圆的切线的判定和三角形的内切圆
- 格式:ppt
- 大小:342.00 KB
- 文档页数:22
三角形的内切圆与外接圆的切线方程在几何学中,三角形是一个基本的图形,而内切圆与外接圆是与三角形紧密相关的概念。
本文将探讨三角形的内切圆与外接圆的切线方程。
首先,我们需要了解内切圆和外接圆的定义。
对于一个三角形来说,内切圆是与三角形的三条边都相切的一个圆。
而外接圆则是可以将三角形三个顶点作为圆上的三个点,并且圆的中心与顶点的连线都垂直于三角形的边。
接下来,我们讨论内切圆的切线方程。
为了简化问题,我们假设我们已知三角形的顶点坐标为A(X1, Y1), B(X2, Y2), C(X3, Y3),内切圆的圆心坐标为O(x, y),半径为r。
根据圆的性质,圆心到切点的距离与切线垂直。
因此,我们可以通过斜率来求得内切圆的切线方程。
首先,我们求出内切圆的圆心坐标。
根据三角形的性质,内切圆的圆心可以通过三角形的三边上的角平分线的交点来确定。
设内切圆的圆心为O(x, y)。
我们可以使用角平分线的性质来求解内切圆的圆心坐标。
设角A的平分线与边BC的交点为D,那么OD与BC垂直,并且OD平分角A。
根据点斜式,可以得到平分线AD的方程为:(1) (y - Y2)/(x - X2) = (Y2 - Y1)/(X2 - X1)同理,可以求得角B的平分线和角C的平分线的方程。
设平分线AD的方程为(2),平分线BE的方程为(3),平分线CF的方程为(4)。
根据圆的性质,内切圆的圆心O必须同时满足方程(2),(3),(4)。
解方程组(2),(3),(4)可以得到内切圆的圆心坐标O(x, y)。
接下来,我们求内切圆的切线方程。
以切点P(x1, y1)为例,斜率可以利用内切圆圆心O与切点P的连线与切线的斜率的相反数来得到。
对于内切圆切线的方程,斜率k可表示为:(5) k = -(x1 - x) / (y1 - y)另一方面,由于切线通过切点P(x1, y1),我们可以利用点斜式得到切线方程:(6) (y - y1) = k(x - x1)将方程(5)代入方程(6),我们可以得到内切圆切线的方程。
九年级上册数学《第二十四章 圆》 24.2点和圆、直线和圆的位置关系 24. 第3课时 切线长定理 & 三角形的内切圆◆1、切线长的定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做切线长. 【注意】①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. ◆2、切线长定理: 过圆外一点所画的圆的两条切线长相等. ∵ P A 、PB 分别切☉O 于 A 、B , ∴ P A = PB , ∠OP A = ∠OPB .切线长定理为证明线段相等、角相等提供了新的方法.◆1、三角形的内切圆:与三角形各边都相切的圆叫做这个三角形的内切圆. 【注意】一个圆可以有无数个外切三角形,但是一个三角形只有一个内切圆.◆2、三角形的内心:三角形内切圆的圆心叫做这个三角形的内心.这个三角形叫做这个圆的外切三角形. ◆3、三角形内心的性质:三角形的内心就是三角形三条角平分线的交点.三角形的内心到三角形的三边的距离相等.如图,☉I 是△ABC 的内切圆,点 I 是△ABC 的内心,△ABC 是☉I 的外切三角形. ◆4、三角形外心、内心的区别:名称 确定方法 图形 性质POAB外心:三角形外接圆的圆心三角形三边中垂线的交点1、外心到三顶点的距离相等;2、外心不一定在三角形的内部.内心:三角形内切圆的圆心三角形三条角平分线的交点1、内心到三边的距离相等;2、内心在三角形内部.【例题1】(2022秋•潮州期末)如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交P A 、PB 于点C 、D ,若P A =8,则△PCD 的周长为( ) A .8B .12C .16D .20【变式11】(2023•怀化三模)如图,AB 、AC 、BD 是⊙O 的切线,切点分别是P 、C 、D .若AB =10,AC =6,则BD 的长是( ) A .3B .4C .5D .6【变式12】如图,⊙O 为△ABC 的内切圆,AC =10,AB =8,BC =9,点D ,E 分别为BC ,AC 上的点,且DE 为⊙O 的切线,则△CDE 的周长为( ) A .9B .7C .11D .8【变式13】(2022秋•南沙区校级期末)如图,四边形ABCD 是⊙O 的外切四边形,且AB =8,CD =15,则四边形ABCD 的周长为 .【变式14】(2022秋•红旗区校级期末)以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点F ,交AB 边于点E ,若△CDE 的周长为12,则直角梯形ABCE 周长为( ) A .12B .13C .14D .15【变式15】如图,P A 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为Q ,交P A 、PB 于点E 、F ,已知P A =12cm ,∠P =40°OCBAO CBA①求△PEF的周长;②求∠EOF的度数.【变式16】如图,P A、PB、CD是⊙O的切线,点A、B、E为切点.(1)如果△PCD的周长为10,求P A的长;(2)如果∠P=40°,①求∠COD;②连AE,BE,求∠AEB.【例题2】(2022秋•东城区期中)如图,已知⊙I是△ABC的内切圆,点I是内心,若∠A=28°,则∠BIC等于()A.99°B.102°C.104°D.152°【变式21】(2023•东安县模拟)如图,在△ABC中,∠A=70°,点I是内心,则∠BIC的大小为()A.130°B.140°C.105°D.125°【变式22】如图所示,已知⊙I是△ABC的内切圆,D、E、F是切点,∠C=60°,∠DIF=140°,则∠B为()A.40°B.50°C.60°D.80°【变式23】如图,在△ABC中,∠B=50°,⊙O是△ABC的内切圆,分别切AC,AB,BC于点D,E,̂上一点,则∠EPF的度数为()F,P是DFA.50°B.55°C.60°D.65°【变式24】(2023•聊城)如图,点O是△ABC外接圆的圆心,点I是△ABC的内心,连接OB,IA.若∠CAI=35°,则∠OBC的度数为()A.15°B.17.5°C.20°D.25°【变式25】(2023•陇县一模)如图所示,△ABC内接于⊙O,点M为△ABC的内心,若∠C=80°,则∠MAN的度数是()A.50°B.55°C.60°D.80°【例题3】(2023•青海一模)如图,⊙O 与△ABC 的边AB 、AC 、BC 分别相切于点D 、E 、F ,如果AB=4,AC =5,AD =1,那么BC 的长为 .【变式31】(2022秋•同心县期末)如图,⊙O 是△ABC 的内切圆,点D ,E ,F 为切点,AD =4,AC =10,BC =14,则BD 长为 .【变式32】如图,①ABC 中,①C =90°,AC =12,BC =5,①O 与①ABC 的三边相切于点D 、E 、F ,则AD 长为( ) A .8B .10C .12D .14【变式33】如图,①O 分别切①ABC 的三条边AB 、BC 、CA 于点D 、E 、F 、若AB =5,AC =6,BC =7,求AD 、BE 、CF 的长.【变式34】已知△ABC 的内切圆半径r =√3,D 、E 、F 为切点,∠ABC =60°,BC =8,S △ABC =10√3,求AB 、AC 的长.【变式35】(2022秋•津南区期末)如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F .(1)若∠ABC =50°,∠ACB =75°,求∠BOC 的度数; (2)若AB =13,BC =11,AC =10,求AF 的长.【例题4】(2023•天心区校级三模)如图,⊙O 是△ABC 的内切圆,若△ABC 的周长为18,面积为9,则⊙O 的半径是( ) A .1B .√2D .2【变式41】已知一个三角形的三边长分别为5、5、6,则其内切圆的半径为( )A .3B .5C .32D .52【变式42】(2023•邵阳县一模)如图所示,⊙O 是等边三角形ABC 的内切圆,若AB =4,则⊙O 的半径是( ) A .√32B .1C .2√33D .2【变式43】(2022秋•齐河县期末)如图,⊙O 的直径AB 为10cm ,弦BC 为8cm ,∠ACB 的平分线交⊙O于点D ,△ADB 的内切圆半径是( ) A .12B .5(√2−1)C .5(√2+1)D .5√22【变式44】如图,这条花边中有4个圆和4个正三角形,且这条花边的总长度AB 为4,则花边上正三角形的内切圆半径为( ) A .√33B .23√3C .1D .√3【变式45】如图,圆O 是△ABC 的内切圆,其中AB =7,BC =5,AC =8,求其内切圆的半径.【例题5】(2023春•江岸区校级月考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是△ABC 的内切圆,则花圃的面积为 .【变式51】(2022秋•河西区校级期末)如图,⊙I 是直角△ABC 的内切圆,切点为D 、E 、F ,若AF =10,BE =3,则△ABC 的面积为 .【变式52】等边三角形的边长为4,则它的内切圆面积等于( )A .4πB .43πC .23πD .163π【变式53】如图,在四边形ABCD 中,AB =CB ,AD =CD .若∠ABD =∠ACD =30°,AD =1,则△ABC的内切圆面积 (结果保留π).【变式54】如图,①O 内切于正方形ABCD ,O 为圆心,作①MON =90°,其两边分别交BC ,CD 于点N ,M ,若CM +CN =4,则①O 的面积为( ) A .πB .2πC .4ππ【例题6】(2023•越秀区校级二模)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆的半径r是()A.2B.3C.4D.无法判断【变式61】(2023•沭阳县一模)直角三角形中,两直角边的长分别为3与4,则其内切圆半径为.【变式62】(2022秋•防城港期末)在《九章算术》卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如图,今有直角三角形勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径为步.【变式63】(2022秋•金华期末)如图,⊙O是△ABC的内切圆,切点分别为D,E,F,且∠A=90°,BC=52,CA=2,则⊙O的半径是.【变式64】(2022秋•黔西南州期中)如图,已知O是△ABC的内心,连接OA,OB,OC.若△ABC内切圆的半径为2,△ABC的周长为12,求△ABC的面积.【变式65】(2022秋•天河区校级期末)如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.【变式66】如图,在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,半径为r,切点为D、E、F,连接OD,OE,OF.(1)若BC=6,AC=8,则r=;(2)若Rt△ABC的周长为L,面积为S,则S,L,r之间有什么数量关系,并说明理由.【例题7】如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是.【变式71】如图,在平面直角坐标系中,已知点A(3√2,0),点B在第一象限,且AB与直线l:y=x2平行,AB长为4,若点P是直线l上的动点,则△P AB的内切圆面积的最大值为.【变式72】(2022秋•鼓楼区校级月考)在Rt△ABC中,∠ACB=90°,BC=6,AC=8,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是.【变式73】已知一块等腰三角形钢板的底边长为60cm,腰长为50cm.(1)求能从这块钢板上截得的最大圆的半径.(2)用一个圆完全覆盖这块钢板,这个圆的最小半径是多少?(3)求这个等腰三角形的内心与外心的距离.【例题8】如图,点E是①ABC的内心,AE的延长线和①ABC的外接圆①O相交于点D,过D作直线DG①BC.(1)若①ACB=80°,则①ADB=;①AEB=.(2)求证:DE=CD;(3)求证:DG是①O的切线.【变式81】(2022秋•泗阳县期末)已知,如图,AB为⊙O的直径,△ABC内接于⊙O,BC>AC,点P 是△ABC的内心,延长CP交⊙O于点D,连接BP.(1)求证:BD=PD;(2)已知⊙O的半径是3√2,CD=8,求BC的长.【变式82】(2023•庐阳区校级一模)如图,已知⊙O是Rt△ABC的外接圆,点D是Rt△ABC的内心,BD的延长线与⊙O相交于点E,过E作直线l∥AC.(1)求证:l是⊙O的切线;(2)连接CE,若AB=3,AC=4,求CE的长.【变式83】(2022秋•江夏区校级期末)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆交于点D.(1)如图1,连接DB,求证:DB=DE;(2)如图2,若∠BAC=60°,求证:AB+AC=√3AD.【变式84】如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D过D作直线DG ∥BC.(1)若∠ACB=70°,则∠ADB=;∠AEB=.(2)求证:DE=CD;(3)求证:DG是⊙O的切线.【变式85】如图,已知点D在⊙O的直径AB延长线上,点C为⊙O上,过D作ED⊥AD,与AC的延长线相交于E,CD为⊙O的切线,AB=2,AE=3.(1)求证:CD=DE;(2)求BD的长;(3)若∠ACB的平分线与⊙O交于点F,P为△ABC的内心,求PF的长.。
基础知识点(一)知识点一:切线长定理1.切线长的概念: 在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长 2. 切线和切线长是两个不同的概念切线是一条与圆相切的直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
3. 定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
注:切线长定理为证明线段相等、角相等提供新的方法4. 方法总结解决有关圆的切线长问题时,往往需要我们构建基本图形。
(1)分别连结圆心和切点(2)连结两切点(3)连结圆心和圆外一点5. 切线,常有六性质1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径; 3切线垂直于过切点的半径; 4、经过圆心垂直于切线的直线必过切点; 5、经过切点垂直于切线的直线必过圆心。
6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.示例讲解例1如图,四边形 ABCD 的边AB 、BC 、CD DA 和圆O O 分别相切于点 L 、M 、N 、P ,求证: AD+BC=AB+CD 例2如图,卩是00外一点t PA.PB 分别和00切于点=4 c 叫是箱上任意•点,过点作O"的切线分 别交PA.PB 于点D&求;(I ) A PDE 的周长;例3(2014,云歯曲靖中考・23题* 10分)如图是GO 的切线胡/为切点是OO 的直径,GPR 的延长线相 交丁点“<1)若Z.1-20%求LAPB 的度数.(2)当"为多少度时请说明理由.(二)知识点二:三角形的内切圆1.问题:怎样做三角形内切圆2.方法:作角平分线1.作/ ABC 、 / ACB 的平分线 BM 和CN ,交点为I. ID 为半径作O I. O I 就是所求的圆.3. 定义和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
切线长定理及三角形的内切圆一知识讲解〈基础)【学习目标】l.了解切线长定义:理解三角形的内切圆及内心的定义:2.掌握切线长定理:利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理z从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆z与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心z三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点.要点诠释z(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形:(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积户即S=;Pr (S 7'J 三角形的面积P为三角形的周长r为内切圆阳)(3)三角形的外心与内心的区别:名称|确定方法|图形|性质外心(三角形|三角形三边中垂线的外接圆的圆|交点心)AB(1)OA=OB=OC: (2)外心不一定在三角形内部内心(三角形三角形三条角平分线内切圆的圆的交点心)【典型例题】类型一、切线长定理B c(1)到三角形三边距离相等:(2) O A、OB、oc分别平分L'.'.BAC、ζABC、丘ACB:(3)内心在三角形内部.。
1.(2叫湛江校级脚己知PA,PB :5t别切。
于A、B E为劣弧础上一点过E,#,1¥Ji;JJ�交PA于C、交PB于D.(1)若PA吨,求6PCD的周长.(2)若ζP=50°求ζDOC.p【答案与解析】解:(1)连接OE,..PA、PB与圆0相切,:.PA=PB=6,同理可得:AC=CE,BD=DE,6PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12: (2)γPA PB与圆O相切,二ζOAP=ζOBP=90。
切线长定理及三角形的内切圆—知识讲解(提高)责编:常春芳【学习目标】1.了解切线长定义;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心是这个三角形的三条角平分线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.【典型例题】类型一、切线长定理1.(2015•常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【答案与解析】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.【总结升华】本题是一道综合性很强的习题,考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质等,熟练掌握定理是解题的关键.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】解:连接OD.∵ OA=OD,、∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.∴∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【变式】已知:∠MAN=30°,O 为边AN 上一点,以O 为圆心、2为半径作⊙O ,交AN 于D 、E 两点,设AD=x ,⑴如图⑴当x 取何值时,⊙O 与AM 相切;⑵如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】解:(1)设AM 与⊙O 相切于点B ,连接OB ,则OB ⊥AB ;在Rt △AOB 中,∠A=30°, 则AO=2OB=4, ∴ AD=AO-OD , 即AD=2.x=AD=2. (2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=22 ∵OG⊥BC,2,2,在Rt △OAG 中,∠A=30°∴OA=2OG=22,MNEDO图(1).MANEDBCO图(2)∴x=AD=22-23.(2014•高港区二模)矩形ABCD中,AB=4,AD=3,以AB为直径在矩形内作半圆.DE切⊙O于点E(如图),则tan∠CDF的值为()A.B.C.D.【答案】B;【解析】解:如图,设FC=x,AB的中点为O,连接DO、OE.∵AD、DE都是⊙O的切线,∴DA=DE=3.又∵EF、FB都是⊙O的切线,∴EF=FB=3﹣x.∴在Rt△DCF中,由勾股定理得,(6﹣x)2=x2+42,解得,x=,则tan∠CDF===.故选B.类型二、三角形的内切圆4.(2015•西青区二模)已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.OCBA【答案与解析】解:(Ⅰ)∵⊙O 为四边形ABCD 的内切圆, ∴AD、AB 、CD 为⊙O 的切线, ∴OD 平分∠ADC,OA 平分∠BAD, 即∠O DA=∠ADC,∠OAD=∠BAC, ∵AB∥CD,∴∠ADC+∠BAC=180°, ∴∠ODA+∠OAD=90°, ∴∠AOD=90°;(Ⅱ)在Rt△AOD 中,∵AO=8cm,DO=6cm , ∴AD==10(cm ),∵AD 切⊙O 于E ,∴OE⊥AD, ∴OE•AD=OD•OA, ∴OE==(cm );(Ⅲ)∵F 是AD 的中点, ∴FO=AD=×10=5(cm ).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理. 举一反三:【变式】如图,△ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切与△ABC ,则△ABC 去除⊙O 剩余阴影部分的面积为( )A.12-πB. 12-2πC. 14-4πD. 6-π【答案】D.。