .………………………………………… 4分 ∵12AB CD =,∴AB =2.∴248ABCE S AB AC =⋅=⨯=Y .…………………………………………5分22.解:(1) 指标x 的值大于1.7的概率=335050÷=或6%. …………………… 2分 (2)21S > 22S ;(填“>”、“=”或“<” )……………………………4分 (3) 推断合理的是 ② . …………………………………………6分图123.(1)证明:连接OD .∵DF 是⊙O 的切线,∴OD ⊥DF .∴∠ODF =90°.………………1分∵AD 平分∠CAB ,∴∠CAD =∠DAB .…………… 2分又∵OA=OD , ∴∠DAB =∠ADO . ∴∠CAD =∠ADO . ∴AF ∥OD .∴∠F +∠ODF =180°.∴∠F =180°-∠ODF=90°.∴DF ⊥AF . ………………………………………………………………3分(2)解:连接DB .∵AB 是直径,⊙O 的半径是5, AD =8,∴∠ADB =90°,AB=10.∴6BD =.……………………4分∵∠F=∠ADB =90°,∠F AD =∠DAB ,∴△F AD ∽△DAB . …………5分∴DF ADBDAB=. ∴8624105AD BD DF AB ⨯===g .……6分24.解:(1)表中所填的数值是3.2;(填3.1—3.3都可以)…………………… 1分 (2…………………………2分(3)结合函数图象,解决问题:当MN BD =时,BM 的长度大约是 1.7,1.9,4.7 cm .………………………………………………………………………………5分 (填的数值上下差0.1都算对)BA B A25.解:(1)把A (-1,2)代入函数my x=(x<0)中, ∴ m = -2.………………………………… (2)① 过点 C 作 EF ⊥ y 轴于F ,交直线 ∵直线 l ∥y 轴, ∴EF ⊥直线 l .∴∠BEC =∠DFC =90°.∵点A 到 y 轴的距离为 1, ∴EF ∵直线 l ∥y 轴, ∴∠EBC =∠FDC . ∵点C 是BD 的中点, ∴CB=CD .∴ ΔEBC ≌ΔFDC (AAS ) ………………………………… 3分 ∴ EC=CF 即CE=CF=21. ∴点C 的横坐标为12-. 把12x =-代入函数2y x=-中,得y = 4.∴点C 的坐标为(12-,4). ………………………………… 4分 把点C 的坐标为(12-,4)代入函数 y = - 2x +b 中, 得b =3.……………………………………………………………… 5分② b > -3. ………………………………………………………… 6分 26.解:(1)把m =3代入()23121y mx m x m =--+-中,得223653(1)2y x x x =-+=-+,∴抛物线的顶点坐标是(1,2).…………………………………2分 (2)当x =1时,3(1)2133212y m m m m m m =--+-=-++-=. ∵点A (1,2),∴抛物线总经过点A .………………………………………………3分(3)∵点B (0,2),由平移得C (3,2).① 当抛物线的顶点是点A (1,2)时,抛物线与线段BC 只有一个公共点.由(1)知,此时, m =3.……………………………………4分 ② 当抛物线过点B (0,2)时,将点B (0,2)代入抛物线表达式,得2m -1=2. ∴m =32>0. 此时抛物线开口向上(如图1). ∴当0<m <32时,抛物线与线段BC 只有一个公共点. ………………………………………5分 ③当抛物线过点C (3,2)时, 将点C (3,2)代入抛物线表达式,得 9m -9(m -1)+2m -1=2. ∴m =-3<0.此时抛物线开口向下(如图2). ∴当-3<m <0时,抛物线与线段BC 只有一个公共点. ………………… 6分 综上,m 的取值范围是m =3或0<m <32或-3<m <0.27.解:(1)补全图形如下: ……………………………………………………… 1分(2)AE 与DF 的位置关系是 互相垂直 ; ………………………… 2分 (3)∠DAF = 45° ………………………………………………… 3分(想法1图形)证明如下:过点A 做AG ⊥CF 于点G ,依题意可知: ∠B =∠BCG =∠CGA =90°. ∵AB =BC ,∴四边形ABCG 是正方形.…………………………………… 4分BB图2∴AG =AB , ∠BAG =90°.∵点B 关于直线AD 的对称点为E ,∴AB =AE ,∠B =∠AED =90° ,∠BAD =∠EAD .…………… 5分 ∴AG =AE . ∵AF =AF ,∴Rt △AFG ≌Rt △AFE (HL) . ………………………………… 6分 ∴∠GAF =∠EAF . ∵∠BAG =90°,∴∠BAD +∠EAD +∠EAF +∠GAF =90°. ∵∠BAD =∠EAD , ∠EAF =∠GAF , ∴∠EAD +∠EAF =45°.即∠DAF =45°. …………………………………………… 7分 (想法2图形)证明如下:过点B 作BG ∥AF ,交直线FC 于点G ,依题意可知:∠ABC =∠BCF =90°. ∴AB ∥FG . ∵AF ∥BG ,∴四边形ABGF 是平行四边形.……………………………… 4分 ∴AF =BG ,∠BGC =∠BAF .∵点B 关于直线AD 的对称点为E ,∴AB =AE ,∠ABC =∠AED =90° ,∠BAD =∠EAD .…………5分 ∵AB =BC , ∴AE =BC .∴Rt △AEF ≌Rt △BCG (HL) ………………………………… 6分 ∴∠EAF =∠CBG . ∵∠BCG =90°,∴∠BGC +∠CBG =90°. ∴∠BAF +∠EAF =90°.∴∠BAD +∠EAD +∠EAF +∠EAF =90o . ∵∠BAD =∠EAD , ∴∠EAD +∠EAF =45°.即∠DAF =45°.……………………………………………… 7分BA28.解:(1)依题意得:OA=4,∵OA·OA’=22=4,∴OA’=1.…………………………………1分则A’(1,0).……………………………………………………2分(2)∵B’恰好为直线y=与直线x=4的交点,y=与x轴夹角为60°,∴B’点坐标为(4,.……………………………………………3分∴OB’=8..∵OB·OB’=22=4,∴OB=12∴B(1).………………………………………………………4分4(3)∵点C为直线y=上一动点,且点C关于⊙O的反演点C'在⊙O的内部,∴点C在⊙O的外部,直线y=与⊙O的两个交点坐标的横坐标为1±,∴m的取值范围是m >1或m <-1.…………………………………6分(4)t的取值范围是:0<t≤1. ……………………………………………7分注:本试卷中的各题若有其他合理的解法请酌情给分.。
北京顺义区2020年初三数学中考二模试题doc 初中数学一、选择题〔共8个小题,每题4分,共32分〕以下各题均有四个选项,其中只有一个是符合题意的. 1.5的倒数是 A .5- B .15C D .5 2.假如一个角等于54°,那么它的补角等于A .146︒B .36︒C .126︒D .54︒3.据2018年上海世界博览会官方网站报道,在5月1日当天的入园人数为204 959人,将204 959用科学记数法表示并保留三个有效数字应为 A .52.05010⨯ B .52.0510⨯ C .60.20510⨯ D .320510⨯ 4.如下图的四个立体图形中,左视图是圆的个数是A .4B .3C .2D .15.为参加2018年〝北京市初中毕业生升学体育考试〞,小静同学进行了刻苦的练习,在测仰卧起坐时,记录下5次的成绩〔单位:个〕分不为:40,45,45,46,48.这组数据的众数、中位数依次是A .45,45B .45,45.5C .46,46D .48,45.5 6.二次函数224y x x =--的顶点坐标是A .(1,3)--B .(1,5)--C .(1,3)-D .(1,5)-圆柱 圆锥 圆台 球F EDCBA7.甲、乙各抛一次质地平均的正方体骰子,骰子的六个面上分不刻有1至6的点数,假设甲、乙的点数相同时,算两人平手;假设甲的点数大于乙时,算甲获胜;假设乙的点数大于甲时,算乙获胜.那么甲获胜的概率是 A .127 B .125 C .21 D .318.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...如此的监视器 A .5台 B .4台 C .3台 D .2台二、填空题〔此题共16分,每题4分〕 9.假设分式2532x x -+的值为0,那么x 的值为 . 10.一个扇形的半径为6cm ,圆心角为150°,那么那个扇形的面积为 2cm . 11.假设关于x 的方程230x x k +-=有实数根,那么k 的取值范畴是 . 12.如图,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒.将ABC △绕直角顶点C 按顺时针方向旋转,得''A B C △,斜边''A B 分不与BC 、AB 相交于点D 、E ,直角边'A C 与AB 交于点F .假设2CD AC ==,那么ABC △至少旋转 度才能得到''A B C △,现在ABC △与''A B C △的重叠部分〔即四边形CDEF 〕的面积为 .三、解答题〔此题共30分,每题5分〕13.运算:2201032cos3048(1)--︒-.14.解不等式组 5432,4.3x x x x -<+⎧⎪+⎨>-⎪⎩ 并求它的整数解.15.解分式方程:32221x x x +=++. 16.:如图,ABC △中,D 、E 为AC 边的三等分点,EF ∥AB ,交BD 的延长线于F .求证:点D 是BF 的中点.FEDB'A'BC第7题A 6517.222x x -=,求代数式2(1)(3)(3)(3)(1)x x x x x -++-+--的值.18.列方程或方程组解应用题:某服装厂为学校艺术团制作100套演出服,售价每套40元.服装厂向25名家庭贫困学生免费提供.经核算,这25套演出服的成本正好是原定生产这批演出服的利润.咨询每套演出服的成本是多少元?四、解答题〔此题共20分,第19题5分,第20题6分,第21题5分,第22题4分〕 19.如图,在等腰梯形ABCD 中,AD ∥BC ,45B ∠=︒,AD=6,AB=点E 在BC的延长线上,30E ∠=︒,求BE 的长.20.甲、乙两支篮球队在集训期内进行了五场竞赛,将竞赛成绩进行统计后,绘制成如图1、图2的统计图.〔1〕在图2中画出折线表示乙队在集训期内这五场竞赛成绩的变化情形;〔2〕甲队五场竞赛成绩的平均分甲x =90分,请你运算乙队五场竞赛成绩的平均分乙x ; 〔3〕就这五场竞赛,分不运算两队成绩的极差;〔4〕假如从甲、乙两队中选派一支球队参加篮球锦标赛,依照上述统计情形,试从平均分、折线的走势、获胜场数和极差四个方面分不进行简要分析,你认为选派哪支球队参赛更能取得好成绩?E D C BA得分/分 甲、乙两球队竞赛成绩条形统计图甲队图1/场甲、乙两球队竞赛成绩折线统计图 图2得分/场21.如图,AB 是⊙O 的直径,BD 交⊙O 于点C ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,D CAB ∠=∠.〔1〕求证:AD 为⊙O 的切线; 〔2〕假设4sin 5D =,6AD =,求CE 的长.22.如图,在平面直角坐标系xOy 中,A 点的坐标为〔1,2〕,B 点的坐标为〔2,1〕. 〔1〕求OAB △的面积; 〔2〕假设OAB △沿直线12y x =-向下平移,使点A 落在x 轴上,画出平移后的三角形,求平移的距离及平移过程中OAB △所扫过的面积.五、解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕 23.在平面直角坐标系xOy 中,A 、B 为反比例函数4y x=(0)x >的图象上两点,A 点的横坐标与B 点的纵坐标均为1,将4y x=(0)x >的图象绕原点O 顺时针旋转90°,A 点的对应点为'A ,B 点的对应点为'B .〔1〕求旋转后的图象解析式;〔2〕求'A 、'B 点的坐标;〔3〕连结'AB .动点M 从A 点动身沿线段'AB 以每秒1个单位长度的速度向终点'B 运动;动点N 同时从'B 点动身沿线段''B A 以每秒1个单位长度的速度向终点'A 运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时刻为t 秒,试探究:是否存在使'MNB △为等腰直角三角形的t 值,假设存在,求出t 的值;假设不存FO ECA在,讲明理由.24.我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答以下咨询题:〔1〕写出一个你所学过的专门四边形中是等邻角四边形的图形的名称;〔2〕如图1,在ABC △中,AB=AC ,点D 在BC 上,且CD=CA ,点E 、F 分不为BC 、AD 的中点,连接EF 并延长交AB 于点G .求证:四边形AGEC 是等邻角四边形; 〔3〕如图2,假设点D 在ABC △的内部,〔2〕中的其他条件不变,EF 与CD 交于点H .图中是否存在等邻角四边形,假设存在,指出是哪个四边形,不必证明;假设不存在,请讲明理由.图2图1H GF DE CBAGFE DCBA25.在平面直角坐标系xOy 中,抛物线2y x bx c =++通过A 〔2,0〕、B 〔4,0〕两点,直线122y x =+交y 轴于点C ,且过点(8,)D m .〔1〕求抛物线的解析式;〔2〕在x 轴上找一点P ,使CP DP +的值最小,求出点P 的坐标; 〔3〕将抛物线2y x bx c =++左右平移,记平移后点A 的对应点为'A ,点B 的对应点为'B ,当四边形''A B DC 的周长最小时,求抛物线的解析式及现在四边形''A B DC 周长的最小值.2018年顺义区中考二模数学试题三、解答题:〔此题共30分,每题5分〕 13.解:原式1219=-+ …………………………………………… 4分 89= ………………………………………………………… 5分14.解:5432,4.3x x x x -<+⎧⎪+⎨>-⎪⎩解不等式①,得 3x <, ………………………………………………… 1分解不等式②,得 1x >-. ……………………………………………… 2分 ∴不等式组的解集为 13x -<<. ……………………………………… 4分 不等式组的整数解为 0,1,2. ………………………………………… 5分15.解:去分母,得 3(1)2(2)2(2)(1)x x x x x +++=++…………………… 1分 去括号,得 223324264x x x x x +++=++ ……………………… 2分 移项,并整理得 1x = ………………………………………………… 3分 经检验:1x =是原方程的根. ………………………………………… 4分 ∴原方程的根为1x =. ………………………………………………… 5分16.证明:∵D 、E 为AC 边的三等分点,∴13AD ED AC ==. ………… 1分 ∵EF ∥AB ,4321FE D CBA∴12∠=∠,34∠=∠. ……… 3分 在△ABD 和△EFD 中,12,34,,AD ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△EFD .……………………………………………………… 4分 ∴ BD =FD .∴ 点D 是BF 的中点. ………………………………………………… 5分17.解:2(1)(3)(3)(3)(1)x x x x x -++-+--22221943x x x x x =-++-+-+ ……………………………………… 3分 2365x x =-- …………………………………………………………… 4分∵222x x -=,∴原式23(2)5651x x =--=-=. …………………………………… 5分18.解:设每套演出服的成本是x 元,依照题意,得 ………………………… 1分25100(40)x x =- ……………………………………………………… 3分解那个方程,得 32x =. …………………………………………… 4分 答:每套演出服的成本是32元. …………………………………………… 5分 四、解答题〔此题共20分,第19题5分,第20题6分,第21题5分,第22题4分〕 19.解:分不过点A 、D 作AM BC ⊥,DN BC ⊥,垂足分不为M 、N .可得四边形AMND 是矩形.∴MN=AD=6. ……………… 1分∵AB=45B ∠=︒,∴3AM BM ==, ………… 2分∴DN=AM=3. …………………………………………………………… 3分 ∵30E ∠=︒,∴NE = …………………………………………………………… 4分 ∴BE=BM+MN+NE=369++=+ ………………………… 5分 20.解:〔1〕如图;………………………… 1分〔2〕乙x =90〔分〕;………………… 2分〔3〕甲队成绩的极差是18分,乙队成绩的极差是30分;…………… 4分NMED CBA甲、乙两球队竞赛成绩折线统计图场〔4〕从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队竞赛成绩呈上升趋势, 而乙队竞赛成绩呈下降趋势;从获胜场数看, 甲队胜三场,乙队胜两场,甲队成绩较好;从极差看,甲队竞赛成绩比乙队竞赛成绩波动小,甲队成绩较稳固.综上,选派甲队参赛更能取得好成绩.…………………………………… 6分21.〔1〕证明:∵AB 是⊙O 的直径,∴90ACB ∠=︒. ………………………………………… 1分 ∴90CAB B ∠+∠=︒. ∵D CAB ∠=∠, ∴90D B ∠+∠=︒.∴90DAB ∠=︒. ………………………………………… 2分 ∴AD 为⊙O 的切线. ……………………………………… 3分〔2〕解:∵4sin 5D =,6AD =, 在Rt ACD △中,24sin 5AC AD D =⋅=,185CD =. 在Rt DAB △中,sin D =45AB DB =. ∴8AB =,10DB =. ……………………………………… 4分 ∵AE 平分BAC ∠,EF AB ⊥,90ACB ∠=︒, ∴CE EF =.设CE EF x ==,那么18105BE x =--, ∵90EFB DAB ∠=∠=︒,B B ∠=∠, ∴BEF △∽BDA △.∴EF BE DA BD =,即18105610xx --=. ∴125x =.即CE 的长为125. ……………………………………………… 5分22.解:〔1〕OAB △的面积11342(12)11222=-⨯⨯⨯-⨯⨯=. …………… 1分〔2〕如图,平移后的三角形为'''O A B △.〔画图正确给1分,累计2分〕 平移的距离22'4225OO += …………………………………… 3分 平移过程中OAB △所扫过的面积为四边形''OAA O 与'''O A B △的面积和,即13232(52)222⨯⨯⨯+=. …………………………………… 4分五、解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕 23.解:〔1〕旋转后的图象解析式为4y x=-(0)x >. ……………………… 1分 〔2〕由旋转可得'A 〔4,-1〕、'B 〔1,-4〕. ………………………… 3分 〔3〕依题意,可知'45B ∠=︒.假设'MNB △为直角三角形,那么'MNB △同时也是等腰三角形,因此,只需求使'MNB △为直角三角形的t 值. 分两种情形讨论:①当'B NM ∠是直角,'B N MN =时,如图1,∵AB ′=8,B ′A ′==32,AM=B ′N=MN=t , ∴B ′M=8-t ,∵222''B N MN B M +=,∴222(8)t t t +=-. ………… 4分 解得 882t =-±〔舍去负值〕, ∴882t =-+. ……………… 5分 ②当'B MN ∠是直角,'B M MN =时, 如图2,∵AB ′=8,B ′A ′==32,AM=B ′N=t , ∴B ′M=MN=8-t ,∵222''B M MN B N +=, ∴222(8)(8)t t t -+-=, 解得 1682t =±.∵16828+>,168232->, ∴现在t 值不存在. …………… 6分 〔此类情形不运算,通过画图讲明t 值不存在也能够〕综上所述,当882t =-+时,'MNB △为等腰直角三角形. ……………… 7分24.〔1〕解:等腰梯形〔或矩形,或正方形〕. ……………………………… 1分〔2〕证法一:取AC 的中点H ,连接HE 、HF .4321H GF ED CBA AB CD EFG12∵点E 为BC 的中点, ∴EH 为ABC △的中位线.∴EH ∥AB ,且12EH AB =. ………………………… 2分 同理 FH ∥DC ,且12FH DC =. …………………… 3分∵AB=AC ,DC=AC , ∴AB=DC . ∴EH=FH . ∴12∠=∠. ………………… 4分∵EH ∥AB ,FH ∥DC ,∴24∠=∠,13∠=∠. ∴43∠=∠.∵4180AGE ∠+∠=︒,3180GEC ∠+∠=︒,∴AGE GEC ∠=∠. ………………………………………… 5分 ∴四边形AGEC 是等邻角四边形. …………………………… 6分 证法二:连接AE .设B ∠的度数为x , ∵AB=AC ,CD=CA ,∴C B x ∠=∠=,18019022x x︒-∠==︒-.………………… 2分 ∵F 是AD 的中点, ∴12EF DF AD ==.…… 3分 ∴21902x ∠=∠=︒-. ∴2909022x xAGE B x ∠=∠+∠=+︒-=︒+.180(90)9022x xGEC ∠=︒-︒-=︒+. …………………… 4分∴AGE GEC ∠=∠. ………………………………………… 5分∴四边形AGEC 是等邻角四边形. …………………………… 6分 〔3〕存在等邻角四边形,为四边形AGHC . ……………………… 7分25.解:〔1〕依题意,得420,1640.b c b c ++=⎧⎨++=⎩ 解得 6,8.b c =-⎧⎨=⎩∴抛物线的解析式是268y x x =-+.…………………… 2分〔2〕依题意,得 (0,2)C ,(8,6)D .………………………… 3分作点(0,2)C 关于x 轴的对称点'(0,2)C -,求直线'C D 的解析式为2y x =-,直线'C D 与x 轴的交点即为P 点.因此,P 点坐标为(2,0).………………………………………………………………………… 4分 〔3〕左右平移抛物线268y x x =-+,因为线段A ′B ′=2和=均是定值,因此要使四边形A ′B ′DC 的周长最小,只要使A ′C +B ′D 的值最小; …………………………………………………………………… 5分 因为A ′B ′=2,因此将点C 向右平移2个单位得C 1(2,2),作点C 1关于x 轴的对称点C 2,C 2点的坐标为 (2,-2),设直线C 2D 的解析式为y kx b =+,将点C 2 (2,-2)、D 〔8,6〕代入解析式,得 22,8 6.k b k b +=-⎧⎨+=⎩解得 4,314.3k b ⎧=⎪⎪⎨⎪=-⎪⎩∴直线C 2D 的解析式为41433y x =-. ∴直线C 2D 与x 轴的交点即为B ′点,可求B ′〔72,0〕,因此A ′〔32,0〕. 因此当四边形''A B DC 的周长最小时, 抛物线的解析式为37()()22y x x =--,即22154y x x =-+. …… 6分 ∵A ′C +B ′D=C 210=. ………………………………… 7分 ∴四边形''A B DC的周长最小值为21012+=+. …… 8分。
lAB CD顺义区2020届初三第二次统一练习数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如图所示,1l ∥2l ,则平行线1l 与2l 间的距离是(A )线段AB 的长度 (B )线段BC 的长度 (C )线段CD 的长度 (D )线段DE 的长度 2.-5的倒数是(A )-5 (B )5 (C )15-(D )153.如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点.若有一直线l 经过点(1,3)-且与y 轴垂直,则l 也会经过的点是 (A )点A (B )点B(C )点C (D )点D4.如果a 2+4a -4=0,那么代数式()()224231a a -+-+的值为(A )13 (B )-11 (C )3(D )-35.如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成 两个多边形,若这两个多边形的内角和分别为α和β, 则αβ+的度数是(A )360︒(B )540︒(C )720︒(D )900︒l2l 1A B C DE6.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有若干人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为(A )911616x y x y ì+=ïí+=ïî (B )911616x y x y ì-=ïí-=ïî(C )911616x y x y ì+=ïí-=ïî (D )911616x y x yì-=ïí+=ïî7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数x (单位:千克)及方差2S (单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是 (A )甲(B )乙 (C )丙 (D )丁8.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .设AE=x ,矩形ECFG 的面积为y ,则y 与x 之间的关系描述正确的是 A .y 与x 之间是函数关系,且当x 增大时,y 先增大再减小 B .y 与x 之间是函数关系,且当x 增大时,y 先减小再增大 C . y 与x 之间是函数关系,且当x 增大时,y 一直保持不变 D . y 与x 之间不是函数关系二、填空题(本题共16分,每小题2分) 9.分解因式:222mn m -= .10.右图中的四边形均为矩形,根据图形,写出一个正确的等式: .11.比较大小:12______0.5(填“>”或“<”).GF ED CB Aqxpx12.如图,在每个小正方形的边长为1cm 的网格中,画出了一个过格点A ,B 的圆,通过测量、计算,求得该圆的周长是 cm .(结果保留一位小数)13.如图,30MAN ∠=︒,点B 在射线AM 上,且2AB =,则点B 到射线AN 的距离是 .12题图 13题图 14题图14.如图,Rt △ABC 中,∠C=90°,在△ABC 外取点D ,E ,使AD=AB ,AE=AC ,且α+β=∠B ,连结DE .若AB =4,AC =3,则DE = .15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有 个红球.16.对于题目:“如图1,平面上,正方形内有一长为12 、宽为6 的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取n =14. 乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14.丙:如图4,思路是当x倍时就可移转过去;结果取n =13. 甲、乙、丙的思路和结果均正确的是 .A BCD EαββαEDCBABA AB三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题6分,第24题5分,第25-26题,每小题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:()022cos 453--︒-.18.解不等式:13x -≥212x -+,并把解集在数轴上表示出来.19.已知:关于x 的方程2410(0)mx x m -+=≠有实数根.(1)求m 的取值范围;(2)若方程的根为有理数,求正整数m 的值.20.下面是小东设计的“以线段AB 为一条对角线作一个菱形”的尺规作图过程. 已知:线段AB . 求作:菱形ACBD .作法:如图,①以点A 为圆心,以AB 长为半径作⊙A ; ②以点 B 为圆心,以AB 长为半径作⊙B , 交⊙A 于C ,D 两点;③连接AC ,BC ,BD ,AD . 所以四边形ACBD 就是所求作的菱形. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明.证明:∵点B ,C ,D 在⊙A 上,∴AB=AC=AD ( )(填推理的依据). 同理 ∵点A ,C ,D 在⊙B 上,∴AB=BC=BD .∴ = = = .∴四边形ACBD 是菱形. ( )(填推理的依据).EDCBA21.已知:如图,在四边形ABCD 中,90BAC ACD ∠=∠=︒,12AB CD =,点E 是CD 的中点.(1)求证:四边形ABCE 是平行四边形;(2)若4AC =,AD =ABCE 的面积.22.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出一人,求此人指标x 的值大于1.7的概率; (2)设这100名患者中服药者指标y 数据的方差为21S ,未服药者指标y 数据的方差为22S ,则21S 22S ;(填“>”、“=”或“<” ) (3)对于指标z 的改善情况,下列推断合理的是 .①服药4周后,超过一半的患者指标z 没有改善,说明此药对指标z 没有太大作用; ②在服药的12周内,随着服药时间的增长,对指标z 的改善效果越来越明显.23.已知:如图,AB 是⊙O 的直径,△ABC 内接于⊙O .点D 在⊙O 上,AD 平分∠CAB 交BC 于点E ,DF 是⊙O 的切线,交AC 的延长线于点F .(1)求证;DF ⊥AF ;(2)若⊙O 的半径是5, AD =8,求DF 的长.24.如图,在ABC ∆中,5AB AC ==cm ,6BC =cm ,点D 为BC 的中点,点E 为AB 的中点.点M 为AB 边上一动点,从点B 出发,运动到点A 停止,将射线DM 绕点D 顺时针旋转α度(其中BDE α=∠),得到射线DN ,DN 与边AB 或AC 交于点N .设B 、M 两点间的距离为x cm ,M ,N 两点间的距离为y cm . 小涛根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 与x 的几组对请你通过测量或计算,补全表格; (2)描点、连线:在平面直角坐标系xOy 中,描出补全后的表格中各组数值所对应的点(,)x y ,并画出函数y 关于x 的图象.(3)结合函数图象,解决问题:当MN BD =时,BM 的长度大约是 cm .(结果保留一位小数)BACB25. 已知:在平面直角坐标系xOy 中,点A (-1,2)在函数my x=(x<0)的图象上. (1)求m 的值;(2)过点A 作y 轴的平行线l ,直线2y x b =-+与直线l 交于点B ,与函数my x=(x<0)的图象交于点C ,与y 轴交于点D . ①当点C 是线段BD 的中点时,求b 的值; ②当BC <BD 时,直接写出b 的取值范围.26.在平面直角坐标系xOy 中,已知抛物线()()231210y mx m x m m =--+-≠. (1)当m =3时,求抛物线的顶点坐标; (2)已知点A (1,2).试说明抛物线总经过点A ; (3)已知点B (0,2),将点B 向右平移3个单位长度,得到点C ,若抛物线与线段BC只有一个公共点,求m 的取值范围.27.已知:在△ABC 中,∠ABC =90°,AB=BC ,点D 为线段BC 上一动点(点D 不与点B 、C 重合),点B 关于直线AD 的对称点为E ,作射线DE ,过点C 作BC 的垂线,交射线DE 于点F ,连接AE .(1)依题意补全图形; (2)AE 与DF 的位置关系是 ; (3)连接AF ,小昊通过观察、实验,提出猜想:发现点D 在运动变化的过程中,∠DAF 的度数始终保持不变,小昊 把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF = °,通过讨论,形成了证明该猜想的两种 想法: 想法1:过点A 作AG ⊥CF 于点G ,构造正方形ABCG ,然后可证△AFG ≌△AFE ……想法2:过点B 作BG ∥AF ,交直线FC 于点G ,构造□ABGF ,然后可证△AFE ≌△BGC ……请你参考上面的想法,帮助小昊完成证明(一种方法即可).EB28.已知:如图,⊙O 的半径为r ,在射线OM 上任取一点P (不与点O 重合),如果射线OM上的点P',满足OP ·OP'=r 2,则称点P'为点P 关于⊙O 的反演点.在平面直角坐标系xOy 中,已知⊙O 的半径为2. (1)已知点A (4,0),求点A 关于⊙O 的反演点A'的坐标;(2)若点B关于⊙O 的反演点B'恰好为直线y =与直线x =4的交点,求点B 的坐标;(3)若点C 为直线y =上一动点,且点C 关于⊙O的反演点C'在⊙O 的内部,求点C 的横坐标m 的范围; (4)若点D 为直线x =4上一动点,直接写出点D 关于⊙O 的反演点D'的横坐标t 的范围.顺义区2020届初三数学第二次统一练习参考答案二、填空题(共8道小题,每小题2分,共16分)9.2(1)(1)m n n +-; 10.2()()x p x q x px qx pq ++=+++; 11.>; 12.8.9(8.7—9.0之间都算对); 13.1; 14.5; 15.3; 16.甲、乙.三、解答题(共12道小题,共68分) 17.解:原式=119- …………………………………… 4分 =89…………………………………………………………5分 18.解:去分母得 2(x -1)≥3(x -2)+6 ……………………………… 1分 去括号得 2x -2≥3x -6+6 ……………………………… 2分移项并合并同类项得 - x ≥2 ……………………………… 3分 系数化为1得 x ≤-2 ……………………………………… 4分 解集在数轴上表示为 …………………………………… 5分19.解:(1)原方程为一元二次方程.224(4)41164b ac m m ∆=-=--⨯⨯=- ………………1分∵原方程有实数根, ∴164m -≥0. ∴m ≤4.∴m 的取值范围是m ≤4且0m ≠.…………………………2分 (2)解:∵m 为正整数,∴m 可取1,2,3,4.……………………………………… 3分 当m =1时,16412m ∆=-=;当m =2时,1648m ∆=-=; 当m =3时,1644m ∆=-=;当m =4时,1640m ∆=-=; ∵方程为有理根,∴m =3或m =4.……………………………………………… 5分20.解:(1)补全图如图1所示. (1)分(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD( 同圆半径相等)(或圆的定义)(填推理的依据).………………………………2分同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AC = BC = BD = AD .………………4分∴四边形ACBD是菱形. ( 四条边相等的四边形是菱形)(填推理的依据).………………………………………………5分21.(1)证明:∵90BAC ACD∠=∠=︒,∴AB∥EC.………………………………………………1分∵点E是CD的中点,∴12EC CD=.∵12AB CD=,∴AB=EC.………………………………………………2分∴四边形ABCE是平行四边形.………………………………3分(2)解:∵90ACD∠=︒,4AC=,AD=∴4CD=. (4)分∵12AB CD=,图1∴AB =2.∴248ABCE S AB AC =⋅=⨯=Y . (5)分22.解:(1) 指标x 的值大于1.7的概率=335050÷=或6%. …………………… 2分(2)21S > 22S ;(填“>”、“=”或“<” )……………………………4分(3) 推断合理的是② . …………………………………………6分23.(1)证明:连接OD .∵DF 是⊙O 的切线,∴OD ⊥DF .∴∠ODF =90°. (1)分∵AD 平分∠CAB ,∴∠CAD =∠DAB .…………… 2分又∵OA=OD ,∴∠DAB =∠ADO . ∴∠CAD =∠ADO . ∴AF ∥OD .∴∠F +∠ODF =180°.∴∠F =180°-∠ODF=90°. ∴DF⊥AF . ………………………………………………………………3分 (2)解:连接DB .∵AB 是直径,⊙O 的半径是5,AD =8,∴∠ADB =90°,AB=10.∴6BD =.……………………4分∵∠F=∠ADB =90°,∠F AD=∠DAB , ∴△F AD ∽△DAB . …………5分 ∴DF AD BD AB=. ∴8624105AD BD DF AB ⨯===g .……6分BABA24.解:(1)表中所填的数值是3.2;(填3.1—3.3都可以) (1)分(2…………………………2分(3)结合函数图象,解决问题:当MN BD =时,BM 的长度大约是 1.7,1.9,4.7 cm .………………………………………………………………………………5分(填的数值上下差0.1都算对) 25.解:(1)把A (-1,2)代入函数my x=(x<∴ m = -2(2)① 过点 C 作 EF ⊥ y 轴于F ,∵直线 l ∥y 轴,∴EF ⊥直线 l . ∴∠BEC =∠DFC =90°.∵点A 到 y 轴的距离为 1, ∵直线 l ∥y 轴, ∴∠EBC =∠FDC . ∵点C 是BD 的中点, ∴CB=CD .∴ ΔEBC ≌ΔFDC (AAS ) ………………………………… 3分 ∴ EC=CF 即CE=CF=21. ∴点C 的横坐标为12-.把12x =-代入函数2y x=-中,得y = 4.∴点C 的坐标为(12-,4). ………………………………… 4分把点C 的坐标为(12-,4)代入函数 y = - 2x +b 中,得b =3.……………………………………………………………… 5分② b > -3. ………………………………………………………… 6分 26.解:(1)把m =3代入()23121y mx m x m =--+-中,得223653(1)2y x x x =-+=-+,∴抛物线的顶点坐标是(1,2). (2)分(2)当x =1时,3(1)2133212y m m m m m m =--+-=-++-=.∵点A (1,2),∴抛物线总经过点A . (3)分(3)∵点B (0,2),由平移得C (3,2).① 当抛物线的顶点是点A (1,2)时,抛物线与线段BC 只有一个公共点.由(1)知,此时,m =3.……………………………………4分 ② 当抛物线过点B (0,2)时,将点B (0,2)代入抛物线表达式,得2m -1=2.∴m =32>0.此时抛物线开口向上(如图1). ∴当0<m <32时,抛物线与线段BC 只有一个公共点. ………………………………………5分 ③当抛物线过点C (3,2)时, 将点C (3,2)代入抛物线表达式,得 9m -9(m -1)+2m -1=2. ∴m =-3<0.此时抛物线开口向下(如图2).图2图1∴当-3<m <0时,抛物线与线段BC 只有一个公共点. ………………… 6分 综上,m 的取值范围是m =3或0<m <32或-3<m <0.27.解:(1)补全图形如下: ……………………………………………………… 1分(2)AE 与DF 的位置关系是 互相垂直 ; ………………………… 2分(3)∠DAF = 45° ………………………………………………… 3分(想法1图形)证明如下:过点A 做AG ⊥CF 于点G ,依题意可知: ∠B =∠BCG =∠CGA =90°. ∵AB =BC ,∴四边形ABCG 是正方形.…………………………………… 4分∴AG =AB , ∠BAG =90°.∵点B 关于直线AD 的对称点为E , ∴AB =AE ,∠B =∠AED =90° ,∠BAD =∠EAD .……………5分∴AG =AE . ∵AF =AF ,∴Rt △AFG ≌Rt △AFE (HL) . …………………………………6分∴∠GAF =∠EAF . ∵∠BAG =90°,∴∠BAD +∠EAD +∠EAF +∠GAF =90°. ∵∠BAD =∠EAD , ∠EAF =∠GAF ,BB∴∠EAD +∠EAF =45°.即∠DAF =45°. ……………………………………………7分(想法2图形)证明如下:过点B 作BG ∥AF ,交直线FC 于点G ,依题意可知:∠ABC =∠BCF =90°. ∴AB ∥FG . ∵AF ∥BG ,∴四边形ABGF 是平行四边形.……………………………… 4分∴AF =BG ,∠BGC =∠BAF .∵点B 关于直线AD 的对称点为E ,∴AB =AE ,∠ABC =∠AED =90° ,∠BAD =∠EAD .…………5分∵AB =BC , ∴AE =BC .∴Rt △AEF ≌Rt △BCG (HL) …………………………………6分∴∠EAF =∠CBG . ∵∠BCG =90°,∴∠BGC +∠CBG =90°. ∴∠BAF +∠EAF =90°.∴∠BAD +∠EAD +∠EAF +∠EAF =90o . ∵∠BAD =∠EAD , ∴∠EAD +∠EAF =45°.即∠DAF =45°. (7)分28.解:(1)依题意得:OA =4,∵OA .OA ’=22=4, ∴ OA ’=1. (1)BA分则A’(1,0). (2)分(2)∵B’恰好为直线y=与直线x=4的交点,y=与x轴夹角为60°,∴B’点坐标为(4,.……………………………………………3分∴OB’=8..∵OB·OB’=22=4,∴OB=12∴B(1).………………………………………………………4分4(3)∵点C为直线y=上一动点,且点C关于⊙O的反演点C'在⊙O的内部,∴点C在⊙O的外部,直线y=与⊙O的两个交点坐标的横坐标为1±,∴m的取值范围是m >1或m <-1.…………………………………6分(4)t的取值范围是:0<t≤1. ……………………………………………7分注:本试卷中的各题若有其他合理的解法请酌情给分.。
2020年中考数学二模试卷一、选择题(共8小题).1.如图所示,l1∥l2,则平行线l1与l2间的距离是()A.线段AB的长度B.线段BC的长度C.线段CD的长度D.线段DE的长度2.﹣5的倒数是()A.﹣5B.C.﹣D.53.如图,平面直角坐标系xOy中,有A、B、C、D四点.若有一直线l经过点(﹣1,3)且与y轴垂直,则l也会经过的点是()A.点A B.点B C.点C D.点D4.如果a2+4a﹣4=0,那么代数式(a﹣2)2+4(2a﹣3)+1的值为()A.13B.﹣11C.3D.﹣35.如图,四边形ABCD中,过点A的直线l将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则α+β的度数是()A.360°B.540°C.720°D.900°6.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320 S2 1.9 2.12 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁8.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的面积为y,则y与x之间的关系描述正确的是()A.y与x之间是函数关系,且当x增大时,y先增大再减小B.y与x之间是函数关系,且当x增大时,y先减小再增大C.y与x之间是函数关系,且当x增大时,y一直保持不变D.y与x之间不是函数关系二、填空题(本题共16分,每小题2分)9.分解因式:2mn2﹣2m=.10.图中的四边形均为矩形,根据图形,写出一个正确的等式:.11.比较大小:0.5.12.如图,在每个小正方形的边长为1cm的网格中,画出了一个过格点A,B的圆,通过测量、计算,求得该圆的周长是cm.(结果保留一位小数)13.如图,∠MAN=30°,点B在射线AM上,且AB=2,则点B到射线AN的距离是.14.如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=.15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有个红球.摸到红球的次数摸到白球的次数一组137二组146三组15516.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是.三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题5分,第24题5分,第25-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:(﹣2)0+﹣cos45°﹣3﹣2.18.解不等式:≥+1,并把解集在数轴上表示出来.19.已知:关于x的方程mx2﹣4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若方程的根为有理数,求正整数m的值.20.下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.已知:线段AB.求作:菱形ACBD.作法:如图,①以点A为圆心,以AB长为半径作⊙A;②以点B为圆心,以AB长为半径作⊙B,交⊙A于C,D两点;③连接AC,BC,BD,AD.所以四边形ACBD就是所求作的菱形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD()(填推理的依据).同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴═==.∴四边形ACBD是菱形.()(填推理的依据).21.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD 的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.22.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x和y的数据,并制成图1,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图2.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出一人,求此人指标x的值大于1.7的概率;(2)设这100名患者中服药者指标y数据的方差为S12,未服药者指标y数据的方差为S22,则S12S22;(填“>”、“=”或“<”)(3)对于指标z的改善情况,下列推断合理的是.①服药4周后,超过一半的患者指标z没有改善,说明此药对指标z没有太大作用;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.23.已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB 交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证;DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.24.如图,在△ABC中,AB=AC=5cm,BC=6cm,点D为BC的中点,点E为AB的中点.点M为AB边上一动点,从点B出发,运动到点A停止,将射线DM绕点D顺时针旋转α度(其中α=∠BDE),得到射线DN,DN与边AB或AC交于点N.设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2请你通过测量或计算,补全表格;(2)描点、连线:在平面直角坐标系xOy中,描出补全后的表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)结合函数图象,解决问题:当MN=BD时,BM的长度大约是cm.(结果保留一位小数)25.已知:在平面直角坐标系xOy中,点A(﹣1,2)在函数y=(x<0)的图象上.(1)求m的值;(2)过点A作y轴的平行线l,直线y=﹣2x+b与直线l交于点B,与函数y=(x<0)的图象交于点C,与y轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC<BD时,直接写出b的取值范围.26.在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC只有一个公共点,求m的取值范围.27.已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).28.已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP•OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=x上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图所示,l1∥l2,则平行线l1与l2间的距离是()A.线段AB的长度B.线段BC的长度C.线段CD的长度D.线段DE的长度【分析】利用平行线间距离的定义判断即可.解:如图所示,l1∥l2,则平行线l1与l2间的距离是线段BC的长度.故选:B.2.﹣5的倒数是()A.﹣5B.C.﹣D.5【分析】根据倒数的定义即可得出答案.解:﹣5的倒数是﹣;故选:C.3.如图,平面直角坐标系xOy中,有A、B、C、D四点.若有一直线l经过点(﹣1,3)且与y轴垂直,则l也会经过的点是()A.点A B.点B C.点C D.点D【分析】直接利用点的坐标,正确结合坐标系分析即可.解:如图所示:有一直线L通过点(﹣1,3)且与y轴垂直,故L也会通过D点.故选:D.4.如果a2+4a﹣4=0,那么代数式(a﹣2)2+4(2a﹣3)+1的值为()A.13B.﹣11C.3D.﹣3【分析】原式利用完全平方公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.解:原式=a2﹣4a+4+8a﹣12+1=a2+4a﹣7,由a2+4a﹣4=0,得到a2+4a=4,则原式=4﹣7=﹣3.故选:D.5.如图,四边形ABCD中,过点A的直线l将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则α+β的度数是()A.360°B.540°C.720°D.900°【分析】根据多边形的内角和公式计算即可.解:如图:四边形ABCE的内角和为:(4﹣2)×180°=360°,△ADE的内角和为180°,∴α+β=360°+180°=540°.故选:B.6.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320 S2 1.9 2.12 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁【分析】先比较平均数得到甲品种的葡萄树和乙品种的葡萄树产量较好,然后比较方差得到甲品种的葡萄树的状态稳定,从而求解.解:因为甲品种的葡萄树、乙品种的葡萄树的平均数丙品种的葡萄树比丁品种的葡萄树大,而甲品种的葡萄树的方差比乙品种的葡萄树的小,所以甲品种的葡萄树的产量比较稳定,所以甲品种的葡萄树的产量既高又稳定.故选:A.8.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的面积为y,则y与x之间的关系描述正确的是()A.y与x之间是函数关系,且当x增大时,y先增大再减小B.y与x之间是函数关系,且当x增大时,y先减小再增大C.y与x之间是函数关系,且当x增大时,y一直保持不变D.y与x之间不是函数关系【分析】连接DE,△CDE的面积是矩形CFGE的一半,也是正方形ABCD的一半,则矩形与正方形面积相等.解:连接DE,∵S△CDE=×CE×GE=S矩形ECFG,同理S△CDE=S正方形ABCD,故y=S矩形ECFG=S正方形ABCD,为常数,故选:C.二、填空题(本题共16分,每小题2分)9.分解因式:2mn2﹣2m=2m(n+1(n﹣1).【分析】首先提取公因式2m,再利用平方差公式分解因式得出答案.解:2mn2﹣2m=2m(n2﹣1)=2m(n+1)(n﹣1).故答案为:2m(n+1(n﹣1).10.图中的四边形均为矩形,根据图形,写出一个正确的等式:(x+p)(x+q)=x2+px+qx+pq.【分析】根据多项式的乘法展开解答即可.解:矩形的面积可看作(x+p)(x+q),也可看作四个小矩形的面积和,即x2+px+qx+pq,所以可得等式为:(x+p)(x+q)=x2+px+qx+pq,故答案为:(x+p)(x+q)=x2+px+qx+pq.11.比较大小:>0.5.【分析】首先把0.5变为,然后估算的整数部分,再根据比较实数大小的方法进行比较即可.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.12.如图,在每个小正方形的边长为1cm的网格中,画出了一个过格点A,B的圆,通过测量、计算,求得该圆的周长是8.9cm.(结果保留一位小数)【分析】根据垂径定理确定圆的圆心,根据勾股定理求出圆的半径,根据圆的周长公式计算,得到答案.解:由垂径定理可知,圆的圆心在点O处,连接OA,由勾股定理得,OA==,∴圆的周长=2π≈8.9,故答案为:8.9.13.如图,∠MAN=30°,点B在射线AM上,且AB=2,则点B到射线AN的距离是1.【分析】如图,过点B作BC⊥AN于点C,则BC线段的长度即为所求,根据“在直角三角形中,30°角所对的直角边等于斜边的一半”解答.解:如图,过点B作BC⊥AN于点C,∵在直角△ABC中,∠A=30°,AB=2,∴BC=AB==1.即点B到射线AN的距离是1.故答案是:1.14.如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=5.【分析】根据直角三角形的性质得到∠DAE=90°,根据勾股定理计算,得到答案.解:∵∠C=90°,∴∠B+∠BAC=90°,∵α+β=∠B,∴α+β+∠BAC=90°,即∠DAE=90°,∵AD=AB=4,AE=AC=3,∴DE==5,故答案为:5.15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有3个红球.摸到红球的次数摸到白球的次数一组137二组146三组155【分析】由三个小组摸到红球的次数为13+14+15=42次得出袋子中红色球的概率,进而求出红球个数即可.解:∵三个小组摸到红球的次数为13+14+15=42(次),∴摸到红球的概率为=,∴估计袋中有4×≈3个红球.故答案为:3.16.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是甲.【分析】根据矩形长为12宽为6,可得矩形的对角线长为6,由矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,可得该正方形的边长不小于6,进而可得正方形边长的最小整数n的值.解:∵矩形长为12宽为6,∴矩形的对角线长为:=6,∵矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,∴该正方形的边长不小于6,∵13<6<15,∴该正方形边长的最小正数n为14.故甲的思路正确,长方形对角线最长,只要对角线能通过就可以,n=14;故答案为:甲.三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题5分,第24题5分,第25-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:(﹣2)0+﹣cos45°﹣3﹣2.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.解:原式==.18.解不等式:≥+1,并把解集在数轴上表示出来.【分析】直接利用一元一次不等式的解法分析得出答案.解:去分母得:2(x﹣1)≥3(x﹣2)+6,去括号得:2x﹣2≥3x﹣6+6,移项并合并同类项得:﹣x≥2,系数化为1得:x≤﹣2,解集在数轴上表示为:.19.已知:关于x的方程mx2﹣4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若方程的根为有理数,求正整数m的值.【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由m为正整数可得出m的可能值,将其分别代入△=16﹣4m中求出△的值,再结合方程的根为有理数即可得出结论.解:(1)∵m≠0,∴关于x的方程mx2﹣4x+1=0为一元二次方程,∵关于x的一元二次方程mx2﹣4x+1=0有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×m×1=16﹣4m≥0,解得:m≤4.∴m的取值范围是m≤4且m≠0.(2)∵m为正整数,∴m可取1,2,3,4.当m=1时,△=16﹣4m=12;当m=2时,△=16﹣4m=8;当m=3时,△=16﹣4m =4;当m=4时,△=16﹣4m=0.∵方程为有理根,∴m=3或m=4.20.下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.已知:线段AB.求作:菱形ACBD.作法:如图,①以点A为圆心,以AB长为半径作⊙A;②以点B为圆心,以AB长为半径作⊙B,交⊙A于C,D两点;③连接AC,BC,BD,AD.所以四边形ACBD就是所求作的菱形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(圆的半径)(填推理的依据).同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AD═AC=BC=BD.∴四边形ACBD是菱形.(四边相等的四边形为菱形)(填推理的依据).【分析】(1)根据作法画出几何图形;(2)利用圆的半径相等得到四边形ACBD的边长都等于AB,然后根据菱形的判定可判断四边形ACBD就是所求作的菱形.解:(1)如图,四边形ACBD为所作;(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(圆的半径相等),同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AD=AC=BC=AD,∴四边形ACBD是菱形.(四边相等的四边形为菱形).故答案为:圆的半径相等;AD、AC、BC、AD;四边相等的四边形为菱形.21.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD 的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.【分析】(1)根据平行线的判定定理得到AB∥EC,推出AB=EC,于是得到结论;(2)根据勾股定理得到,求得AB=2,根据平行四边形的面积公式即可得到结论.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,∴S平行四边形ABCE=AB•AC=2×4=8.22.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x和y的数据,并制成图1,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图2.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出一人,求此人指标x的值大于1.7的概率;(2)设这100名患者中服药者指标y数据的方差为S12,未服药者指标y数据的方差为S22,则S12>S22;(填“>”、“=”或“<”)(3)对于指标z的改善情况,下列推断合理的是②.①服药4周后,超过一半的患者指标z没有改善,说明此药对指标z没有太大作用;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.【分析】(1)根据图1,可以的打指标x的值大于1.7的概率;(2)根据图1,可以得到S12和S22的大小情况;(3)根据图2,可以判断哪个推断合理.解:(1)指标x的值大于1.7的概率为:=0.06;(2)由图1可知,S12>S22,故答案为:>;(3)由图2可知,推断合理的是②,故答案为:②.23.已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB 交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证;DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.【分析】(1)连接OD,根据切线的性质得到∠ODF=90°,根据角平分线的定义得到∠CAD=∠DAB,由等腰三角形的性质得到∠DAB=∠ADO,等量代换得到∠CAD=∠ADO,推出AF∥OD,根据平行线的性质即可得到结论;(2)连接DB,根据圆周角定理得到∠ADB=90°,根据勾股定理得到BD=6,再根据相似三角形的判定与性质即可求解.【解答】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∴∠ODF=90°.∵AD平分∠CAB,∴∠CAD=∠DAB.又∵OA=OD,∴∠DAB=∠ADO.∴∠CAD=∠ADO.∴AF∥OD.∴∠F+∠ODF=180°.∴∠F=180°﹣∠ODF=90°.∴DF⊥AF.(2)解:连接DB.∵AB是直径,⊙O的半径是5,AD=8,∴∠ADB=90°,AB=10.∴BD=6.∵∠F=∠ADB=90°,∠FAD=∠DAB,∴△FAD∽△DAB.∴.∴.24.如图,在△ABC中,AB=AC=5cm,BC=6cm,点D为BC的中点,点E为AB的中点.点M为AB边上一动点,从点B出发,运动到点A停止,将射线DM绕点D顺时针旋转α度(其中α=∠BDE),得到射线DN,DN与边AB或AC交于点N.设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2请你通过测量或计算,补全表格;(2)描点、连线:在平面直角坐标系xOy中,描出补全后的表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)结合函数图象,解决问题:当MN=BD时,BM的长度大约是 1.7,1.9,4.7cm.(结果保留一位小数)【分析】(1)证明∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=2.4×=3.2;(2)描点、连线得函数图象;(3)当MN=BD时,即y=3,从图象看x的值即可.解:(1)x=BM=1.8,在△MBD中,BD=3,cos∠B=,设cos B=cosβ,tanβ=,过点M作MH⊥BD于点H,则BH=BM cosβ=1.8×=1.08,同理MH=1.44,HD=BD﹣BH=3﹣1.08=1.92,MD==2.4,MD2=HD2+MH2=9,则BD2=BM2+MD2,故∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=2.4×=3.2,补全的表格数据如下:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 3.2 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2(2)描点、连线得到以下函数图象:(3)当MN=BD时,即y=3,从图象看x即BM的长度大约是1.7,1.9,4.7;故答案为:1.7,1.9,4.7(填的数值上下差0.1都算对).25.已知:在平面直角坐标系xOy中,点A(﹣1,2)在函数y=(x<0)的图象上.(1)求m的值;(2)过点A作y轴的平行线l,直线y=﹣2x+b与直线l交于点B,与函数y=(x<0)的图象交于点C,与y轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC<BD时,直接写出b的取值范围.【分析】(1)根据待定系数法求得即可;(2)①根据题意求得C点的坐标,然后根据待定系数法即可求得b的值;②根据①结合图象即可求得.解:(1)把A(﹣1,2)代入函数(x<0)中,∴m=﹣2;(2)①过点C作EF⊥y轴于F,交直线l于E,∵直线l∥y轴,∴EF⊥直线l.∴∠BEC=∠DFC=90°.∵点A到y轴的距离为1,∴EF=1.∵直线l∥y轴,∴∠EBC=∠FDC.∵点C是BD的中点,∴CB=CD.∴△EBC≌△FDC(AAS),∴EC=CF,即CE=CF=.∴点C的横坐标为.把代入函数中,得y=4.∴点C的坐标为(,4),把点C的坐标为(,4)代入函数y=﹣2x+b中,得b=3;②当C在下方时,C(,﹣4),把C(,﹣4)代入函数y=﹣2x+b中得:﹣4=﹣2×+b,得b=﹣3,则BC<BD时,则b>﹣3,故b的取值范围为b>﹣3.26.在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC只有一个公共点,求m的取值范围.【分析】(1)求出抛物线的解析式,由配方法可得出答案;(2)把x=1,y=2代入y=mx2﹣3(m﹣1)x+2m﹣1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.解得m=,则当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得m=﹣3<0.则当﹣3<m<0时,抛物线与线段BC只有一个公共点.解:(1)把m=3代入y=mx2﹣3(m﹣1)x+2m﹣1中,得y=3x2﹣6x+5=3(x﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m﹣3(m﹣1)+2m﹣1=m﹣3m+3+2m﹣1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.∴m=>0.此时抛物线开口向上(如图1).∴当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得9m﹣9(m﹣1)+2m﹣1=2.∴m=﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m<0时,抛物线与线段BC只有一个公共点.综上,m的取值范围是m=3或0<m<或﹣3<m<0.27.已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是AE⊥DF;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=45°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).【分析】(1)根据题意正确画图;(2)证明△ABD≌△AED(SSS),可得∠AED=∠B=90°,从而得结论;(3)想法1:如图2,过点A做AG⊥CF于点G,先证明四边形ABCG是正方形,得AG=AB,∠BAG=90°,再证明Rt△AFG≌Rt△AFE(HL),得∠GAF=∠EAF,根据∠BAG=90°及角的和可得结论;想法2:如图3,过点B作BG∥AF,交直线FC于点G,证明四边形ABGF是平行四边形,得AF=BG,∠BGC=∠BAF,再证明Rt△AEF≌Rt△BCG(HL),同理根据∠BCG=90°及等量代换,角的和可得结论.解:(1)补全图形如图1:(2)AE与DF的位置关系是:AE⊥DF,理由是:∵点B关于直线AD的对称点为E,∴AB=AE,BD=DE,∵AD=AD,∴△ABD≌△AED(SSS),∴∠AED=∠B=90°,∴AE⊥DF;故答案为:AE⊥DF;(3)猜想∠DAF=45°;想法1:证明如下:如图2,过点A做AG⊥CF于点G,依题意可知:∠B=∠BCG=∠CGA=90°,∵AB=BC,∴四边形ABCG是正方形,∴AG=AB,∠BAG=90°,∵点B关于直线AD的对称点为E,∴AB=AE,∠B=∠AED=∠AEF=90°,∠BAD=∠EAD,∴AG=AE,∵AF=AF,∴Rt△AFG≌Rt△AFE(HL),∴∠GAF=∠EAF,∵∠BAG=90°,∴∠BAD+∠EAD+∠EAF+∠GAF=90°,∴∠EAD+∠EAF=45°.即∠DAF=45°.想法2:证明如下:如图3,过点B作BG∥AF,交直线FC于点G,依题意可知:∠ABC=∠BCF=90°,∴AB∥FG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AF=BG,∠BGC=∠BAF,∵点B关于直线AD的对称点为E,∴AB=AE,∠ABC=∠AED=90°,∠BAD=∠EAD,∵AB=BC,∴AE=BC,∴Rt△AEF≌Rt△BCG(HL),∴∠EAF=∠CBG,∵∠BCG=90°,∴∠BGC+∠CBG=90°,∴∠BAF+∠EAF=90°,∴∠BAD+∠EAD+∠EAF+∠EAF=90°,∵∠BAD=∠EAD,∴∠EAD+∠EAF=45°,即∠DAF=45°.故答案为:45.28.已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP•OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=x上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.。
北京市顺义区2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( ) A .2×1000(26﹣x )=800x B .1000(13﹣x )=800x C .1000(26﹣x )=2×800xD .1000(26﹣x )=800x3.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为( ) A .252B .252π C .50 D .50π4.若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥B .M N ≤C .M N >D .M N <5.下列各数中最小的是( ) A .0B .1C .﹣3D .﹣π6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同7.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则sinA 的值为( ) A .B .C .D .8.如图,将函数y =12(x ﹣2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x ﹣2)2-2 B .y =12(x ﹣2)2+7 C .y =12(x ﹣2)2-5 D .y =12(x ﹣2)2+4 9.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah .例如:三点坐标分别为A (1,2),B (﹣3,1),C (2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D (1,2)、E (﹣2,1)、F (0,t )三点的“矩面积”为18,则t 的值为( ) A .﹣3或7 B .﹣4或6 C .﹣4或7 D .﹣3或6 10.一元二次方程(x+3)(x-7)=0的两个根是 A .x 1=3,x 2=-7 B .x 1=3,x 2=7 C .x 1=-3,x 2=7 D .x 1=-3,x 2=-711.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( ) A .280×103B .28×104C .2.8×105D .0.28×10612.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )A .带③去B .带②去C .带①去D .带①②去二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.化简:21211x x +=+-_____________. 14.分解因式:3x 2-6x+3=__.15.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.16.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于12AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.17.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________18.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣81m+)2269m mm m-++.20.(6分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO =15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)21.(6分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.22.(8分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?23.(8分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE 与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.24.(10分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天) 1 2 3 10 …日销售量(n件)198 196 194 ? …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90销售价格(元/件)x+60 100求出第天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.25.(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;抽查C厂家的合格零件为件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.26.(12分)解方程:3x2﹣2x﹣2=1.27.(12分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD 的延长线于点E,交DC于点N.求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE 的度数是解题关键. 2.C 【解析】 【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可 【详解】 .故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得 1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程. 3.A 【解析】 【分析】根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解. 【详解】解:圆锥的侧面积=12•5•5=252. 故选A . 【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 4.C 【解析】∵223824M x N x x =+=+,,∴222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∴M N >. 故选C. 5.D 【解析】 【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.﹣π<﹣3<0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.6.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.7.C【解析】【分析】先根据勾股定理求出BC 得长,再根据锐角三角函数正弦的定义解答即可. 【详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C .【点睛】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键. 8.D 【解析】 【详解】 ∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m=()211212-+=32,n=()214212-+=3, ∴A (1,32),B (4,3),过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,32), ∴AC=4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分), ∴AC•AA′=3AA′=9, ∴AA′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是()21242y x =-+. 故选D .9.C由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.10.C【解析】【分析】根据因式分解法直接求解即可得.【详解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故选C.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键. 11.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将280000用科学记数法表示为2.8×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.A第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃. 【详解】③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.11 x-【解析】【分析】根据分式的运算法则即可求解. 【详解】原式=1211 (1)(1)(1)(1)(1)(1)1x xx x x x x x x -++==+-+-+--.故答案为:11 x-.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.14.3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()22236332131x x x x x-+=-+=-.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.1【解析】在△AGF和△ACF中,{GAF CAF AF AF AFG AFC∠=∠=∠=∠,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=12BG=1.故答案是:1.16【解析】【分析】连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题【详解】解:连接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴CD AC==ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=3,.【点睛】此题主要考查垂直平分线的性质,解题关键在于连接CD 利用垂直平分线的性质证明△ADC 为等腰直角三角形17.2.【解析】试题分析:已知方程x 2-2x 1m +-=0有两个相等的实数根,可得:△=4-4(m -1)=-4m +8=0,所以,m =2.考点:一元二次方程根的判别式.18.S=1n-1【解析】观察可得,n=2时,S=1;n=3时,S=1+(3-2)×1=12;n=4时,S=1+(4-2)×1=18;…;所以,S 与n 的关系是:S=1+(n-2)×1=1n-1. 故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)24a ;(2)233m m m +- 【解析】试题分析:(1)先去括号,再合并同类项即可;(2)先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(a ﹣b )2﹣a (a ﹣2b )+(2a+b )(2a ﹣b )=a 2﹣2ab+b 2﹣a 2+2ab+4a 2﹣b 2=4a 2;(2)228691)1m m m m m m-+--÷++(.=2(1)(1)8(1)1(3)m m m m m m -+-+⨯+- =229(1)1(3)m m m m m -+⨯+- =2(3)(3)(1)1(3)m m m m m m +-+⨯+- =233m mm +-.20.37【解析】试题分析:过O 点作⊥OD AB 交AB 于D 点.构造直角三角形,在Rt ADO △中,计算出,OD AD ,在Rt BDO V 中, 计算出BD .试题解析:如图所示:过O 点作⊥OD AB 交AB 于D 点.在Rt ADO △中,15,30A AO ∠=︒=Q ,sin15300.2597.77(cm).OD AO ∴=⋅︒=⨯=cos15300.96628.98(cm).AD AO =⋅︒=⨯=又∵在Rt BDO V 中,45.OBC ∠=︒7.77(cm)BD OD ∴==,36.7537(cm)AB AD BD ∴=+=≈.答:AB 的长度为37cm .21. (1)c >﹣2;(2) x 1=﹣1,x 2=1.【解析】【分析】(1)根据抛物线与x 轴有两个交点,b 2-4ac >0列不等式求解即可;(2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x 轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.【详解】(1)解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x轴的另一个交点为(1,0),∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.【点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.22.(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人【解析】【分析】(1)由“科普知识”人数及其百分比可得总人数;(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;(3)总人数乘以“名人传记”的百分比可得.【详解】(1)840÷35%=2400(人),∴该区抽样调查的人数是2400人;(2)2400×25%=600(人),∴该区抽样调查最喜欢“漫画丛书”的人数是600人,补全图形如下:144×360°=21.6°,2400∴最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)从样本估计总体:14400×34%=4896(人),答:估计最喜欢读“名人传记”的学生是4896人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.23.(1)证明见解析;(2)AE=BF,(3)AE=BF;【解析】【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB 的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM 与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF.证明方法类似(2);【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如图2中,结论:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴,∴AE=BF.(3)结论:AE=BF.理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴,∴AE=BF.【点睛】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.24.(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:198 3194 k bk b+=⎧⎨+=⎩,解得:2200 kb=-⎧⎨=⎩,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1.(2)设销售该产品每天利润为y元,y关于x的函数表达式为:221604000150120120005090y x x xy x x⎧=-++≤⎨=-+≤≤⎩(<)()当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=-120x+12000,∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.25.(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,(3)A 厂家合格率=630÷(2000×35%)=90%, B 厂家合格率=370÷(2000×20%)=92.5%, C 厂家合格率=95%,D 厂家合格率470÷500=94%,合格率排在前两名的是C 、D 两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C 、D 的有2种,则P (选中C 、D )=212=16. 考点:1.条形统计图;2.扇形统计图;3. 树状图法.26.121717x x +-== 【解析】【分析】先找出a ,b ,c ,再求出b 2-4ac=28,根据公式即可求出答案.【详解】解:x 22-2-43-2±⨯⨯()() =173± 即121717x x 33-== ∴原方程的解为121717x x +-==. 【点睛】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.27.(1)见解析;(2)4.1【详解】试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴=13,AD=12,∵F是AM的中点,∴AF=12AM=6.5,∵△ABM∽△EFA,∴BM AM AF AE=,即513 6.5AE=,∴AE=16.1,∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.。
北京市顺义区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是( ) A .平均数为160B .中位数为158C .众数为158D .方差为20.32.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( ) A .30°B .60°C .30°或150°D .60°或120°4.在下列条件中,能够判定一个四边形是平行四边形的是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线5.下列几何体中,主视图和左视图都是矩形的是( )A .B .C .D .6.下列各式中,计算正确的是 ( ) A 235=B .236a a a ⋅= C .32a a a ÷=D .()2222a ba b =7.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .8.如图,二次函数y =ax 2+bx +c(a≠0)的图象经过点A ,B ,C .现有下面四个推断:①抛物线开口向下;②当x=-2时,y 取最大值;③当m<4时,关于x 的一元二次方程ax 2+bx +c=m 必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A ,C ,当kx+c> ax 2+bx +c 时,x 的取值范围是-4<x<0;其中推断正确的是 ( )A .①②B .①③C .①③④D .②③④9.下列各式中计算正确的是 A .()222x y x y +=+B .()236x x =C .()2236x x = D .224a a a +=10.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=-1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2-4ac >0;③ab <0;④a 2-ab+ac <0,其中正确的结论有( )个.A .3B .4C .2D .111.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )A .B .C .D .12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知,直接y=kx+b (k >0,b >0)与x 轴、y 轴交A 、B 两点,与双曲线y=16x(x >0)交于第一象限点C ,若BC=2AB ,则S △AOB =________.14.若23a b =,则a b b +=_____.15.如图,a ∥b ,∠1=40°,∠2=80°,则∠3= 度.16.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y 的值是_____. 2x 3 2 y ﹣34y17.如图,直线y kx b =+经过(2,1)A 、(1,2)B --两点,则不等式122x kx b >+>-的解集为_______.18.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.20.(6分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.21.(6分)某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A 种型号B 种型号第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 22.(8分)先化简,再求值:2311221x xx x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=. 23.(8分)在等边三角形ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ .求证:△ABP ≌△CAQ ;请判断△APQ 是什么形状的三角形?试说明你的结论.24.(10分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD .如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC 、AC 分别交于点 E 、F .如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E .25.(10分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.26.(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?27.(12分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC 延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.2.C【解析】【分析】【详解】列表得,由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为=164,故选C.考点:用列表法(或树形图法)求概率.3.D 【解析】【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB 的度数,再根据圆周定理求出∠C 的度数,再根据圆内接四边形的性质求出∠E 的度数即可. 【详解】由图可知,OA=10,OD=1,在Rt △OAD 中,∵OA=10,OD=1,AD=22OA OD -=53, ∴tan ∠1=3ADOD=,∴∠1=60°, 同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°, ∴∠C=60°, ∴∠E=180°-60°=120°,即弦AB 所对的圆周角的度数是60°或120°, 故选D .【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键. 4.C 【解析】A 、错误.这个四边形有可能是等腰梯形.B 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C 、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. 故选C . 5.C 【解析】 【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解. 【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.6.C【解析】【分析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【详解】A、23无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a3÷a2=a,正确;D、(a2b)2=a4b2,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.8.B 【解析】 【分析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案. 【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y 取最大值,则由于点A 和点B 到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A 和点B 的纵坐标显然不相等,所以②错误,从而排除掉A 和D ; 剩下的选项中都有③,所以③是正确的;易知直线y=kx+c (k≠0)经过点A ,C ,当kx+c >ax 2+bx+c 时,x 的取值范围是x <-4或x >0,从而④错误. 故选:B . 【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题. 9.B 【解析】 【分析】根据完全平方公式对A 进行判断;根据幂的乘方与积的乘方对B 、C 进行判断;根据合并同类项对D 进行判断. 【详解】A. ()2222x y x xy y +=++,故错误. B. ()236x x =,正确.C. ()2239x x =,故错误. D. 2222a a a +=, 故错误. 故选B. 【点睛】。
2020届北京市顺义区中考数学二模试卷一、选择题(本大题共8小题,共16.0分)1.直四棱柱、长方体和正方体之间的包含关系是()A. B.C. D.2.实数a、b在数轴上对应点的位置如图所示,则化简√a2−|a+b|的结果为()A. bB. −2a+bC. 2a+bD. 2a−b3.2014年5月21日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30年的合同规定,从2018年开始供气,每年的天然气供应量为380亿立方米,380亿立方米用科学记数法表示为()A. 3.80×1010m3B. 38×109m3C. 380×108m3D. 3.8×1011m34.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF//AD,FN//DC,则∠B=()A. 60°B. 70°C. 80°D. 90°5.为响应承办绿色世博的号召,某班组织部分同学义务植树180棵.由于同学们积极参加,实际参加植树的人数比原计划增加了50%,结果每人比原计划少植了2棵树.若设原来有x人参加这次植树活动,则下列方程正确的是()A. 180(1+50%)x =180x−2 B. 180(1−50%)x=180x−2C. 180(1+50%)x =180x+2 D. 180(1−50%)x=180x+26.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A. 310B. 110C. 19D. 187.下列式子中,正确的是()A. a⃗−b⃗ =0B. a⃗−b⃗ =b⃗ −a⃗C. 如果a⃗=b⃗ ,那么|a⃗|=|b⃗ |D. 如果|a⃗|=|b⃗ |,那么a⃗=b⃗ .8.如图,在平面直角坐标系中,二次函数y=ax2+mc(a≠0)的图象经过正方形ABOC的三个顶点,且ac=−2,则m的值为()A. 1B. −1C. 2D. −2二、填空题(本大题共8小题,共16.0分)9.在实数范围内式子1√x−5有意义,则x的范围是______.10.−8的立方根是______,√36的平方根是______.11.若代数式x2+3x+2可以表示为(x−1)2+a(x−1)+b的形式,则a+b的值是______.12.已知命题“全等三角形的面积相等.”写出它的逆命题______,该逆命题是______命题(填“真”或“假”).13.小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是______度.14.如图,将矩形ABCD绕点B顺时针旋转90°得矩形BEFG,若AB=3,BC=2,则图中阴影部分的面积为______.15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_______.16.如图,在▱ABCD中,∠A的平分线交BC于点E.若AB=3,AD=8,则EC=______.三、计算题(本大题共1小题,共5.0分)17.计算:(1)计算:(−3)0−√12+1√273+(√3−√2)(√3+√2).(2)√8×√12四、解答题(本大题共11小题,共63.0分)18.某汽车租赁公司要购买轿车和面包车共10辆,轿车每辆7万元,面包车每辆4万元,其中轿车至少要购买3辆,公司可投入的购车款不超过55万元.符合公司要求的购买方案有几种?请说明理由.19.如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.20.对于关于x的方程x2+(2m−1)x+4−2m=0,求满足下列条件的m的取值范围,(1)两个正根;(2)有两个负根;(3)两个根都小于−1;(4)两个根都大于1;2(5)一个根大于2,一个根小于2;(6)两个根都在(0,2)内;(7)两个根有且仅有一个在(0,2)内;(8)一个根在(−2,0)内,另一个根在(1,3)内;(9)一个正根,一个负根且正根绝对值较大;(10)一个根小于2,一个根大于4.21.已知,等腰△ABC,AB=AC(1)如图1,BM是△ABC的中线,点N在BM上,且∠ANM=∠MBC,求证:BC=AN;(2)如图2,点G为外一点,∠BGC=∠BAC,AH⊥BG于H,若BH=7,HG=1,求线段CG的长;(3)如图3,等腰△ABC和等腰△ADE共顶点A,AD=AE,顶角∠DAE=∠BAC,点F是线段BE和CD的交点,连AF,请写出∠AFC与∠ADE之间的等量关系,并证明你的结论.22.如图,△ABC内接于⊙O,AD是⊙O直径,E是CB延长线上一点,且∠BAE=∠C.(1)求证:直线AE是⊙O的切线;(2)若∠BAE=30°,⊙O的半径为2,求阴影部份的面积;(3)若EB=AB,cosE=4,AE=24,求EB的长及⊙O的半径.523.在面积都相等的所有矩形中,当其中一个矩形的一条边长为1时,它的另一边长为3(1)设另一条矩形的相邻两边分别为x、y①求y与x的函数关系式;②当y≥3时,求x的取值范围;(2)小明说其中有一个矩形的周长是6,小李说有一个矩形的周长为10,你认为小明和小李的说法对吗?为什么?24.小明要统计小区500户居民每月丢弃塑料袋的数量情况,他随机调查了其中40户居民,按每月丢弃的塑料袋的数量分组进行统计,并绘制了如下的频数分布表和频数分布直方图:每月丢塑料袋个频数频率组别数第1组10至1920.05第2组20至2940.10第3组30至39______ 0.15第4组40至49100.25第5组50至59______ ______第6组60以上20.05合计40 1.00根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)请你估算该小区每月丢弃塑料袋的数不少于40个的户数大约有多少户?25.如图,在Rt△ABC中,∠C=90°,CA=12√3cm,BC=12cm;动点P从点C开始沿CA以2√3cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BC以2cm/s的速度向点C移动.如果P、Q、R分别从C、A、B同时移动,移动时间为t(0<t<6)s.(1)∠CAB的度数是______;(2)以CB为直径的⊙O与AB交于点M,当t为何值时,PM与⊙O相切?(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求S的最小值及相应的t值;(4)是否存在△APQ为等腰三角形?若存在,求出相应的t值;若不存在请说明理由.26.已知抛物线y=x2−2x−8.(1)求:该抛物线的对称轴和顶点坐标;(2)若该抛物线与x轴的两个交点为A,B,且它的顶点为P,求△ABP的面积.27.如图1,点C将线段AB分成两部分,如果ACAB =BCAC,那么称点C为线段AB的黄金分割点,某教学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似的给出“黄金分割线”的定义:“一直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S2S 1,那么称这条直线为该图形的黄金分割线. (1)如图2,在△ABC 中,∠A =36°,AB =AC ,∠C 的平分线交AB 于点D ,请问直线CD 是不是△ABC的黄金分割线,并证明你的结论;(2)如图3,在边长为1的正方形ABCD 中,点E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.28. 我们知道:点A 、B 在数轴上分别表示有理数a 、b ,如图A 、B 两点之间的距离表示为AB ,记作AB =|a −b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是______,数轴上表示2和−3的两点之间的距离是______;(2)已知|a −3|=7,则有理数a =______;(3)若数轴上表示数b 的点位于−4与3的两点之间,则|b −3|+|b +4|=______.【答案与解析】1.答案:A解析:本题考查了直四棱柱、长方体、正方体之间的关系,正方体是特殊的长方体,长方体是特殊的直四棱柱,所以它们的包含关系是直四棱柱包含长方体,长方体包含正方体,本题是一道较为简单的题目.2.答案:A解析:此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.直接利用数轴得出a<0,a+b<0,进而化简得出答案.解:原式=−a−[−(a+b)]=−a+a+b=b.故选:A.3.答案:A解析:解:将380亿立方米用科学记数法表示为:3.80×1010m3.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:C解析:解:∵MF//AD,FN//DC,∠A=110°,∠C=90°,∴∠FMB=110°,∠FNB=∠C=90°,∵△BMN沿MN翻折,得△FMN,∴△BMN≌△FMN,∴∠BMN=∠FMN=12∠FMB=12×110°=55°,∠BNM=∠FNM=12∠FNM=45°,∠B=180°−∠BMN−∠BNM=80°,故选:C.根据平行线性质求出∠BMF和∠BNF,根据旋转得出全等,根据全等三角形性质得出∠BMN=∠FMN=12∠FMB=55°,∠BNM=∠FNM=12∠FNM=45°,根据三角形内角和定理求出即可.本题考查了平行线性质,全等三角形性质,翻折变换,三角形内角和定理的应用,关键是求出∠BMN 和∠BNM的度数.5.答案:A解析:解:设原来有x人参加这次植树活动,根据题意可得:180 (1+50%)x =180x−2.故选:A.利用植树的总棵数除以人数得出平均植树的棵树进而得出等式即可.此题主要考查了由实际问题抽象出分式方程,正确得出等量关系是解题关键.6.答案:A解析:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.直接利用概率公式求解即可.解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,∴这句话中任选一个汉字,这个字是“山”的概率是310.故选A.7.答案:C解析:解:A、a⃗−b⃗ ≠0,故本选项错误;B、a⃗−b⃗ =−(b⃗ −a⃗ ),故本选项错误;C、如果a⃗=b⃗ ,那么|a⃗|=|b⃗ |,故本选项正确;D、如果|a⃗|=|b⃗ |,那么a⃗不一定等于b⃗ ;故本选项错误.故选:C.根据平面向量模的定义,即可求得答案.此题考查了平面向量的知识.注意掌握向量模的定义.8.答案:A解析:解:令x=0,得A点坐标(0,mc),因为四边形ABOC为正方形,知∠AOC=45°,所以c点坐标为:(mc2,mc2),代入得:mc2=a×m2c24+mc,左右两边都除以14mc得:amc+2=0,又有ac=−2,∴m=1.故选:A.主要考正方形性质,把c点坐标求出来代入二次函数y=ax2+mc中就可以求出m了.本题结合了二次函数方程考查正方形性质,要学会综合运用.9.答案:x>5解析:解:根据题意得:x−5>0,解得,x>5.故答案是:x>5.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式的被开方数是非负数,分式有意义分母不等于0.10.答案:−2±√6解析:解:−8的立方根为−2,∵√36=6,∴6的平方根为:±√6,故答案为:−2,±√6,根据立方根与平方根的定义即可求出答案.本题考查立方根与平方根,解题的关键是正确理解立方根与平方根的定义,本题属于基础题型.11.答案:11解析:利用x2+3x+2=(x−1)2+a(x−1)+b,将原式进行化简,得出a,b的值,进而得出答案.此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a−2)x+(b−a+1)是解题关键.解:∵x2+3x+2=(x−1)2+a(x−1)+b=x2+(a−2)x+(b−a+1),。
2020年北京市顺义区初三年级二模考试初中数学数学试卷一、选择题1.13-的绝对值是〔 〕 A .3-B .3C .13D .13-2.假设分式11x x +-的值为0,那么x 的值是〔 〕 A .-1B .1C .0D .1±3.假设反比例函数的图象通过点)1,2(--M ,那么反比例函数的解析式为〔 〕 A .x y 2=B. x y 2-=C. xy 21= D.xy 21-= 4.算式44442222+++的结果是〔 〕 A .162B .48C .82D .625.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市实际人口约300万,为此他推断全市初中生人数约为12万.但市教委提供的全市初中生人数约为8万,与估量数据有专门大偏差.请你用所学的统计知识,找出其中错误的缘故是〔 〕A .样本不能估量总体B .样本不具代表性、广泛性、随机性C .市教委提供的数据有误D .推断时运算错误6.如图,AB 是⊙O 的直径,AC 是弦,假设AB=2, AC=3,那么∠AOC 的度数是 〔 〕 A .120° B .130° C .140° D .150°7.下面三张卡片上分不写有一个整式,把它们背面朝上洗匀,小明从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,那么能组成分式的概率是 〔 〕A.13B.12C.23D.568.如图是一个通过改造的台球桌面的示意图,图中4个角上的阴影部分分不表示4个入球孔.假如1个球按图中所示的方向被击中〔球能够通过多次反射,同时可不能在台球桌中间停止〕,那么该球最后将落入的球袋是〔〕A.1号袋B.2号袋C.3号袋D.4号袋二、填空题〔共4个小题,每题4分,共16分〕9.:如图,AB∥CD,CE平分∠ACD,交AB于点E,假设∠A=110°,那么∠BEC的度数是.10.如图,在△ABC中,∠A=90,分不以B、C为圆心的两个等圆外切,两圆的半径都为2cm,那么图中阴影部分的面积为cm2.11.如图,图①,图②,图③,图④……是用围棋棋子摆成的一列具有一定规律的〝山〞字.那么第n个〝山〞字中的棋子个数是.12.线段AB、CD在平面直角坐标系中的位置如下图,O为坐标原点.假设线段AB上一点P的坐标为(a,b),那么直线OP与线段CD的交点的坐标为________________.13.分解因式:322224a ab a b +-.14.解2151132x x -+-≤,并将解集在数轴上表示出来. 15.设25111x x A B x x -==---,,当x 为何值时,A 与B 的值相等? 16.先化简,再求值:2224524422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中,a 是方程2310x x -+=的根.四、解答题〔共2个小题,17小题5分,18小题6分,共11分〕 17.如图,E 、F 是菱形ABCD 的对角线BD 所在直线上两点,且DE=BF .请你以F 为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和已有的某一条线段相等.〔1〕连结 ; 〔2〕猜想: ; 〔3〕证明:18.为了爱护野生动物,某中学在全校所有学生中,对四种国家一级爱护动物的喜爱情形进行咨询卷调查.要求每位学生只选一种自己最喜爱的动物,调查结果绘制成如下未完整的统计表和统计图,请你依照图表中提供的信息,解答以下咨询题:动物名称 频数〔学生人数〕 频率 金丝猴 0.20 大熊猫10000.50藏羚羊 500 丹顶鹤 100 0.05 合计1〔1〕请把表格和统计图分不补充完整;〔2〕为了更好地爱护野生动物,请你提出一条合理的建议. 19.关于x 的方程22(1)10kx k x k +++-=有两个不相等的实数根.〔1〕求k 的取值范畴;〔2〕请选取一个你喜爱的k 值,代入方程并求出方程的根. 20.一座建于假设干年前的水库大坝的横断面为梯形ABCD ,如下图,其中背水面为AB ,现预备对大坝背水面进行整修,将坡角由45°改为30°,假设测量得AB=20米,求整修后需占用地面的宽度BE 的长.〔精确到0.1米,参考数据:2 1.414,3 1.732,6 2.449≈≈≈〕21.如图,在平面直角坐标系xOy 中,以点(3,0)A 为圆心的圆与x 轴交于原点O 和点B ,直线l 与x 轴、y 轴分不交于点C 〔-2,0〕、D 〔0,3〕. 〔1〕求出直线l 的解析式;〔2〕假设直线l 绕点C 顺时针旋转,设旋转后的直线与y 轴交于点E 〔0,b 〕,且03b <<,在旋转的过程中,直线CE 与⊙A 有几种位置关系?试求出每种位置关系时,b 的取值范畴.22.:如图,平行四边形ABCD 中, AE 、BE 、CF 、DF 分不平分∠BAD 、∠ABC 、∠BCD 、∠CDA ,BE 、DF 的延长线分不交AD 、BC 于点M 、N ,连结EF ,假设AD=7,AB=4,求EF 的长.23.:如图,在正方形ABCD 中,点G 是BC 延长线一点,连结AG ,分不交BD 、CD 于点E 、F .〔1〕求证:DCE DAE ∠=∠;〔2〕当CG=CE 时,试判定CF 与EG 之间有如何样的数量关系?并证明你的结论. 〔3〕在〔2〕的条件下,求DFFC的值.24.某校开展〝迎2018年北京奥运会〞的主题校会活动,老师派小明同学去学校邻近的超市购买笔记本作为奖品.小明选择了该超市单价为8元和4.8元的两种笔记本,他要购买这两种笔记本共40本.〔1〕假如他一共带了240元,全部用于购买奖品,那么能买这两种笔记本各多少本? 〔2〕小明依照主题校会活动的设奖情形,决定所购买单价为8元笔记本的数量要少于单价为4.8元笔记本数量的12,但又许多于单价为4.8元笔记本数量的14.假如他买了单价为8元的笔记本x 本,买这两种笔记本共花了y 元.①请写出y 〔元〕关于x 〔本〕的函数关系式,并求出自变量x 的取值范畴;②请帮小明运算一下,这两种笔记本各购买多少本时,所花的钞票最少,现在花了多少元钞票?25.在平面直角坐标系xOy 中,抛物线2y ax bx c =++通过A 〔3,0〕、B 〔5,0〕、 C 〔0,5〕三点.〔1〕求此抛物线的解析式;〔2〕设抛物线的顶点为D ,求△BCD 的面积;〔3〕假设在抛物线的对称轴上有一个动点P ,当△OCP 是腰长为5的等腰三角形时,求点P 的坐标.。
绝密★启用前北京市顺义区普通高中2020届高三毕业班下学期第二次统一练习(二模)数学试题(解析版)2020年6月一、选择题共10小题,每小题4分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|32}A x x =-<<,{3,2,0}B =--,那么AB =( ) A. {2}-B. {0}C. {2,0}-D. {2,0,2}- 【答案】C【解析】【分析】根据交集的概念,可求出集合,A B 的交集.【详解】因为集合{|32}A x x =-<<,{3,2,0}B =--,所以AB ={2,0}-. 故选:C.【点睛】本题考查集合的交集,属于基础题.2.在复平面内,复数(1)z i i =+对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】【分析】运用复数乘法的运算法则,化简复数,最后确定复数所对应的点所在的象限.【详解】2(1)1z i i z i i i =+∴=+=-+,因此复数z 对应点的坐标为(1,1)-,在第二象限,故本题选B.【点睛】本题考查了复数的乘法运算法则,以及复数对应点复平面的位置.3.下列函数中,既是偶函数,又在区间(0,)+∞上为减函数的是( )A. 2y x =-B. 12log y x =C. cos y x =D.12x y ⎛⎫= ⎪⎝⎭【答案】A【解析】【分析】结合函数的奇偶性及单调性,对四个函数逐个分析,可选出答案.【详解】由题意,选项B 、D 中两个函数是非奇非偶函数,不符合题意;对于选项A ,二次函数2y x =-,既是偶函数,又在区间(0,)+∞上为减函数,符合题意; 对于选项C ,余弦函数cos y x =是偶函数,在区间(0,)+∞上不是单调函数,不符合题意. 故选:A.【点睛】本题考查函数奇偶性及单调性的应用,考查学生的分析问题、解决问题的能力,属于基础题.4.抛物线24y x =上的点与其焦点的距离的最小值为( )A. 4B. 2C. 1D. 12【答案】C【解析】【分析】结合抛物线的定义,可将抛物线上的点到焦点的距离转化为到准线的距离,进而可求出最小值.【详解】由题意,抛物线的焦点()1,0F ,准线为1x =-,设抛物线上的动点()00,P x y , 根据抛物线的定义可知,01PF x =+,因为[)00,x ∈+∞,所以011PF x =+≥,。
北京市顺义区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点P (4,﹣3)关于原点对称的点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限2.如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E ,若∠A=40°,则∠1的度数为( )A .80°B .70°C .60°D .40°3.给出下列各数式,①2?--() ②2-- ③2 2- ④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个4.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6 B .8.23×10﹣7 C .8.23×106 D .8.23×1075.如图,已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a >b ,④4ac ﹣b 2<0;其中正确的结论有( )A .1个B .2个C .3个D .4个 6.学完分式运算后,老师出了一道题“计算:23224x x x x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的7.如图,若数轴上的点A ,B 分别与实数﹣1,1对应,用圆规在数轴上画点C ,则与点C 对应的实数是( )A.2 B.3 C.4 D.5 8.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )A.30°B.15°C.18°D.20°9.已知一次函数y=﹣12x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为()A.﹣2 B.﹣1 C.1 D.210.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查11.31-的值是()A.1 B.﹣1 C.3 D.﹣312.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则mn=______14.分解因式:x2﹣1=____.15.已知21xy=⎧⎨=⎩是方程组ax5{1bybx ay+=+=的解,则a﹣b的值是___________16.若a,b互为相反数,则a2﹣b2=_____.17.分解因式a3﹣6a2+9a=_________________.18.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在Rt ABC ∆中,8, 6,90AC BC C ==∠=︒ , AD 是CAB ∠的角平分线,交BC 于点D .(1)求AB 的长;(2)求CD 的长.20.(6分)如图所示,一艘轮船位于灯塔P 的北偏东60︒方向与灯塔Р的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.求此时轮船所在的B 处与灯塔Р的距离.(结果保留根号)21.(6分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B 级:75分﹣89分;C 级:60分﹣74分;D 级:60分以下)(1)写出D 级学生的人数占全班总人数的百分比为 ,C 级学生所在的扇形圆心角的度数为 ;(2)该班学生体育测试成绩的中位数落在等级 内;(3)若该校九年级学生共有500人,请你估计这次考试中A 级和B 级的学生共有多少人?22.(8分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为()76(120)2030mx m x x n x x -≤<⎧⎪⎨≤≤⎪⎩,为整数,为整数 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).m=,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?23.(8分)如图,已知抛物线过点A (4,0),B (﹣2,0),C (0,﹣4).(1)求抛物线的解析式;(2)在图甲中,点M 是抛物线AC 段上的一个动点,当图中阴影部分的面积最小值时,求点M 的坐标;(3)在图乙中,点C 和点C 1关于抛物线的对称轴对称,点P 在抛物线上,且∠PAB=∠CAC 1,求点P 的横坐标.24.(10分)如图,AB 是⊙O 的直径,点C 是AB 延长线上的点,CD 与⊙O 相切于点D ,连结BD 、AD .求证;∠BDC =∠A .若∠C =45°,⊙O 的半径为1,直接写出AC 的长.25.(10分)有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF 所在直线的函数解析式;(3)若线段FG ∥x 轴,则此段时间,甲机器人的速度为 米/分;(4)求A 、C 两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.26.(12分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DF AB于点F,∠BCD=2∠ABD.(1)求证:AB是☉O的切线;(2)若∠A=60°,DF=,求☉O的直径BC的长.27.(12分)先化简,再求值:先化简22211x xx-+-÷(11xx-+﹣x+1),然后从﹣2<x5合适的整数作为x的值代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.【详解】∵设P(4,﹣3)关于原点的对称点是点P1,∴点P 1的坐标为(﹣4,3),∴点P 1在第二象限.故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.2.B【解析】【分析】根据平行线的性质得到°140ABD ∠=,根据BE 平分∠ABD ,即可求出∠1的度数. 【详解】解:∵BD ∥AC ,∴°180ABD A ∠+∠=,°140ABD ∠=,∵BE 平分∠ABD , ∴°°1111407022ABD ∠=∠=⨯= 故选B .【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.3.B【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=;∴上述各式中计算结果为负数的有2个.故选B.4.B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-1. 故选B .点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.C根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误; 根据对称轴可得:-=-,则b=3a ,根据a<0,b<0可得:a>b ;则③正确;根据函数与x 轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】 本题考查二次函数的性质.能通过图象分析a ,b ,c 的正负,以及通过一些特殊点的位置得出a ,b ,c 之间的关系是解题关键.6.C【解析】 试题解析:23224x x x x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳.故选C .7.B【解析】【分析】由数轴上的点A 、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C 对应的实数.【详解】∵数轴上的点 A ,B 分别与实数﹣1,1 对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点 C 对应的实数是:1+2=3.本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.8.C【解析】【分析】∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【详解】∵正五边形的内角的度数是15×(5-2)×180°=108°,正方形的内角是90°,∴∠1=108°-90°=18°.故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.9.C【解析】【分析】根据题意得出旋转后的函数解析式为y=-12x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.【详解】∵一次函数y=﹣12x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),∴设旋转后的函数解析式为y=﹣12x﹣1,在一次函数y=﹣12x+2中,令y=1,则有﹣12x+2=1,解得:x=4,即一次函数y=﹣12x+2与x轴交点为(4,1).一次函数y=﹣12x﹣1中,令y=1,则有﹣12x﹣1=1,解得:x=﹣2,即一次函数y=﹣12x﹣1与x轴交点为(﹣2,1).∴m=242-+=1,故选:C.【点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.【详解】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选D .11.B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B .【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,12.B【解析】【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m 3÷(﹣3m 2)=[6÷(﹣3)](m 3÷m 2)=﹣2m . 故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12【解析】【分析】先确定线段BC 过的面积:圆环的面积,作辅助圆和弦心距OD ,根据已知面积列等式可得:S=πOB 2-πOC 2=(m 2-n 2)π,则OB 2-OC 2=m 2-n 2,由勾股定理代入,并解一元二次方程可得结论.如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=12AB=2m n+,CD=AC-AD=m-2m n+=2m n-,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=5n n ±,∵m>0,n>0,∴m=52n n,∴152mn+=,故答案为152+.【点睛】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.14.(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.15.4;试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,16.1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.17.a(a﹣3)1.【解析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案为a(a﹣3)1.18.65°【解析】【分析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75°∴∠α=∠2−∠3=140°−75°=65°故答案为:65°.此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)10;(2)CD 的长为83【解析】【分析】(1)利用勾股定理求解;(2)过点D 作DE AB ⊥于E ,利用角平分线的性质得到CD=DE ,然后根据HL 定理证明 Rt ACD Rt AED ∆≌V ,设CD DE x ==,根据勾股定理列方程求解.【详解】解:(1) Q 在Rt ABC ∆中, 8 , 690AC BC C ==∠=︒,10AB ∴===;(2 )过点D 作DE AB ⊥于E ,AD Q 平分90BAC C ∠∠=︒,CD DE ∴=,在Rt ACD V 和Rt AED ∆中AD AD CD ED =⎧⎨=⎩( )Rt ACD Rt AED HL ∴∆V ≌,8AE AC ∴==10AB =Q1082BE AB AE ∴=-=-=.设CD DE x ==,则6BD x =-在Rt BDE ∆中, 222DE BE BD +=()22226x x +=- 解得83x = 即CD 的长为83【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理.20.406海里【解析】【分析】过点P 作PC AB ⊥,则在Rt △APC 中易得PC 的长,再在直角△BPC 中求出PB .【详解】解:如图,过点P 作PC AB ⊥,垂足为点C.∴30APC ︒∠=,45BPC ︒∠=,80AP =海里.在Rt APC ∆中,cos PC APC AP∠=, ∴3cos 804032PC AP APC =⋅∠≡⨯=. 在Rt PCB ∆中,cos PC BPC PB∠=, ∴4036cos cos 45PC PB BPC ︒===∠. ∴此时轮船所在的B 处与灯塔P 的距离是406【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.(1)4%;(2)72°;(3)380人【解析】【分析】(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格.【详解】解:(1)九年级(1)班学生人数为13÷26%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为10÷50×360°=72°,故答案为72°;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一).22.(1)m=﹣12,n=25;(2)18,W最大=968;(3)12天.【解析】【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值;(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得32=12m﹣76m,解得m=12 ,当第26天的售价为25元/千克时,代入y=n,则n=25,故答案为m=12-,n=25;(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,当1≤x<20时,W=(4x+16)(12-x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,∴当x=18时,W最大=968,当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,∵28>0,∴W随x的增大而增大,∴当x=30时,W最大=952,∵968>952,∴当x=18时,W最大=968;(3)当1≤x<20时,令﹣2x2+72x+320=870,解得x1=25,x2=11,∵抛物线W=﹣2x2+72x+320的开口向下,∴11≤x≤25时,W≥870,∴11≤x<20,∵x为正整数,∴有9天利润不低于870元,当20≤x≤30时,令28x+112≥870,解得x≥271 14,∴27114≤x≤30∵x为正整数,∴有3天利润不低于870元,∴综上所述,当天利润不低于870元的天数共有12天.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.23.(1)y=x2-x-4(2)点M的坐标为(2,-4)(3)-或-【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM-(m-2)2+12. 当m=2时,四边形OAMC面积最大,此时阴影部分面积最小;(3) 抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C 1作C1D⊥AC于D,则CC1=2.先求AC=4,CD=C1D=,AD=4-=3;设点P,过P作PQ垂直于x轴,垂足为Q. 证△PAQ∽△C 1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).【详解】(1)抛物线的解析式为y=(x-4)(x+2)=x2-x-4.(2)连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM=× 4m+× 4=-m2+4m+8=-(m-2)2+12.当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=4,CD=C 1D=,AD=4-=3,设点P,过P作PQ垂直于x轴,垂足为Q.∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴,即,化简得=(8-2n),即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-,或n=-,或n=4(舍去),∴点P 的横坐标为-或-.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.24.(1)详见解析;(2)1+2【解析】【分析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结OD.如图,CDQ与Oe相切于点D,OD CD,∴⊥2BDC90∠∠∴+︒=,ABQ是Oe的直径,ADB90∠∴︒=,即1290∠∠+︒=,1BDC∠∠∴=,OA ODQ=,1A∠∠∴=,BDC A∠∠∴=;(2)解:在Rt ODCV中,C45∠︒Q=,2212OC ODAC OA OC∴==∴=+=+.【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.25.(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.【解析】【分析】(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+70﹣95x=21,解得,x=1.2,前2分钟﹣3分钟,两机器人相距21米时,由题意得,35x﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,,解得,则直线GH的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【点睛】本题考查了一次函数的应用,读懂图像是解题关键..26.(1)证明过程见解析;(2)3【解析】【分析】(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.【详解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足为B又∵CB为直径∴AB是⊙O的切线.(2)∵∠A=60°,3∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB ∠A=∠A∴△ADF∽△ACB∴AF DF AB CB即14CB=解得:CB=考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定27.﹣1x ,﹣12. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后在-2< x 中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x 的值可以取-2、2中的任意一个.【详解】原式=2x-11(1)(1)x+1(1)1x x x x x ---+÷-+()()=2x-1x+1x+1x-1-x +1⋅=x-1-x x-1()=1x-,∵-2< x (x 为整数)且分式要有意义,所以x +1≠0,x -1≠0,x≠0,即x≠-1,1,0,因此可以选取x =2时,此时原式=-12. 【点睛】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x 的取值范围,从而再选取x =2得到答案.。
2020-2021学年北京市顺义区中考⼆模数学试题及答案解析初三第⼆次统⼀练习数学试卷⼀、选择题(本题共30分,每⼩题3分)下⾯各题均有四个选项,其中只有⼀个..是符合题意的. 1.25-的倒数是()A .52-B .52C .25-D .252.春节,顺义区相关部门做了充分的准备⼯作,确保了消费品市场货源充⾜.据统计,春节⼀周长假期间共实现销售收⼊约3.284亿元,同⽐增长4.8%.将“3.284亿”⽤科学记数法表⽰正确的是A .83.28410?B .732.8410? C .73.28410? D .93.28410? 3.若分式21x x --的值为0,则x 的值为 A . 1或2 B .2 C .1 D .0 4.某品牌吹风机抽样检查的合格率为99%,则下列说法中正确的是()A .购买100个该品牌的吹风机,⼀定有99个合格B .购买1000个该品牌的吹风机,⼀定有10个不合格C .购买10个该品牌的吹风机,⼀定都合格D .即使购买1个该品牌的吹风机,也可能不合格 5.校⾜球队10名队员的年龄情况如下:年龄(单位:岁) 12 13 14 15 ⼈数4321A .12, 13.1C .13,13.1D .13,136.某中学的铅球场地如图所⽰,已知半径OA=10⽶,?2AB π=⽶,则扇形OAB 的⾯积为 A. π平⽅⽶ B. 5π平⽅⽶ C. 10π平⽅⽶ D. 20π平⽅⽶7.如图,在数轴上,点A 表⽰的数是13-,点B ,C 表⽰的数是两个连续的整数,则这两个整数为A .4和5B . -5和-4C .3和4D .-4和-38.在平⾏四边形、正⽅形、正五边形、正六边形四个图形中是中⼼对称图形的个数是 A .1 B .2 C .3 D .4AB O-139.如图,A ,B ,C ,D 为⊙O 上四点,若∠BOD=110o,则∠A 的度数是A . 110oB . 115oC .120oD .125o10.如图,⼤⼩两个正⽅形在同⼀⽔平线上,⼩正⽅形从图①的位置开始,匀速向右平移,到图③的位置停⽌运动.如果设运动时间为x ,⼤⼩正⽅形重叠部分的⾯积为y ,则下列图象中,能表⽰y 与x 的函数关系的图象⼤致是C.B.A.D.⼆、填空题(本题共18分,每⼩题3分) 11.计算:84a a ÷= .12.分解因式:213.如图,B 为地⾯上⼀点,测得点B 到树底部C 的距离为10⽶,在点B 处放置⼀个1⽶⾼的测⾓仪BD ,并测得树顶A 的仰⾓为53°,图③图②图①D ABC则树⾼AC 约为⽶(精确到0.1⽶).(参考数据:cos53°≈0.60,sin53°≈0.80,tan53°≈1.33)14.如果关于x 的⽅程x 2﹣2x+k=0的⼀个根是-1,则另⼀个根是.15.乘坐某种出租汽车,当⾏驶路程⼩于或等于3千⽶时,乘车费⽤都是10元(即起步价10元),当⾏驶路程⼤于3千⽶时,超过3千⽶的部分每千⽶收费2元,若⼀次乘坐这种出租车⾏驶4千⽶,则应付车费元;若⼀次乘坐这种出租车付费20元,则乘车路程是千⽶.16.如图,在平⾯直⾓坐标系xOy 中,点1A ,2A ,3A ,…,n A在x 轴的正半轴上,且1=2OA ,212OA OA =,322OA OA =,…12n n OA OA -=,点1B ,2B ,3B ,…,n B 在第⼀象限的⾓平分线l 上,且11A B ,22A B ,…,n n A B 都与射线l 垂直,则1B 的坐标是_ _____, 3B 的坐标是_ _____,n B 的坐标是_ _____.三、解答题(本题共30分,每⼩题5分)17.计算:2113tan 30+3-??--o .18.如图,AB ∥CD ,AB=BC ,∠A=∠1,求证:BE=CD .19.已知25x x -=,求代数式2(2)(32)x x x +-+的值.1EAC20.解⽅程:14122=---x x x .21.如图,在平⾯直⾓坐标系xOy 中,双曲线my x =与直线22y x =-+交于点A (-1,a ).(1)求a ,m 的值;(2)点P 是双曲线my x=上⼀点,且OP 与直线 22y x =-+平⾏,求点P 的坐标.22.列⽅程或⽅程组解应⽤题:随着市民环保意识的增强,烟花爆⽵销售量逐年下降.某销售点2012年销售烟花爆⽵2 000箱,2014年销售烟花爆⽵为1 280箱.求2012年到2014年烟花爆⽵销售量的年平均下降率.四、解答题(本题共20分,每⼩题5分)23.如图,四边形ABCD 为矩形,DE ∥AC ,且DE=AB ,过点E 作AD 的垂线交AC 于点F .(1)依题意补全图,并证明四边形EFCD 是菱形;(2)若AB=3,BC=DE 与AC 间的距离.ABCDE24.随着⽣活质量的提⾼,⼈们的消费⽔平逐年上升,⼩明把⾃⼰家2010,2012,2014年的消费数据绘制统计图表如下:年⼈均各项消费⽀出统计表(1)a= ;并补全条形统计图;(2)我们把“⾷品⽀出总额占个⼈消费⽀出总额的百分数”叫做恩格尔系数,请分别求出⼩明家2010,2012,2014年的恩格尔系数,并根据变化情况谈谈你的看法.25.如图,△ABC 中,AB=AC ,点D 为BC 上⼀点,且AD=DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连结DE .C,AC=6,求⊙O 的直径.C年⼈均消费⽀出总额条形统计图26.如图,在平⾯直⾓坐标系xOy 中,矩形ABCD 各边都平⾏于坐标轴,且A (-2,2),C (3,-2).对矩形ABCD 及其内部的点进⾏如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k >)个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E .(1)若a=2,b=-3,k=2,则点D 的坐标为,点'D 的坐标为;(2)若'A (1,4),'C (6,-4),求点'E 的坐标.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知关于x 的⽅程()2230x m x m +-+-=.(1)求证:⽅程()2230x m x m +-+-=总有两个实数根;(2)求证:抛物线()223y x m x m =+-+-总过x 轴上的⼀个定点;(3)在平⾯直⾓坐标系xOy 中,若(2)中的“定点”记作A抛物线()223y x m x m =+-+-与x 轴的另⼀个交点为B ,与y 轴交于点C ,且△OBC 的⾯积⼩于或等于8,求m 的取值范围.28.如图,△ABC 中,∠BAC=90°,AB=AC ,边BA 绕点B 顺时针旋转α⾓得到线段BP ,连结PA ,PC ,过点P 作PD ⊥AC 于点D .(1)如图1,若α=60°,求∠DPC 的度数;(2)如图2,若α=30°,直接写出∠DPC 的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC 的度数.图3PCAB DD图2图1ABPCBC29.如图,在平⾯直⾓坐标系xOy 中,抛物线223y x bx c =-++与x 轴交于A ,B 两点,其中B (6,0),与y 轴交于点C (0,8),点P 是x 轴上⽅的抛物线上⼀动点(不与点C 重合).(1)求抛物线的表达式;(2)过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,点E 关于直线PC 的对称点为'E ,若点'E 落在y 轴上(不与点C 重合),请判断以P ,C ,E ,'E 为顶点的四边形的形状,并说明理由;(3)在(2)的条件下直接写出点P 的坐标.数学答案⼀、选择题(本题共30分,每⼩题3分)下⾯各题均有四个选项,其中只有⼀个..是符合题意的.题号 1 2 3 4 5 6 7 8 9 10 选项AABDBCDCDCy xyx备⽤图AOBCPBAOC11.4a ; 12.()221m -; 13.14.3; 14.3; 15.12,8;(第⼀空1分第⼆空2分)16. 1A (1,1),3A (4,4),11n n n A --(2,2).(每空1分)三、解答题(本题共30分,每⼩题5分)17.解:21133tan 30+3-??--o3139=--+…………...4分(其中第⼀、三项化简各1分,第⼆项化简2分)8=…………………………………………………………………………………....5分18.证明:∵AB ∥CD ,∴∠C=∠ABC .…………………………....1分⼜∵AB=BC ,∠A=∠1,……………………..3分∴△ABE ≌△BCD ,………………..……...4分∴BE=CD .………………………………....5分 19.解:2(2)(32)x x x +-+224432x x x x =++--…………………………………………......2分(每项1分) 24x x =-+……………………………………………………………….……......3分∵25x x -=,∴原式24x x =-+54=-+1=-.………………………......5分 20.解:()2214x x x +-=-…………………………………………………....2分22214x x x +-=-23x =-32x =-………………………………………………………………..…….....3分1EACD经检验可知32x =-是原⽅程的根,…………………………….…...……...4分∴原⽅程的根是3x =-.…………………………………………….…..……....5分 21.解:(1)∵点A 的坐标是(-1,a ),在直线22y x =-+上,∴a=4,…………………………………………………………………………………........1分∴点A 的坐标是(-1,4),代⼊反⽐例函数my x=,∴m=-4.…………………………………………………………………………………......2分(2)∵OP 与直线22y x =-+平⾏,∴OP 的解析式为2y x =-, …………………………………………………………......3分∵点P 是双曲线4y x =-上⼀点,∴设点P 坐标为(x, 4x-),代⼊到2y x =-中,∴4=2x x--,.......................................................................................................................4分∴x = ∴点P 的坐标为-或(.………………………………..………......5分22.解:设2012年到2014年烟花爆⽵销售量的年平均下降率为x .…………….....1分依题意可列:()2200011280x -=…………………………………………………......3分解得0.2x =……………………………………………………………………………......4分答:2012年到2014年烟花爆⽵销售量的年平均下降率为20%.…………………......5分四、解答题(本题共20分,每⼩题5分)23.画图………………………………………………………………………1分(1)证明:∵四边形ABCD是矩形,∴∠ADC=90o,CD=AB,∵EF⊥AD,∴∠EHD=90o,∴∠EHD=∠ADC,∴EF∥CD,∴四边形EFCD是平⾏四边形,……………......2分⼜∵DE=AB,∴DE=CD,∴四边形EFCD是菱形.……………………......3分(2)解:过点D作DG⊥AC于G.在Rt△ABC中,A B=3,BC=33,∴3tan333ACB∠==,CD=3,∴∠ACB=30o,……………………………………......4分∴∠1=60o,HEDCBAFH1GFAB CDE∴在Rt△DCG中,CD=3,333sin1322 DG CD=?∠=?=,∴平⾏线DE与AC间的距离是332.…………......5分24.解:(1)5200;………………………….…......1分补图……………………………………..3分(2)0.40,0.35,0.30.………………………........4分说明恩格尔系数越⼩消费⽔平越⾼..................5分25.(1)证明:∵AB=AC,AD=DC,∴∠1=∠C=∠B,..................................................1分⼜∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,∴AC是⊙O的切线............................................2分(2)解:过点D作DF⊥AC于点F,∵DA=DC,AC=6,∴CF=12AC=3,..................................... ............3分∵4sin5E=,∴4sin5C=,∴在Rt△DFC中,DF=4,DC=5,∴AD=5,∵∠ADE =∠DFC=90°,∠E =∠C,F1OEDAB C160001300020000x201420122010∴△ADE ∽△DFC ,.............................................4分∴AD DFAE DC=,∴545AE =,∴AE=254,∴⊙O 的直径为254.....................5分 26.解:(1)D (3,2),'D (8,-6),..................................................................................2分(2)依题可列:21,3 6.a k a k -+=??+=?则a=1,k=3,2b=4,b=2,.........................................................4分(a ,b ,k 求出⼀个给1分)∵点E (2,1),∴'E (5,2)......................................................................................................5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)24b ac -=()()2 243m m ---........................................................1分 =244412m m m -+-+ =2816m m -+ =()24m -∵()240m -≥,∴⽅程()2230x m x m +-+-=总有两个实数根...............................................2分(2)()21,224m mx-±-2m m-±-................................................3分∴11x=-,23x m=-+,∴抛物线()223y x m x m=+-+-总过x轴上的⼀个定点(-1,0).................4分(3)∵抛物线()223y x m x m=+-+-与x轴的另⼀个交点为B,与y轴交于点C,∴B(3-m,0),C(0, m-3),...................................................................................5分∴△OBC为等腰直⾓三⾓形,∵△OBC的⾯积⼩于或等于8,∴OB,OC⼩于或等于4,∴3-m ≤4或m-3 ≤4,.......................................................................................6分∴m≥-1或m ≤7.∴-1≤m≤7且3m≠.............................................................................................7分28.解:(1)∵边BA绕点B顺时针旋转α⾓得到线段BP,∴BA= BP,∵α=60°,∴△ABP是等边三⾓形,..................................1分∴∠BAP=60o,AP= AC,⼜∵∠BAC=90°,∴∠PAC=30o,∠ACP=75o,∵PD⊥AC于点D,∴∠DPC=15o.....................................................................2分APCBD(2)结论:∠DPC=75o...................................................3分(3)画图.............................................................................4分过点A作AE⊥BP于E.∴∠AEB=90o,∵∠ABP=150°,∴∠1=30o,∠BAE=60o,⼜∵BA= BP,∴∠2=∠3=15o,∴∠PAE=75o,∵∠BAC=90°,∴∠4=75o,∴∠PAE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP =90o,∴△APE≌△APD,..............................................................5分∴AE= AD,在Rt△ABE中,∠1=30o,∴12AE AB=,⼜∵AB=AC,∴1122AE AD AB AC ===,∴AD=CD,⼜∵∠ADP=∠CDP=90o,∴△ADP≌△CDP,.............................................................6分4DBACP∴∠DCP=∠4=75o,∴∠DPC=15o........................................................................7分另法:作平⾏,构造平⾏四边形.29.解:(1)∵点C (0,8)在抛物线223y x bx c =-++上,∴8c =,................................................................................................................................1分⼜∵B (6,0)在抛物线2283y x bx =-++上,∴02468b =-++,∴83b =,∴抛物线的表达式为228833y x x =-++.......................................................................2分(2)结论:以P ,C ,E ,'E 为顶点的四边形为菱形...............................................3分证明:∵E 和'E 关于直线PC 对称,∴∠'E CP =∠ECP ,'EP E P =,'EC E C =,⼜∵PE ∥y 轴,∴∠EPC=∠'E CP =∠ECP ,∴EP=EC ,..........................................................................................................................5分EA PCBD∴''EC E C EP E P ===,∴四边形'E CEP 为菱形.................................................................................................6分(3)∵B (6,0),C (0,8),∴BCy x =-+.设228,833P x x x ??-++ ,则4,83E x x ??-+,∴PE 的长为228488333x x x-++--+ ? ?????=2243x +x -,过点E 作EF ⊥y 轴于点F ,∴△CFE ∽△COB ,∴35EF CE =,∴53CE EF =,即53CE x =.由PE=EC 得225433x +x x -=,解得72x =,∴点P 的坐标为755,26?? ???.................................................8分(不需要过程,结论正确给2分)。
2020年北京市顺义区中考数学仿真模拟试卷一.选择题(共8小题,满分16分,每小题2分)1.直角三角板和直尺如图放置,若∠1=25°,则∠2的度数为()A.50°B.45°C.40°D.35°2.﹣的倒数是()A.﹣B.C.﹣D.3.甲、乙、丙、丁四名工人一天中生产零件的情况如图所示,每个点的横、纵坐标分别表示该工人一天中生产I型、Ⅱ型零件数,则四名工人中日生产零件总数最大的是()A.甲B.乙C.丙D.丁4.若代数式[2x3(2x+1)]÷(2x2)与x(1﹣6x)的值互为相反数,则x的值()A.0B.C.4D.5.如图,正五边形ABCDE绕点A旋转了α°,当α=36°时,则∠1=()A.72°B.108°C.144°D.120°6.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.B.C.D.7.关于数据3,﹣2,﹣1,0,5的说法正确的是()A.平均数为﹣1B.中位数为1C.众数为5D.方差为6.88.如图,已知平行四边形ABCD中,AB=BC,点M从点D出发,沿D→C→A以1cm/s 的速度匀速运动到点A,图2是点M运动时,△MAB的面积y(cm2)随时间x(s)变化的关系图象,则边AB的长为()A.B.C.D.2二.填空题(共8小题,满分16分,每小题2分)9.分解因式:9y﹣x2y=.10.若(x+2)(x﹣6)=x2+px+q,则p+q=.11.比较大小:2(填“>”或“<”或“=”)12.如图,AB为⊙O的弦,半径OC交AB于点D,AD=DB,OC=5,CD=2,则AB长为.13.如图,在△ABC中,∠C=90°,∠A=30°,AC=2,则点C到斜边AB的距离是.14.如图,锐角△ABC中,∠A=45°,AB=8,BC=10,则BC边上的高为.15.在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为.16.如图,将一个8cm×16cm智屏手机抽象成一个的矩形ABCD,其中AB=8cm,AD=16cm,然后将它围绕顶点A逆时针旋转一周,旋转过程中A、B、C、D的对应点依次为A、E、F、G,则当△ADE为直角三角形时,若旋转角为α(0<α<360°),则α的大小为.三.解答题(共12小题,满分68分)17.计算:18.解不等式+1≥.并把此不等式的解表示在数轴上.19.已知:关于x的方程x2﹣4mx+4m2﹣1=0(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,腰BC=5,另外两条边是方程x2﹣4mx+4m2﹣1=0的两个根,求此三角形的周长.20.小明在作线段AB的垂直平分线时,是这样操作的:如图,分别以点A,B为圆心,以大于AB的定长a为半径画弧,两弧相交于C,D,则直线CD为所求.根据他的作图方法可知四边形ADBC一定是菱形吗?试说明理由.21.若平面内两点P1(x1,y2),P2(x2,y2),其两点间的距离P1P2=.例如:已知A(3,1),B(5,2),则这两点间的距离AB=.已知A(3,1),B(5,2),C(4,4).(1)聪明的你能判定△ABC的形状吗?并说明理由.(2)若以点A、B、C、D为顶点的四边形是平行四边形时,请直接写出点D的坐标.22.如图所示为某个月中不同牌子的私家车的销量统计:(1)哪个牌子的销量最佳?(2)H牌的销量占总销量的百分比是多少?(3)利用一象形图表示这些数据.23.如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=6,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图②,连接OD交于点G.若=,求cos E的值.24.如图,在△ABC中,AE平分∠BAC交BC于点E,D是AB边上一动点,连接CD交AE于点P,连接BP.已知AB=6cm,设B,D两点间的距离为xcm,B,P两点间的距离为y1cm,A,P两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y2,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0123456y1/cm 2.49 2.64 2.88 3.25 3.80 4.65 6.00y2/cm 4.59 4.24 3.80 3.25 2.510.00(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象:(3)结合函数图象,回答下列问题:①当AP=2BD时,AP的长度约为cm;②当BP平分∠ABC时,BD的长度为cm.25.矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,点E的坐标为.(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求BG的长度.26.如图①,直线l:y=mx+n(m<0,n>0)与x、y轴分别相交于A、B两点,将△AOB 绕点O逆时针旋转90°得到△COD,过点A、B、D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l 表示的函数解析式为.(2)求P的对称轴(用含m、n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P 的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标.27.如图1,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.(1)当∠BAM=°时,AB=2BM;(2)请添加一个条件:,使得△ABC为等边三角形;①如图1,当△ABC为等边三角形时,求证:CN+CM=AC;②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(△ABC仍为等边三角形),请写出此时线段CN、CM、AC满足的数量关系,并证明.28.如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.(1)填空:AC=;∠F=.(2)当BD=DE时,证明:△ABC≌△EAF.(3)△EAF面积的最小值是.(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围.参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠3=∠1,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=25°,∴∠2=35°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.2.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,求解即可.【解答】解:﹣的倒数是﹣,故选:A.【点评】此题主要考查了倒数的定义,解决本题的关键是正确若两个数的乘积是1,我们就称这两个数互为倒数.3.【分析】根据图象判断甲、乙、丙、丁四名工人的横、纵坐标的大小以及它们的和的大小即可.【解答】解:四名个人中,丙的横、纵坐标的和最大,即日生产零件总数最大,故选:C.【点评】本题考查了坐标和图形的性质,数形结合是解题的关键.4.【分析】直接利用整式的混合运算法则化简进而化简得出答案.【解答】解:∵[2x3(2x+1)]÷(2x2)与x(1﹣6x)的值互为相反数,∴[2x3(2x+1)]÷(2x2)+x(1﹣6x)=0,则(4x4+2x3)÷2x2+x﹣6x2=0,故2x2+x+x﹣6x2=0,即﹣4x2+2x=0,则x1=0(不合题意舍去),x2=.故选:B.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.【分析】根据旋转的性质以及补角的定义解答即可.【解答】解:如图所示:由旋转的性质可得∠2=α=36°,∴∠1=180°﹣∠2=144°.故选:C.【点评】本题考查了多边形内角与外角、补角的性质以及旋转的性质.解题的关键是掌握旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6.【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【解答】解:设这个队胜x场,负y场,根据题意,得.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.7.【分析】根据平均数、中位数、众数以及方差的计算法则进行计算即可.【解答】解:平均数为(3﹣2﹣1+0+5)÷5=1,把数据3,﹣2,﹣1,0,5按从小到大排列为﹣2,﹣1,0,3,5,中位数为0,众数为3,﹣2,﹣1,0,5,方差为[(3﹣1)2+(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(5﹣1)2]=6.8.故选:D.【点评】本题考查了平均数,中位数,众数以及方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;方差是用来衡量一组数据波动大小的量.8.【分析】由图象可知,当M从点D运动到C时,△MAB的面积不变为a,所以CD=a,AB=BC=a,S=a,当M从点C运动到A时,△MAB的面积逐渐减小,一直到0,△MAB所以AC=a+﹣a=,于是连接BD,与AC交于点O,由AB=BC,可知平行四边形ABCD为菱形,得到AC⊥BD,AO=CO==,BO==a,得,即,得a,由S△MAB=.【解答】解:由图象可知,当M从点D运动到C时,△MAB的面积不变为a,=a,∴CD=a,AB=BC=a,S△MAB当M从点C运动到A时,△MAB的面积逐渐减小,一直到0,∴AC=a+﹣a=,连接BD,与AC交于点O,∵AB=BC,∴平行四边形ABCD为菱形,∴AC⊥BD,AO=CO==,BO=,=a,∵S△MAB∴,即,化简,得,解得a=或(舍去).∴AB的长为.故选:A.【点评】本题考查了动点问题的函数图象,正确理解函数图象的意义是解题的关键.二.填空题(共8小题,满分16分,每小题2分)9.【分析】直接提取公因式y,再利用平方差公式分解因式即可.【解答】解:9y﹣x2y=y(9﹣x2)=y(3﹣x)(3+x).故答案为:y(3+x)(3﹣x).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.10.【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p 与q的值,再代入计算即可求解.【解答】解:(x+2)(x﹣6)=x2﹣4x﹣12=x2+px+q,可得p=﹣4,q=﹣12,p+q=﹣4﹣12=﹣16.故答案为:﹣16.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.11.【分析】根据2=<即可得出答案.【解答】解:∵2=<,∴>2,故答案为:>.【点评】本题考查了实数的大小比较,关键是得出2=<,题目比较基础,难度适中.12.【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【解答】解:连接OB,如图所示:∵⊙O的半径为5,CD=2,∴OD=5﹣2=3.∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD===4,∴AB=2BD=8,故答案为:8.【点评】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.【分析】作CD⊥AB于D,利用含30°的直角三角形的性质解答即可.【解答】解:作CD⊥AB于D,∵在△ABC中,∠C=90°,∠A=30°,CD⊥AB于D,∴∠ADC=90°,∠A=30°,∵AC=2,∴CD=1,即点C到斜边AB的距离是1,故答案为:1【点评】本题考查含30°的直角三角形的性质,在含30°的直角三角形中,斜边是30°所对的边的2倍.14.【分析】作BD⊥AC于点D,AH⊥BC于点H,根据等腰直角三角形的性质、勾股定理分别求出AD、BD,根据勾股定理求出CD,根据三角形的面积公式列式计算即可.【解答】解:作BD⊥AC于点D,AH⊥BC于点H,在Rt△ABD中,∠BAC=45°,∴DA=DB,由勾股定理得,DA2+DB2=AB2,即DA2+DB2=(8)2,解得,DA=DB=8,在Rt△BCD中,CD===6,∴AC=AD+CD=14,由三角形的面积公式可得,×AC×BD=×BC×AH,即×14×8=×10×AH,解得,AH=,故答案为:.【点评】本题考查的是勾股定理、等腰直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.15.【分析】根据概率公式列方程计算.【解答】解:根据题意得,解得n=8,经检验:n=48是分式方程的解,故答案为:8.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16.【分析】由折叠的性质可得AE=AB=8cm,∠EAB=α,利用两种情况讨论,由旋转的性质可求解.【解答】解:由折叠可得AE=AB=8cm,∠EAB=α,若∠AED=90°时,∵cos∠DAE=∴∠DAE=60°,当AE在AD右侧时,∠EAB=∠DAB﹣∠DAE=30°,当AE在AD左侧时,∠EAB=∠DAB+∠DAE=150°,∴α=30°或150°若∠DAE=90°时,∴∠EAB=∠DAB+∠DAE=180°,故答案为:30°或150°或180°【点评】本题考查了旋转的性质,矩形的性质,利用分类讨论思想解决问题是本题的关键.三.解答题(共12小题,满分68分)17.【分析】直接利用特殊角的三角函数值以及负整数指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣3+1﹣9=1﹣3+1﹣9=﹣10.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】直接去分母进而解不等式,再在数轴上表示出解集即可.【解答】解:去分母得:3(x﹣1)+6≥2(2x+1),去括号得:3x﹣3+6≥4x+2,移项合并同类项得:﹣x≥﹣1,故不等式的解集为:x≤1,在数轴上表示不等式的解集,如图所示:.【点评】此题主要考查了一元一次不等式的解法,正确解不等式是解题关键.19.【分析】(1)根据判别式即可求出答案.(2)由题意可知:该方程的其中一根为5,从而可求出m的值,最后根据m的值即可求出三角形的周长;【解答】解:(1)由题意可知:△=16m2﹣4(4m2﹣1)=4>0,∴该方程有两个不相等的实数根;(2)设该方程的两根分别是a与b,由题意可知:a=5,由根与系数的关系可知:a+b=4m,ab=4m2﹣1,∴5+b=4m,5b=4m2﹣1,解得:m=2或m=3,当m=2时,∴b=3,∵3+5>5,∴该三角形的周长为:5+5+3=13,当m=3时,∴b=7,∵5+5>7,∴该三角形的周长为5+5+7=17.【点评】本题考查一元二次方程,解题的关键是熟练运用根与系数的关系,本题属于中等题型.20.【分析】根据四条边都相等的四边形是菱形即可得四边形ADBC一定是菱形.【解答】解:根据他的作图方法可知四边形ADBC一定是菱形,理由如下:∵分别以点A,B为圆心,以大于AB的定长a为半径画弧,两弧相交于C,D,∴AD=AC=BD=BC=a,∴四边形ADBC是菱形.【点评】本题考查了作图﹣复杂作图、线段垂直平分线的性质、菱形的判定,解决本题的关键是掌握线段垂直平分线的性质.21.【分析】(1)由勾股定理和勾股定理的逆定理即可得出结论;(2)分别以AB、BC、AC为对角线画平行四边形,由平移的性质可得到D点坐标.【解答】解:(1)能判定△ABC的形状,△ABC是等腰直角三角形;理由如下:由题意得:AB=,BC==,AC==,∴AB=BC,AB2+BC2=AC2,∴△ABC是等腰直角三角形;(2)如图所示:当AB为对角线时,AD∥BC,∵A(3,1),B(5,2),C(4,4),∴把点B向下平移3个单位,再向左平移1个单位,得到点D,∴点D的坐标为(4,﹣1);当BC为对角线时,AB∥CD,∵A(3,1),B(5,2),C(4,4),∴把点B向上平移3个单位,再向右平移1个单位,得到点D',∴点D'的坐标为(6,5);当AC为对角线时,AD∥BC,∵A(3,1),B(5,2),C(4,4),∴把点A向上平移2个单位,再向左平移1个单位,得到点D'',∴点D''的坐标为(2,3);综上所述,点D的坐标为(4,﹣1)或(6,5)或(2,3).【点评】本题考查了平行四边形的判定、坐标与图形性质、勾股定理以及勾股定理的逆定理等知识;熟练掌握平行四边形的判定以及勾股定理是解题的关键.22.【分析】(1)根据统计图中的数据以及统计图的高低即可看出;(2)首先计算总售量,然后计算百分比即可;(3)能够形象直观地表示这些数据即可.【解答】解:(1)T牌子的销售量是60,最大,所以T牌子的销售量最佳;(2)H牌的销售量是50,占总售量60+50+40+30=180的为50÷180≈28%;(3).【点评】读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.【分析】(1)连结OC,如图1,根据切线的性质得OC⊥DE,而AD⊥DE,根据平行线的性质得OC∥AD,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,所以AC平分∠DAB;(2)如图1,由B为OE的中点,AB为直径得到OB=BE=3,OC=3,在Rt△OCE中,由于OE=2OC,根据含30度的直角三角形三边的关系得∠OEC=30°,则∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再根据含30度的直角三角形三边的关系得OF=OC=,再由勾股定理即可求出CF的长度;(3)连结OC,如图2,先证明△OCG∽△DAG,利用相似的性质得==,再证明△ECO∽△EDA,利用相似比得到==,设⊙O的半径为R,OE=x,代入求得OE=3R,最后在Rt△OCE中,根据余弦的定义求解.【解答】(1)证明:连结OC,如图1,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)∵直径AB=6,B为OE的中点,∴OB=BE=4,OC=3,在Rt△OCE中,OE=2OC,∴∠OEC=30°,∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=,∴由勾股定理可知:CF=;(3)连结OC,如图2,∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,∴△ECO∽△EDA,∴==,设⊙O的半径为R,OE=x,∴=,解得OE=x=3R,在Rt△OCE中,由勾股定理可知:CE=2R cos∠E==.【点评】本题考查相似三角形,涉及角平分线的判定,相似三角形的性质与判定,勾股定理等知识,综合程度较高,需要学生灵活运用所学知识.24.【分析】(1)用光滑的曲线连接y2图象现有的点,在图象上,测量出x=5时,y的值即可;(2)描点连线即可绘出函数图象;(3)①当AP=2BD时,即y2=2x,在图象上画出直线y=2x,该图象与y2的交点即为所求;②从表格数据看,当x=3时,y1=y2=3.25,故当BP平分∠ABC时,此时点P是△ABC的内心,故点D在AB的中点,即可求解.【解答】解:(1)用光滑的曲线连接y2图象现有的点,在图象上,测量出x=5时,y =1.35(答案不唯一);故答案为:1.35,注:y=1.35是估计的数值,故答案不唯一;(2)绘制后y1、y2图象如下:(3)①当AP=2BD时,即y2=2x,在图象上画出直线y=2x,该图象与y2的交点即为所求,即图中空心点所示,空心点的纵坐标为2.88,故答案为2.88;②从表格数据看,当x=3时,y1=y2=3.25,即点D在AB中点时,y1=y2,即此时点P在AB的中垂线上,则点C在AB的中垂线上,则△ABC为等腰三角形,故当BP平分∠ABC时,此时点P是△ABC的内心,故点D在AB的中点,∴BD=AB=3,故答案为3.【点评】本题考查动点问题函数图象、内心的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.【分析】(1)求出点F的坐标,进而求出反比例函数的表达式,即可求解;(2)由CF=BC﹣BF,CE=AC﹣AE,求出CF、CE,即可求解;(3)证明△EHG∽△GBF,即可求解.【解答】解:(1)∵OB=4,OA=3,∴点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),点F运动到边BC的中点时,点F(4,),将点F的坐标代入y=并解得:k=6,故反比例函数的表达式为:y=,当y=3时,x==2,故E(2,3),故答案为:(2,3);(2)∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC﹣BF=3﹣=,∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==;(3)如图,由(2)知,CF=,CE=,=,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=.【点评】本题考查的反比例函数综合运用,涉及到一次函数的性质、三角形相似、解直角三角形等,综合性强,难度适中.26.【分析】(1)若l:y=﹣2x+2,求出点A、B、D的坐标,利用待定系数法求出P表示的函数解析式;若P:y=﹣x2﹣3x+4,求出点D、A、B的坐标,再利用待定系数法求出l表示的函数解析式;(2)根据对称轴的定义解答即可;(3)以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,则有FQ∥CE,且FQ=CE.以此为基础,列方程求出点Q的坐标.【解答】解:(1)若l:y=﹣2x+2,则A(1,0),B(0,2).∵将△AOB绕点O逆时针旋转90°,得到△COD,∴D(﹣2,0).设P表示的函数解析式为:y=ax2+bx+c,将点A、B、D坐标代入得:,解得,∴P表示的函数解析式为:y=﹣x2﹣x+2;若P:y=﹣x2﹣3x+4=﹣(x+4)(x﹣1),则D(﹣4,0),A(1,0).∴B(0,4).设l表示的函数解析式为:y=kx+b,将点A、B坐标代入得:,解得,∴l表示的函数解析式为:y=﹣4x+4.故答案为:y=﹣x2﹣x+2;y=﹣4x+4.(2)直线l:y=mx+n,(m<0,n>0)与x、y轴分别相交于A、B两点,∴,B(0,n),D(﹣n,0).设抛物线对称轴与x轴的交点为N(x,0).∵DN=AN.∴,∴,∴p的对称轴为.(3)若l:y=﹣2x+4,则A(2,0)、B(0,4).∴C(0,2),D(﹣4,0).可求得直线CD的解析式为:.由(2)可得,p的对称轴为x=﹣1.∵以点C、E、Q、F为顶点的四边形是以CE为一边的平行四边形.∴FQ∕∕CE,且FQ=CE.设直线FQ的解析式为:.∵点E、点C的横坐标相差1.∴点F、点Q的横坐标也是相差1.则|x F﹣(﹣1)|=|x F+1|=1.解得x F=0或x F=﹣2.∵点F在直线l1:y=﹣2x+4上.∴点F坐标为(0,4)或(﹣2,8).若F(0,4),则直线FQ的解析式为:.当x=﹣1时,.∴.若F(﹣2,8),则直线FQ的解析式为:.当x=﹣1时,..∴满足条件的点Q坐标为、.【点评】本题是二次函数综合题,综合考查了二次函数的图象与性质、一次函数、待定系数法、旋转变换、平行四边形等多个知识点,熟练掌握待定系数法是解题的关键.27.【分析】(1)根据含30°角的直角三角形的性质解答即可;(2)利用等边三角形的判定解答;①利用等边三角形的性质和全等三角形的判定证明即可;②利用等边三角形的性质和全等三角形的判定证明即可.【解答】解:(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为:30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为:AB=AC;①如图1中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM ≌△CAN (SAS ),∴BM =CN ;②成立,理由:如图2中,∵△ABC 与△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,∴∠BAC +∠MAC =∠MAN +∠MAC ,即∠BAM =∠CAN ,在△BAM 与△CAN 中,,∴△BAM ≌△CAN (SAS ),∴BM =CN .【点评】本题属于三角形的综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是根据等边三角形的性质和全等三角形的判定和性质进行解答,属于中考常考题型.28.【分析】(1)先解直角三角形ABC ,求得AC 的值,再在直角三角形AEF 中,利用互余关系求得∠F 即可;(2)先利用等腰三角形的“三线合一“性质证明AB =AE ,再利用ASA 证明△ABC ≌△EAF ;(3))先在△AEF 中,由三角函数求得EF =AE ,再利用三角形的面积公式得出S △EAF =AE 2,然后由当AE ⊥BC 时,AE 最短,S △EAF 最小,求得AE 的值,则△EAF 面积的最小值可得;(4)当△EAF内心恰好落在AC上时,设△EAF的内心为N,连接EN,利用三角形的内心性质证明△ABE是等边三角形,从而可知AE=AB=2,由(1)可知AC=2,从而可得当△EAF的内心在△ABC的外部时,AE的范围.【解答】解:(1)∵∠BAC=90°,∠B=60°,AB=2,tan B=,∴AC=AB•tan B=2tan60°=2;∵AE⊥EF,∴∠AEF=90°,∵∠EAF=∠B=60°,∴∠F=90°﹣∠EAF=90°﹣60°=30°.故答案为:2,30°;(2)证明:当BD=DE时,∵AD⊥BC于D,∴AB=AE,∵∠AEF=90°,∠BAC=90°,∴∠AEF=∠BAC,又∠EAF=∠B,∴△ABC≌△EAF(ASA);(3)∵∠AEF=90°,∠EAF=60°,tan∠EAF=,∴EF=AE•tan∠EAF=AE•tan60°=AE,=AE•EF=AE×AE=AE2,∴S△EAF最小,此时∠AEB=90°,sin B=,当AE⊥BC时,AE最短,S△EAF∴AE=AB•sin B=2sin60°=2×=,S=AE2=×3=,△EAF∴△EAF面积的最小值是,故答案为:;(4)当△EAF内心恰好落在AC上时,设△EAF的内心为N,连接EN,如图:∵N是△EAF的内心,∴AN平分∠EAF,EN平分∠AEF,∴∠EAC=∠AEF=×60°=30°,∵∠BAC=90°,∴∠BAE=∠BAC﹣∠EAC=90°﹣30°=60°,又∵∠B=60°,∴△ABE是等边三角形,∴AE=AB=2,∵E为BC上的一点,不与B、C重合,由(1)可知AC=2,∴当△EAF的内心在△ABC的外部时,.故答案为:.【点评】本题考查了圆的内心的性质、解直角三角形、全等三角形的判定与性质及等边三角形的判定等知识点,熟练掌握相关性质定理及其综合运用是解题的关键.。
北京市顺义区2019-2020学年中考第二次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,直线AB ∥CD ,AE 平分∠CAB ,AE 与CD 相交于点E ,∠ACD=40°,则∠DEA=( )A .40°B .110°C .70°D .140°2.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等3.计算(﹣12)﹣1的结果是( ) A .﹣12 B .12C .2D .﹣24.如图,点A ,B 在双曲线y=3x (x >0)上,点C 在双曲线y=1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC=BC ,则AB 等于( )A 2B .2C .4D .25.若代数式12-x在实数范围内有意义,则x 的取值范围是( ) A .x>2B .x<2C .x -2≠D .x 2≠6.已知抛物线y =x 2+(2a+1)x+a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是( ) A .4B .5C .10D .118.点(,2)A a a -是一次函数2y x m =+图象上一点,若点A 在第一象限,则m 的取值范围是( ). A .24m -<<B .42m -<<C .24m -≤≤D .42m -≤≤9.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( ) A .11;B .6;C .3;D .1.10.如图,AB 是O e 的直径,CD 是O e 的弦,连接AD ,AC ,BD ,则DAB ∠与C ∠的数量关系为( )A .DABC ∠=∠ B .2DAB C ∠=∠ C .90DAB C ∠+∠=︒D .180DAB C ∠+∠=︒11.把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则∠APG =( )A .141°B .144°C .147°D .150°12.下列二次根式中,最简二次根式是( ) A .9aB .35aC .22a b +D .12a + 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数121y x x =-+-中自变量的取值范围是______________ 14.如图,△ABC 中,AB =BD ,点D ,E 分别是AC ,BD 上的点,且∠ABD =∠DCE ,若∠BEC =105°,则∠A 的度数是_____.15.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.16.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.18.,A B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有____________千米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:3221xx x=+-.20.(6分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD =AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.21.(6分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n <90B70≤n <80 C 15 n <70D6根据以上信息解答下列问题: (1)求m 的值;(2)在扇形统计图中,求B 等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.22.(8分)(1)计算:|﹣3|+(5+π)0﹣(﹣12)﹣2﹣2cos60°; (2)先化简,再求值:(1111a a --+)+2421a a +-,其中a=﹣2+2. 23.(8分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y (m )与各自离开出发的时间x (min )之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m 时所用的时间.24.(10分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:()求本次调查的学生人数;1()求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;2≤<的人数.()若该校共有学生1200人,试估计每周课外阅读时间满足3t4325.(10分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.26.(12分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
2020年中考数学二模试卷一、选择题(共8小题).1.如图所示,l1∥l2,则平行线l1与l2间的距离是()A.线段AB的长度B.线段BC的长度C.线段CD的长度D.线段DE的长度2.﹣5的倒数是()A.﹣5B.C.﹣D.53.如图,平面直角坐标系xOy中,有A、B、C、D四点.若有一直线l经过点(﹣1,3)且与y轴垂直,则l也会经过的点是()A.点A B.点B C.点C D.点D4.如果a2+4a﹣4=0,那么代数式(a﹣2)2+4(2a﹣3)+1的值为()A.13B.﹣11C.3D.﹣35.如图,四边形ABCD中,过点A的直线l将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则α+β的度数是()A.360°B.540°C.720°D.900°6.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320 S2 1.9 2.12 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁8.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的面积为y,则y与x之间的关系描述正确的是()A.y与x之间是函数关系,且当x增大时,y先增大再减小B.y与x之间是函数关系,且当x增大时,y先减小再增大C.y与x之间是函数关系,且当x增大时,y一直保持不变D.y与x之间不是函数关系二、填空题(本题共16分,每小题2分)9.分解因式:2mn2﹣2m=.10.图中的四边形均为矩形,根据图形,写出一个正确的等式:.11.比较大小:0.5.12.如图,在每个小正方形的边长为1cm的网格中,画出了一个过格点A,B的圆,通过测量、计算,求得该圆的周长是cm.(结果保留一位小数)13.如图,∠MAN=30°,点B在射线AM上,且AB=2,则点B到射线AN的距离是.14.如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=.15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有个红球.摸到红球的次数摸到白球的次数一组137二组146三组15516.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是.三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题5分,第24题5分,第25-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:(﹣2)0+﹣cos45°﹣3﹣2.18.解不等式:≥+1,并把解集在数轴上表示出来.19.已知:关于x的方程mx2﹣4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若方程的根为有理数,求正整数m的值.20.下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.已知:线段AB.求作:菱形ACBD.作法:如图,①以点A为圆心,以AB长为半径作⊙A;②以点B为圆心,以AB长为半径作⊙B,交⊙A于C,D两点;③连接AC,BC,BD,AD.所以四边形ACBD就是所求作的菱形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD()(填推理的依据).同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴═==.∴四边形ACBD是菱形.()(填推理的依据).21.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD 的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.22.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x和y的数据,并制成图1,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图2.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出一人,求此人指标x的值大于1.7的概率;(2)设这100名患者中服药者指标y数据的方差为S12,未服药者指标y数据的方差为S22,则S12S22;(填“>”、“=”或“<”)(3)对于指标z的改善情况,下列推断合理的是.①服药4周后,超过一半的患者指标z没有改善,说明此药对指标z没有太大作用;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.23.已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB 交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证;DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.24.如图,在△ABC中,AB=AC=5cm,BC=6cm,点D为BC的中点,点E为AB的中点.点M为AB边上一动点,从点B出发,运动到点A停止,将射线DM绕点D顺时针旋转α度(其中α=∠BDE),得到射线DN,DN与边AB或AC交于点N.设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2请你通过测量或计算,补全表格;(2)描点、连线:在平面直角坐标系xOy中,描出补全后的表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)结合函数图象,解决问题:当MN=BD时,BM的长度大约是cm.(结果保留一位小数)25.已知:在平面直角坐标系xOy中,点A(﹣1,2)在函数y=(x<0)的图象上.(1)求m的值;(2)过点A作y轴的平行线l,直线y=﹣2x+b与直线l交于点B,与函数y=(x<0)的图象交于点C,与y轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC<BD时,直接写出b的取值范围.26.在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC只有一个公共点,求m的取值范围.27.已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).28.已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP•OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=x上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图所示,l1∥l2,则平行线l1与l2间的距离是()A.线段AB的长度B.线段BC的长度C.线段CD的长度D.线段DE的长度【分析】利用平行线间距离的定义判断即可.解:如图所示,l1∥l2,则平行线l1与l2间的距离是线段BC的长度.故选:B.2.﹣5的倒数是()A.﹣5B.C.﹣D.5【分析】根据倒数的定义即可得出答案.解:﹣5的倒数是﹣;故选:C.3.如图,平面直角坐标系xOy中,有A、B、C、D四点.若有一直线l经过点(﹣1,3)且与y轴垂直,则l也会经过的点是()A.点A B.点B C.点C D.点D【分析】直接利用点的坐标,正确结合坐标系分析即可.解:如图所示:有一直线L通过点(﹣1,3)且与y轴垂直,故L也会通过D点.故选:D.4.如果a2+4a﹣4=0,那么代数式(a﹣2)2+4(2a﹣3)+1的值为()A.13B.﹣11C.3D.﹣3【分析】原式利用完全平方公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.解:原式=a2﹣4a+4+8a﹣12+1=a2+4a﹣7,由a2+4a﹣4=0,得到a2+4a=4,则原式=4﹣7=﹣3.故选:D.5.如图,四边形ABCD中,过点A的直线l将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则α+β的度数是()A.360°B.540°C.720°D.900°【分析】根据多边形的内角和公式计算即可.解:如图:四边形ABCE的内角和为:(4﹣2)×180°=360°,△ADE的内角和为180°,∴α+β=360°+180°=540°.故选:B.6.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320 S2 1.9 2.12 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁【分析】先比较平均数得到甲品种的葡萄树和乙品种的葡萄树产量较好,然后比较方差得到甲品种的葡萄树的状态稳定,从而求解.解:因为甲品种的葡萄树、乙品种的葡萄树的平均数丙品种的葡萄树比丁品种的葡萄树大,而甲品种的葡萄树的方差比乙品种的葡萄树的小,所以甲品种的葡萄树的产量比较稳定,所以甲品种的葡萄树的产量既高又稳定.故选:A.8.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的面积为y,则y与x之间的关系描述正确的是()A.y与x之间是函数关系,且当x增大时,y先增大再减小B.y与x之间是函数关系,且当x增大时,y先减小再增大C.y与x之间是函数关系,且当x增大时,y一直保持不变D.y与x之间不是函数关系【分析】连接DE,△CDE的面积是矩形CFGE的一半,也是正方形ABCD的一半,则矩形与正方形面积相等.解:连接DE,∵S△CDE=×CE×GE=S矩形ECFG,同理S△CDE=S正方形ABCD,故y=S矩形ECFG=S正方形ABCD,为常数,故选:C.二、填空题(本题共16分,每小题2分)9.分解因式:2mn2﹣2m=2m(n+1(n﹣1).【分析】首先提取公因式2m,再利用平方差公式分解因式得出答案.解:2mn2﹣2m=2m(n2﹣1)=2m(n+1)(n﹣1).故答案为:2m(n+1(n﹣1).10.图中的四边形均为矩形,根据图形,写出一个正确的等式:(x+p)(x+q)=x2+px+qx+pq.【分析】根据多项式的乘法展开解答即可.解:矩形的面积可看作(x+p)(x+q),也可看作四个小矩形的面积和,即x2+px+qx+pq,所以可得等式为:(x+p)(x+q)=x2+px+qx+pq,故答案为:(x+p)(x+q)=x2+px+qx+pq.11.比较大小:>0.5.【分析】首先把0.5变为,然后估算的整数部分,再根据比较实数大小的方法进行比较即可.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.12.如图,在每个小正方形的边长为1cm的网格中,画出了一个过格点A,B的圆,通过测量、计算,求得该圆的周长是8.9cm.(结果保留一位小数)【分析】根据垂径定理确定圆的圆心,根据勾股定理求出圆的半径,根据圆的周长公式计算,得到答案.解:由垂径定理可知,圆的圆心在点O处,连接OA,由勾股定理得,OA==,∴圆的周长=2π≈8.9,故答案为:8.9.13.如图,∠MAN=30°,点B在射线AM上,且AB=2,则点B到射线AN的距离是1.【分析】如图,过点B作BC⊥AN于点C,则BC线段的长度即为所求,根据“在直角三角形中,30°角所对的直角边等于斜边的一半”解答.解:如图,过点B作BC⊥AN于点C,∵在直角△ABC中,∠A=30°,AB=2,∴BC=AB==1.即点B到射线AN的距离是1.故答案是:1.14.如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=5.【分析】根据直角三角形的性质得到∠DAE=90°,根据勾股定理计算,得到答案.解:∵∠C=90°,∴∠B+∠BAC=90°,∵α+β=∠B,∴α+β+∠BAC=90°,即∠DAE=90°,∵AD=AB=4,AE=AC=3,∴DE==5,故答案为:5.15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有3个红球.摸到红球的次数摸到白球的次数一组137二组146三组155【分析】由三个小组摸到红球的次数为13+14+15=42次得出袋子中红色球的概率,进而求出红球个数即可.解:∵三个小组摸到红球的次数为13+14+15=42(次),∴摸到红球的概率为=,∴估计袋中有4×≈3个红球.故答案为:3.16.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是甲.【分析】根据矩形长为12宽为6,可得矩形的对角线长为6,由矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,可得该正方形的边长不小于6,进而可得正方形边长的最小整数n的值.解:∵矩形长为12宽为6,∴矩形的对角线长为:=6,∵矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,∴该正方形的边长不小于6,∵13<6<15,∴该正方形边长的最小正数n为14.故甲的思路正确,长方形对角线最长,只要对角线能通过就可以,n=14;故答案为:甲.三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题5分,第24题5分,第25-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:(﹣2)0+﹣cos45°﹣3﹣2.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.解:原式==.18.解不等式:≥+1,并把解集在数轴上表示出来.【分析】直接利用一元一次不等式的解法分析得出答案.解:去分母得:2(x﹣1)≥3(x﹣2)+6,去括号得:2x﹣2≥3x﹣6+6,移项并合并同类项得:﹣x≥2,系数化为1得:x≤﹣2,解集在数轴上表示为:.19.已知:关于x的方程mx2﹣4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若方程的根为有理数,求正整数m的值.【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由m为正整数可得出m的可能值,将其分别代入△=16﹣4m中求出△的值,再结合方程的根为有理数即可得出结论.解:(1)∵m≠0,∴关于x的方程mx2﹣4x+1=0为一元二次方程,∵关于x的一元二次方程mx2﹣4x+1=0有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×m×1=16﹣4m≥0,解得:m≤4.∴m的取值范围是m≤4且m≠0.(2)∵m为正整数,∴m可取1,2,3,4.当m=1时,△=16﹣4m=12;当m=2时,△=16﹣4m=8;当m=3时,△=16﹣4m =4;当m=4时,△=16﹣4m=0.∵方程为有理根,∴m=3或m=4.20.下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.已知:线段AB.求作:菱形ACBD.作法:如图,①以点A为圆心,以AB长为半径作⊙A;②以点B为圆心,以AB长为半径作⊙B,交⊙A于C,D两点;③连接AC,BC,BD,AD.所以四边形ACBD就是所求作的菱形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(圆的半径)(填推理的依据).同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AD═AC=BC=BD.∴四边形ACBD是菱形.(四边相等的四边形为菱形)(填推理的依据).【分析】(1)根据作法画出几何图形;(2)利用圆的半径相等得到四边形ACBD的边长都等于AB,然后根据菱形的判定可判断四边形ACBD就是所求作的菱形.解:(1)如图,四边形ACBD为所作;(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(圆的半径相等),同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AD=AC=BC=AD,∴四边形ACBD是菱形.(四边相等的四边形为菱形).故答案为:圆的半径相等;AD、AC、BC、AD;四边相等的四边形为菱形.21.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD 的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.【分析】(1)根据平行线的判定定理得到AB∥EC,推出AB=EC,于是得到结论;(2)根据勾股定理得到,求得AB=2,根据平行四边形的面积公式即可得到结论.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,∴S平行四边形ABCE=AB•AC=2×4=8.22.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x和y的数据,并制成图1,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图2.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出一人,求此人指标x的值大于1.7的概率;(2)设这100名患者中服药者指标y数据的方差为S12,未服药者指标y数据的方差为S22,则S12>S22;(填“>”、“=”或“<”)(3)对于指标z的改善情况,下列推断合理的是②.①服药4周后,超过一半的患者指标z没有改善,说明此药对指标z没有太大作用;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.【分析】(1)根据图1,可以的打指标x的值大于1.7的概率;(2)根据图1,可以得到S12和S22的大小情况;(3)根据图2,可以判断哪个推断合理.解:(1)指标x的值大于1.7的概率为:=0.06;(2)由图1可知,S12>S22,故答案为:>;(3)由图2可知,推断合理的是②,故答案为:②.23.已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB 交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证;DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.【分析】(1)连接OD,根据切线的性质得到∠ODF=90°,根据角平分线的定义得到∠CAD=∠DAB,由等腰三角形的性质得到∠DAB=∠ADO,等量代换得到∠CAD=∠ADO,推出AF∥OD,根据平行线的性质即可得到结论;(2)连接DB,根据圆周角定理得到∠ADB=90°,根据勾股定理得到BD=6,再根据相似三角形的判定与性质即可求解.【解答】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∴∠ODF=90°.∵AD平分∠CAB,∴∠CAD=∠DAB.又∵OA=OD,∴∠DAB=∠ADO.∴∠CAD=∠ADO.∴AF∥OD.∴∠F+∠ODF=180°.∴∠F=180°﹣∠ODF=90°.∴DF⊥AF.(2)解:连接DB.∵AB是直径,⊙O的半径是5,AD=8,∴∠ADB=90°,AB=10.∴BD=6.∵∠F=∠ADB=90°,∠FAD=∠DAB,∴△FAD∽△DAB.∴.∴.24.如图,在△ABC中,AB=AC=5cm,BC=6cm,点D为BC的中点,点E为AB的中点.点M为AB边上一动点,从点B出发,运动到点A停止,将射线DM绕点D顺时针旋转α度(其中α=∠BDE),得到射线DN,DN与边AB或AC交于点N.设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2请你通过测量或计算,补全表格;(2)描点、连线:在平面直角坐标系xOy中,描出补全后的表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)结合函数图象,解决问题:当MN=BD时,BM的长度大约是 1.7,1.9,4.7cm.(结果保留一位小数)【分析】(1)证明∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=2.4×=3.2;(2)描点、连线得函数图象;(3)当MN=BD时,即y=3,从图象看x的值即可.解:(1)x=BM=1.8,在△MBD中,BD=3,cos∠B=,设cos B=cosβ,tanβ=,过点M作MH⊥BD于点H,则BH=BM cosβ=1.8×=1.08,同理MH=1.44,HD=BD﹣BH=3﹣1.08=1.92,MD==2.4,MD2=HD2+MH2=9,则BD2=BM2+MD2,故∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=2.4×=3.2,补全的表格数据如下:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 3.2 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2(2)描点、连线得到以下函数图象:(3)当MN=BD时,即y=3,从图象看x即BM的长度大约是1.7,1.9,4.7;故答案为:1.7,1.9,4.7(填的数值上下差0.1都算对).25.已知:在平面直角坐标系xOy中,点A(﹣1,2)在函数y=(x<0)的图象上.(1)求m的值;(2)过点A作y轴的平行线l,直线y=﹣2x+b与直线l交于点B,与函数y=(x<0)的图象交于点C,与y轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC<BD时,直接写出b的取值范围.【分析】(1)根据待定系数法求得即可;(2)①根据题意求得C点的坐标,然后根据待定系数法即可求得b的值;②根据①结合图象即可求得.解:(1)把A(﹣1,2)代入函数(x<0)中,∴m=﹣2;(2)①过点C作EF⊥y轴于F,交直线l于E,∵直线l∥y轴,∴EF⊥直线l.∴∠BEC=∠DFC=90°.∵点A到y轴的距离为1,∴EF=1.∵直线l∥y轴,∴∠EBC=∠FDC.∵点C是BD的中点,∴CB=CD.∴△EBC≌△FDC(AAS),∴EC=CF,即CE=CF=.∴点C的横坐标为.把代入函数中,得y=4.∴点C的坐标为(,4),把点C的坐标为(,4)代入函数y=﹣2x+b中,得b=3;②当C在下方时,C(,﹣4),把C(,﹣4)代入函数y=﹣2x+b中得:﹣4=﹣2×+b,得b=﹣3,则BC<BD时,则b>﹣3,故b的取值范围为b>﹣3.26.在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC只有一个公共点,求m的取值范围.【分析】(1)求出抛物线的解析式,由配方法可得出答案;(2)把x=1,y=2代入y=mx2﹣3(m﹣1)x+2m﹣1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.解得m=,则当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得m=﹣3<0.则当﹣3<m<0时,抛物线与线段BC只有一个公共点.解:(1)把m=3代入y=mx2﹣3(m﹣1)x+2m﹣1中,得y=3x2﹣6x+5=3(x﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m﹣3(m﹣1)+2m﹣1=m﹣3m+3+2m﹣1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.∴m=>0.此时抛物线开口向上(如图1).∴当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得9m﹣9(m﹣1)+2m﹣1=2.∴m=﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m<0时,抛物线与线段BC只有一个公共点.综上,m的取值范围是m=3或0<m<或﹣3<m<0.27.已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是AE⊥DF;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=45°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).【分析】(1)根据题意正确画图;(2)证明△ABD≌△AED(SSS),可得∠AED=∠B=90°,从而得结论;(3)想法1:如图2,过点A做AG⊥CF于点G,先证明四边形ABCG是正方形,得AG=AB,∠BAG=90°,再证明Rt△AFG≌Rt△AFE(HL),得∠GAF=∠EAF,根据∠BAG=90°及角的和可得结论;想法2:如图3,过点B作BG∥AF,交直线FC于点G,证明四边形ABGF是平行四边形,得AF=BG,∠BGC=∠BAF,再证明Rt△AEF≌Rt△BCG(HL),同理根据∠BCG=90°及等量代换,角的和可得结论.解:(1)补全图形如图1:(2)AE与DF的位置关系是:AE⊥DF,理由是:∵点B关于直线AD的对称点为E,∴AB=AE,BD=DE,∵AD=AD,∴△ABD≌△AED(SSS),∴∠AED=∠B=90°,∴AE⊥DF;故答案为:AE⊥DF;(3)猜想∠DAF=45°;想法1:证明如下:如图2,过点A做AG⊥CF于点G,依题意可知:∠B=∠BCG=∠CGA=90°,∵AB=BC,∴四边形ABCG是正方形,∴AG=AB,∠BAG=90°,∵点B关于直线AD的对称点为E,∴AB=AE,∠B=∠AED=∠AEF=90°,∠BAD=∠EAD,∴AG=AE,∵AF=AF,∴Rt△AFG≌Rt△AFE(HL),∴∠GAF=∠EAF,∵∠BAG=90°,∴∠BAD+∠EAD+∠EAF+∠GAF=90°,∴∠EAD+∠EAF=45°.即∠DAF=45°.想法2:证明如下:如图3,过点B作BG∥AF,交直线FC于点G,依题意可知:∠ABC=∠BCF=90°,∴AB∥FG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AF=BG,∠BGC=∠BAF,∵点B关于直线AD的对称点为E,∴AB=AE,∠ABC=∠AED=90°,∠BAD=∠EAD,∵AB=BC,∴AE=BC,∴Rt△AEF≌Rt△BCG(HL),∴∠EAF=∠CBG,∵∠BCG=90°,∴∠BGC+∠CBG=90°,∴∠BAF+∠EAF=90°,∴∠BAD+∠EAD+∠EAF+∠EAF=90°,∵∠BAD=∠EAD,∴∠EAD+∠EAF=45°,即∠DAF=45°.故答案为:45.28.已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP•OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=x上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.。