七上数学从三个不同方向看
- 格式:ppt
- 大小:1.65 MB
- 文档页数:25
1.4从三个不同的方向看物体的形状学习目标:1、以观察物体为载体,着力发展学生的空间想象能力和推理能力,不断的发展学生的空间观念。
2、能根据观察的内容,画出从正面、上面、左面观察到的平面图形。
3、能据给出的平面图形还原立体图形,其中还包括根据给定的两个方向观察到的平面图形确定搭出这个立体图形所需要正方体的数量范围。
如果想象能力偏差的,动手摆摆。
教法与学法指导经过课前调查了解,发现学生掌握空间与图形领域的知识较扎实,对这部分知识学习热情高涨,希望自己是一个发现者、研究者、探索者,而在学生的精神世界中,这种需要特别强烈。
”让学生自己动手搭一搭、摆一摆,再从三个不同的方向观察物体。
教师为主导,学生为主体,小组合作与独立探究相结合。
教师点拨总结。
课前准备:多媒体课件教学过程(一)复习引入新课复习:1、一个物体从不同方向看就看出不同的平面图形,比如:从正面看圆柱体是()图形;从上面看是()图形。
2、从正面看、左面看、上面看都是相等的正方形,该物体是();从正面看、左面看、上面看都是相等的圆,该物体是();从正面看、左面看都是相等的长方形,俯视图是圆,则该物体是()看课本图1-17下列图片是哪个摄影师傅拍摄的?导入新课(板书课题)(二)探索交流,解决问题1.师:组织学生进行比赛画图,让学生独立观察由几个小立方体组成的立体图形,并画出从正面、上面、左面看到的形状,看谁做的又好又快。
从正面看从左面看从上面看生:画出从三方面看出的不同图形。
三生板演,生纠错。
师:出示17页随堂练习生:做练习,一生板演2、师出示:做一做:用6个小立方块搭成不同的几何体,画出从上面、左面、上面看到的几何体的形状图,并与同伴交流。
师:以小组为单位动手做一做并讨论交流结果。
设计意图学生小学已经较好的掌握了观察5个小立方体搭成的立体图形并画出平面图形。
再用6个的动手搭一搭,学生能够主动利用原来的方法,独立画出由6个小立方体搭成的立体图形,以比赛方式呈现即节约教学时间又可以激发学生的学习的兴趣。
专题1.10从三个方向看物体的形状(知识梳理与考点分类讲解)一、知识梳理【知识点】从不同方向看几何体1、从不同方向看几何体,往往会看到不同的形状图,一般从三个方向看:从正面看,从左面看,从上面看,看到的图形分别称为主视图、左视图、俯视图。
2、常见的几何体从不同方向看到的形状图二、考点分类讲解【题型一】画从三个方向看到的几何体的形状图【例1】如图是由五个相同的小正方体搭成的几何体,如果从正面、上面、左面三个不同的方向去观察它,分别能得到什么样的平面图形【分析】先得出从正面、上面、左面看到的小立方体的个数及位置,再画出相应的图形即可.解:从正面、上面、左面看到的图形如图:【点拨】本题考查了从不同的角度看物体,掌握解答的方法是关键.【变式】如图,是由若干个完全相同的小正方体组成的一个几何体,请画出这个几何体从正面看、从左面看和从上面看到的平面图形.(用阴影表示)【分析】想象出从三个方向看的图形,画出即可;解:三个平面图形如图所示:从正面看:从左面看:从上面看:【点拨】本题考查了几何体的从不同方向看的图形,空间想象能力是本题的解题关键.【题型二】从不同方向看到的平面图形猜想原几何体【例2】如图,是一个几何体分别从正面、左面、上面看的形状图.(1)该几何体名称是;(2)根据图中给的信息,求该几何体的表面积和体积.【答案】(1)长方体;(2)表面积280cm2,体积300cm3【分析】(1)根据从不同方向看到的图形判定几何体的形状即可;(2)根据长方体的表面积公式及体积公式进行求解即可.解答:(1)解:这个几何体是长方体,故答案为:长方体;(2)这个长方体的表面积=2×(10×5+5×6+10×6)=280(cm2).体积=10×5×6=300(cm3).【点拨】本题考查根据从不同方向看到的图形判定几何体,几何体的表面积等知识,熟练掌握和灵活运用相关知识是解题的关键.【变式1】小明和小彬观察同一个物体,从俯视图看都是一个等腰梯形,但小明所看到的主视图如图()1所示,小彬看到的主视图如图()2所示.你知道这是一个什么样的物体?小明和小彬分别是从哪个方向观察它的?【答案】底面为等腰梯形的四棱柱【分析】根据题意,俯视图是一个等腰梯形,而(1)与(2)的形状的相同的,故可知道小明和小彬是从不同方向观察它的,(1)由虚线表示是等腰梯形的上底.故可知道该几何体是等腰梯形的四棱柱.【详解】底面为等腰梯形的四棱柱(如图所示).小明是从前面观察的,而小彬则是从后面观察的(答案不唯一).【点拨】本题考查的三视图的综合知识,考生应从等腰梯形下手,从而可知道该几何体的形状.【变式2】某几何体从三个方向看到的图形分别如图:(1)该几何体是(2)求该几何体的体积?(结果保留π)【答案】(1)圆柱(2)π,3π试题分析:(1)根据几何体的三视图即可判定这个几何体为圆柱;(2)先求几何体的底面圆的面积,再计算体积即可.解:(1)圆柱(2)圆柱底面积=22=2ππ⎛⎫⨯ ⎪⎝⎭圆柱体积V=3π【题型三】由部分形状图确实基他形状图【例3】如图,这是一个由小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数,请你画出它从正面和左面看到的形状图.【分析】分别利用小立方块的个数得出其形状,进而画出从正面和左面看到的形状图.解:如图所示:.【点拨】本题主要考查从不同方向看几何体,再从上面看得到的图形的相应位置写上数字进行求解是解题的关键.【变式】如图①是一些小正方体所搭立体图形从上面看到的图形,方格中的数字表示该位置的小正方体的个数,请在如图②所示的方格纸中分别画出这个立体图形从正面和左面看到的图形.【分析】根据图中所示各位置小正方体的个数,从正面能看到8个正方形,分三列,各列从左到右分别是3个、3个、2个;从左面能看到8个正方形,分三列,各列从左到右分别是3个、2个、3个.解:如图所示.【点拨】本题是考查作图简单图形的三视图,解题的关键是能正确辨认从正面、上面、左面观察到的简单几何体的平面图形.【题型四】由三个不同方向看到的几何体的形状图求小正方体的个数【例4】一个几何体由几个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图①所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请画出图①从正面、左面看到的这个几何体的形状图;(2)在图①的各个位置标上序号如图②,从正面、左面、上面看到的几何体的形状图不变的情况下,图②哪个位置的数字可以变?可以变为几?【答案】(1)见解析;(2)位置⑤可以变,可以变为2或3【分析】(1)由题意可知:从正面看,这个几何体共有3列,每列小正方体的数目分别是3,3,1;从左面看,这个几何体共有2列,每列小正方体的数目分别是3,2,3.(2)观察图②可知①与④的位置都有3个小正方体,则从正面、左面、上面看到的几何体的形状图不变的情况下,图②中位置⑤的数字可以变化,最多为3,据此即可求解.解:(1)从正面看,这个几何体共有3列,每列小正方体的数目分别是3,3,1;从左面看,这个几何体共有2列,每列小正方体的数目分别是3,2,3.如图所示(2)观察图②可知①与④的位置都有3个小正方体,则从正面、左面、上面看到的几何体的形状图不变的情况下,位置⑤可以变,可以变为2或3.【点拨】本题考查了从不同方向看几何体,熟练掌握从不同方向看到的形状图的画图方法是解题的关键.【变式1】如图是由若干个正方体小木块搭建成的几何体从正面看,从左面看和从上面看得到的形状图,在从上面看得到的形状图中写出该位置正方体小木块的个数(写出其中一种即可).【分析】由俯视图可得该组合几何体最底层的小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,依此将得到的正方体的个数在俯视图上标出来即可;解:∵从上面看图中有6个正方形,∴最底层有6个正方体小木块,由从正面看和从左左面看可得第二层至少有3个正方体小木块,第三层有1个正方体小木块,从上面看得到的形状图中该位置正方体小木块的个数如图所示:(答案不唯一)【点拨】本题考查了从不同方向看几何体,解决本类题目不但有丰富的数学知识,而且还应有一定的空间想象能力.【变式2】如图,由一些大小相同的小正方体搭成的几何体的从上面看到的图形,请画出该几何体从正面与左面看到的图形.【分析】直接利用从上面看到的图形以及所标小正方体的个数,进而得出从正面与左面看到的图形.解:该几何体从正面与左面看到的图形如图所示,【点拨】本题主要考查从不同方向看几何体,根据从上面看得到的图形的数字进行求解是解题的关键.【题型五】由二个不同方向看到的几何体的形状图求小正方体的最多(少)个数【例5】用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.【答案】(1)不是一种,有多种;(2)最多需要16个小正方体,最少需要10个小正方体;(3)见解析【分析】由从上面看得到的形状可知,第一层最少需要7个正方体;由从正面看到的形状可知,第二层最少需要2块,最多需要6块;第三层最少需要一块,最多需要3块.解:(1)由于左侧两列的小正方体的数量不确定,所以不是一种,有多种.(2)搭这样的几何体最多时,第一层需要7块,第二层需要6块,第三次那个需要3块,共需要++=个小正方体;76316++=个小正方体最少时,第一层需要7块,第二层需要2块,第三次那个需要1块,共需要,72110(3)【点拨】本题考查从不同方向看几何体,能根据题中描述还原几何体是解答的关键.【变式1】一个几何体是由若干个大小相同的小正方体搭成,从左面、上面看到的这个几何体的形状图如图所示,这样的几何体只有一种吗?它最多需要多少个小正方体?最少需要多少个小正方体?【答案】不止一种,最多需要15个小正方体,最少需要10个小正方体【分析】利用从上看的图形,在从上面看到的图上写出最多以及最少时小正方体的个数,可得结论.【详解】结合左面看到的几何体,在从上面看到的图上写出最多以及最少时小正方体的个数,如图:最多有:333221115++++++=(个),最少有:311211110++++++=(个),即可知:这样的几何体不止一种,最多需要15个小正方体,最少需要10个小正方体.【点拨】本题考查从不同角度观看几何体的知识,解题的关键是具有一定的空间想象力,属于中考常考题型.【变式2】用小立方块搭一个几何体,使它从正面看和从上面看的形状图如图所示,从上面看的形状图中的小正方形中字母表示该位置小立方块的个数,试回答下列问题:(1)a ,b ,f 各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当=1c ,2d e ==时,画出这个几何体从左面看的形状图(小格子以0.5cm 做边长).【答案】(1)==1a b ,3f =;(2)9,11(3)见解析【分析】(1)结合从正面看和从上面看到的图形判断即可;(2)结合图形,判断中间一列小正方形的个数即可;(3)根据题意,画出图形即可.(1)解:由题意可知,从正面看的图形中,最左侧一列只有1个正方形,所以==1a b ,从正面看的图形中,最右侧一列有3个正方形,且从上面看的图形中,最右侧一列只有1个正方形,所以3f =;(2)从正面看的图形中,中间一列有2个正方形,且从上面看的图形中,中间一列有3个正方形,所以当c d e ,,中有一个为2,另外两个为1时,正方形个数最少,最少为1121139+++++=(个);当2c d e ===时,正方形个数最多,最多为11222311+++++=(个);(3)3)当=1c ,2d e ==时,从左面看为:【点拨】本题主要考查不同角度看立体图形,掌握空间想象能力是解题的关键.。
第一章丰富的图形世界从三个方向看物体的形状一、教学目标1.会画立方体及其简单组合的三种形状图.2.根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形状图.3.培养学生重视实践、善于观察的习惯,在与他人合作交流时,和谐友好地相处.二、教学重点及难点:重点:会画立方体及其简单组合的三种形状图.难点:根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形三、教学准备正方体模型四、相关资源:相关图片五、教学过程【复习回顾】创设情境,引入新课欣赏诗句以及图片.题西林壁——苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.师生活动:教师利用课件展示庐山景观,让学生朗读苏东坡的《题西林壁》,并说说“横看成岭侧成峰”一句中,蕴含了怎样的数学道理.小结:“横看成岭侧成峰”一句中,蕴含的数学道理:横看就是从东面西面看庐山山岭连绵起伏,从侧面看庐山山峰耸立.设计意图:以苏东坡的诗句《题西林壁》营造一个崭新的数学学习氛围,创设实际情境,激发兴趣,使学生集中注意,同时引入课题并从中挖掘藴含的数学道理,让学生感受数学的魅力,培养学生的数学文化素养.板书:4.从三个方向看物体的形状本图片是微课的首页截图,本微课资源讲解了从不同的方向看立体图形,并通过讲解实例与练习,巩固所学的知识点.若需使用,请插入微课【知识点解析】从不同的方向看.【新知讲解】探究一:从三个方向看物体的形状活动1:从不同方向观察实物当我们从不同的方向观察同一物体时,通常可以看到不同的图形,观察下列图片中的同一物体,说一说分别是从哪个方向看到的:思考:每台摄像机拍到的分别是下面的哪张照片师生活动:教师引导学生思考.A是(2);B是(1);C是(3);D是(4).设计意图:教学中,首先呈现了几张照片,让学生从生活实际中感受到从不同的方向看会有不同的效果,从而引入教学内容,感受不同的方向观察物体的不同性.通过前面的学习,我们发现许多物体从不同方向观察会看到不同的图形(视图),为了研究问题的方便让我们来认识几种特殊的视图:活动2.从三个方向看小正方体组成的几何体师生合作画出如下图形:设计意图:循序渐进地提出问题(活动),让学生逐步感受从不同角度看结果不一样,逐步得到从正前方、正左方、正上方所看到的三种形状图的概念.活动三:小组活动1:现在,我们就以小组为单位,用5个小立方块搭建几何体,要尽可能地搭出不同的几何体,再从不同的方向看一看自己所搭的几何体,并画出几何体的形状图.学生展示搭成的几何体,并画出从三个方向看到的图形.从三个不同方向看几何体(1)(2)(3)(4)形状图.(1)(2)(3)(4)小组活动2:用6个自制小立方块摆出几何体,画出三个方向看到的形状图.要求:每小组至少摆两种;画好后小组之间互相交流批改.设计意图:有五个立方块增加到六个,学生自己先摆后画,进一步巩固画法. 学生动手操作,用几个小正方体搭一搭,学会与人交流、合作,使学生真正成为学习的主体,形成师生互动的课堂氛围.探究二:数几何体中小正方体的个数活动 1.如图是几个小立方块所搭几何体的从上面看的图形形状,小正方形的数字表示该位置小立方块的个数.这个几何体的从正面看和从左面看的形状图.师生活动:让学生动手利用手中的小立方块,尝试独立寻求解决问题的方法,特别要重视利用操作来帮助解决问题,然后同伴进行交流,验证结果.解法一:先摆出这个几何体,再画出它的从正面看和从左面看的形状图.解法二:根据从上面看的图联想确定从正面看到的图有3列,从左面看的图有2列,再根据数字确定每列方块的个数.由此可得形状图如下:活动2.一个几何体由几个大小相同的小立方块搭成,从上面看和从左面看所看到的平面图形如图所示.搭出满足条件的几何体,你搭的几何体由几个小立方块搭成与同伴交流.从上面看从左面看注意:如果两个几何体从正面看、左面看、上面看所看到的平面图形是相同的,但是物体的形状并不一定相同,甚至几何体A可以由五个小立方块组成,而几何体B是由六个小立方块组成的.【典型例题】例1画出如图所示的几何体从正面、左面和上面看到的图形.分析:从正面看到的图有三列,每列的方块数分别是2,1,1;从左面看到的图有两列,每列的方块数分别是2,1;从上面看到的图有三列,每列的方块数分别是1,1,2.解:几何体的三种形状图如图所示.总结:画几何体的三种形状图关键是确定它们的列数及每列方块的个数.例2用小立方体搭一个几何体,使得它从正面和上面看到的图形如图所示,搭建这样的几何体,最多要用几个小立方块最少要用几个小立方块分析:(1)在从上面看到的图中,用小正方形中的数字表示在该位置小立方块的个数.由于从正面看到的图每列的个数即是从上面看到的图中该列小正方形中的最大数字,因此,用的小立方块块数最多的情况是每个小正方形中都填该列的最大数字.如图(1)所示,此种情况共用小立方块17块.(2)搭建这样的几何体,每列只要有一个最大数字,其他小正方形内的填写数字减少到最少的1,即可满足条件,如图(2)所示,这样只需要小立方块11块即可.解:搭建这样的几何体,最多用17块小立方块,最少用11块小立方块.总结:由于从正面看到的图的列数与从上面看到的图的列数相同,从正面看到的图每列方块数是从上面看到的图该列小正方形中的最大数字,因此每行每列最多可摆放3个小的立方块.例3如图是一个几何体的三种形状图(含有数据),则这个几何体的侧面展开图的面积等于().A.2π B.π C.4 D.2分析:由从上面看到的图可以看出该几何体是圆柱或圆锥;由从正面看到的图和从左面看到的图中可以看出该几何体是四棱柱或圆柱.两者结合可以猜测这个几何体是圆柱.由题意,得这个几何体是圆柱,且圆柱的直径为1,高为2.圆柱的侧面展开图是一个长方形,此长方形的长为π,宽为2,则该圆柱的侧面积为2π.答案:A.【随堂练习】1.从正面看如图所示的立体图形得到的图形是().解:B.2.从正面看由一些大小相同的小正方体组成的几何体的形状图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,从左面看这个几何体的形状图是().解:A.点拨:因为从上面看到的图中,最上面一行小正方形内数字为1,2,所以从左面看到的图最左边一列的小正方形的个数为2;因为从上面看到的图中,中间一行小正方形内数字为3,2,所以从左面看到的图中间一列的小正方形有3个.故选项B,C,D错.3.如图是由若干个大小相同的小正方体堆砌成的几何体,那么其三种形状图中面积最小的是( ).A.从正面看到的图B.从左面看到的图C.从上面看到的图D.三种一样解:B.点拨:从正面看到的图和从上面看到的图的面积一样,有5个小正方形的大小,而从左面看到的图有3个小正方形的大小,故选B.4.有一辆汽车如图所示,小红从楼上往下看这辆汽车,小红看到的形状是图中的().5.分别从正面、左面、上面看一个由若干个正方体组成的立体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗动手试试看!参考答案:4.解析:小汽车从上面看只能看到驾驶室的顶部和车身的上面,从上面看到的是两个长方形,故选B.5.如图所示.六、课堂小结谈谈你在本节课的收获从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;反过来,能根据从不同方向看到的几何体的形状图确定搭出的几何体的小立方块的个数.设计意图:有师引导学生回顾这节课的新知,让学生大胆发言,从而加深印象.七、板书设计.俯主7.如图是某几何体的三种形状图.(1)说出这个几何体的名称;(2)画出它的表面展开图;(3)若从正面看到的形状图的长为15 cm,宽为4 cm;从左面看到的形状图的宽为3 cm,从上面看到的形状图的最长边长为5 cm,求这个几何体的所有棱长的和为多少它的侧面积为多大它的体积为多大参考答案1.C.2.A.3.D.4.B.5.(1)左面,(2)上面,(3)前面.6.圆柱.7.分析:由三种形状图可确定该几何体为三棱柱,然后确定出各棱的长,从而可画出它的表面展开图,并计算出它的侧面积和体积.解:(1)这个几何体是三棱柱;(2)它的表面展开图如图所示;(3)它的所有棱长之和为(3+4+5)×2+15×3=69(cm).它的侧面积为3×15+4×15+5×15=180(cm2);它的体积为12×3×4×15=90(cm3).。
5.4从三个方向看(1)【课题】义务教育课程标准实验教科书(苏科版)七年级上册一、教学目标:1、知识目标:在观察的过程中,初步体会从不同方向观察物体所看到的形状往往是不同的2、能力目标:能识别简单物体的三个视图,会画一些简单物体的三个视图,经历从不同方向观察物体的活动过程,发展空间思维3、情感目标:感受数学与生活的联系,在学习中获得成功体会,建立自信心,增强团队合作精神二、教学重点:体会从不同方向观察物体所看到的形状往往是不同的,识别简单物体的三个视图图三、教学难点:画一些简单物体的三视图四、教学方法:师生互动,学生自主探究,合作交流,实践创新五、教学手段:多媒体辅助教学六、教学过程:(一)创设情境师:大家去过庐山吗?如果没有的话,建议你去看看,因为庐山的风景真的很美丽,下面我们先来欣赏一下庐山的照片。
(屏幕投影从不同方向拍摄的庐山照片,师生一起欣赏照片)师:我国宋代诗人苏轼也去过庐山,并且在西林壁上写下了一首很有名的绝句《题西林壁》,还记得吗?生:横看成岭侧成峰……(学生一起背诵,屏幕上同时放印庐山照片)师:你知道苏轼是哪几个方向来观察庐山的吗?生:横看,侧看,远看,近看……师:这首诗中还隐藏着一些数学知识,它教会我们该怎样去观察物体,这就是我们今天要一起探讨的内容《从三个方向看》。
(板书课题)【设计说明】本节课由“大家去过庐山吗?”这个问题开始,先吸引学生注意力,接着一起欣赏照片,一起背诵古诗,这样就为学生营造了一个宽松的,生动活泼的,主动求知的学习环境。
(二)探索活动活动1师:下面我们来一起做个小游戏,请两位同学站到讲台两边来,并先背对着大家。
(教师拿出准备好的一个乒乓球,一个长方体纸盒,一个小玻璃瓶依次在讲台上排成一排)师:请两位同学转过身来,告诉大家你看到讲台上有什么?生1:我看到一个乒乓球和一个长方体纸盒。
生2:我看到的和他不一样,我看到一个玻璃瓶和一个长方体纸盒。
师:下面的同学你们看到什么?生3:一个乒乓球,一个长方体纸盒,一个小玻璃瓶。