2012厦门市高三数学(理)3月质检卷(WORD)
- 格式:doc
- 大小:924.00 KB
- 文档页数:13
厦门市2024届高中毕业班第一次质量检测数学试题2024.1准考证号__________姓名__________(在此卷上答题无效)本试卷共4页,22小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的学校,班级和姓名填在答题卡上,正确粘贴条形码.2.作答选择题时,用2B 铅笔在答题卡上将对应答案的选项涂黑.3.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.4.考试结束后,考生上交答题卡.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 1z z ⋅=+(i 为虚数单位),则||z =() A.12B.22C.1D.2.设集合{}22M x x =-≤≤,{}21xN y y ==+,则M N ⋃=()A.[2,)-+∞ B.(1,2]C.[1,2]D.(1,)+∞3.已知直线l 与曲线3y x x =-在原点处相切,则l 的倾斜角为()A.π6B.π4 C.3π4 D.5π64.已知a ,b 为单位向量,若||||a b a b +=- ,则a b + 与a b - 的夹角为()A.π3B.π2C.2π3D.3π45.已知()f x 为定义在R 上的奇函数,当0x <时,2()21f x x x =-+,则(2)(0)f f +=()A.2B.1C.8- D.9-6.已知1a x x=+,e e x x b -=+,sin c x x =,则下列结论错误的为()A.[1,1]x ∃∈-,a c> B.[1,1]x ∃∈-,b c>C.[1,1]x ∃∈-,a c <D.[1,1]x ∃∈-,b c<7.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图所示的1,5,12,22被称为五边形数,将所有的五边形数从小到大依次排列,则其第8个数为()151222A.51B.70C.92D.1178.已知函数()f x 的定义域为R ,x ∀,y ∈R ,(1)(1)()()f x f y f x y f x y ++=+--,若(0)0f ≠,则(2024)f =()A.2- B.4- C.2D.4二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数π()2sin 23f x x ⎛⎫=- ⎪⎝⎭,则()A.()f x 的最小正周期为π2B.()f x 的图象关于点2π,03⎛⎫⎪⎝⎭成中心对称C.()f x 在区间π0,3⎡⎤⎢⎣⎦上单调递增D.若()f x 的图象关于直线0x x =对称,则01sin 22x =10.已知甲、乙两组数据分别为:20,21,22,23,24,25和a ,23,24,25,26,27,若乙组数据的平均数比甲组数据的平均数大3,则()A.甲组数据的第70百分位数为23B.甲、乙两组数据的极差相同C.乙组数据的中位数为24.5D.甲、乙两组数据的方差相同11.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 交于A ,B 两点,若122F F =,且2ABF △的周长为8,则()A.2a = B.C 的离心率为14C.||AB 可以为πD.2BAF ∠可以为直角12.如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,ABF △和DCE △均是等边三角形,且AB =(0)EF x x =>,则()A.//EF 平面ABCDB.二面角A EF B --随着x 的减小而减小C.当2BC =时,五面体ABCDEF 的体积(x)V 最大值为272D.当32BC =时,存在x 使得半径为32的球能内含于五面体ABCDEF 三、填空题:本大题共4小题,每小题5分,共20分.13.若π3sin 45α⎛⎫+=- ⎪⎝⎭,则πcos 4α⎛⎫-= ⎪⎝⎭_________.14.《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有_________种.15.已知平面α的一个法向量为(1,0,1)n = ,且点(1,2,3)A 在α内,则点(1,1,1)B 到α的距离为_________.16.设ABC 是面积为1的等腰直角三角形,D 是斜边AB 的中点,点P 在ABC 所在的平面内,记PCD与PAB 的面积分别为1S ,2S ,且121S S -=.当||PB =||||PA PB >时,||PA =_________;记PA PB a -=,则实数a 的取值范围为_________.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos 2a B ab A c +=.(1)求a ;(2)若2π3A =,且ABC 的周长为2+,求ABC 的面积.18.如图,在四棱锥E ABCD -中,//AD BC ,22AD BC ==,AB =,AB AD ⊥,EA ⊥平面ABCD ,过点B 作平面BD α⊥.(1)证明:平面//α平面EAC ;(2)已知点F 为棱EC 的中点,若2EA =,求直线AD 与平面FBD 所成角的正弦值.19.已知数列{}n a 的前n 项和为n S ,2124a a ==,当*n ∈N ,且2n ≥时,1132n n n S S S +-=-.(1)证明:{}n a 为等比数列;(2)设()()111n n n n a b a a +=--,记数列{}n b 的前n 项和为n T ,若21172m m T -+>⨯,求正整数m 的最小值.20.已知甲、乙两支登山队均有n 名队员,现有新增的4名登山爱好者a b c d ,,,将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.(1)求,,a b c 三人均被分至同一队的概率;(2)记甲,乙两队的最终人数分别为1n ,2n ,设随机变量12X n n =-,求()E X .21.已知函数1()ln 1x f x a x x -=-+有两个极值点1x ,2x .(1)求实数a 的取值范围;(2)证明:()()2121221f x f x a a x x a -->--.22.在平面直角坐标系xOy 中,点(1,0)P ,点A 为动点,以线段AP 为直径的圆与y 轴相切,记A 的轨迹为Γ,直线AP 交Γ于另一点B .(1)求Γ的方程;(2)OAB 的外接圆交Γ于点C (不与O ,A ,B 重合),依次连接O ,A ,C ,B 构成凸四边形OACB ,记其面积为S .(i )证明:ABC 的重心在定直线上;(ii )求S 的取值范围.厦门市2024届高中毕业班第一次质量检测数学试题2024.1准考证号__________姓名__________(在此卷上答题无效)本试卷共4页,22小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的学校,班级和姓名填在答题卡上,正确粘贴条形码.2.作答选择题时,用2B 铅笔在答题卡上将对应答案的选项涂黑.3.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.4.考试结束后,考生上交答题卡.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 1z z ⋅=+(i 为虚数单位),则||z =() A.12B.22C.1D.【答案】B 【解析】【分析】先求出复数z ,再求||z .【详解】由i 1z z ⋅=+,得()i 11z -=,即()()()i 1111i i 1i 1i 122z --===------,所以||2z ==,故选:B2.设集合{}22M x x =-≤≤,{}21xN y y ==+,则M N ⋃=()A.[2,)-+∞B.(1,2]C.[1,2]D.(1,)+∞【答案】A 【解析】【分析】由指数函数值域求集合N ,应用集合并运算求结果.【详解】由题设{|1}N y y =>,故M N ⋃={}{}221{|2}x x y y x x -≤≤⋃=≥-.故选:A3.已知直线l 与曲线3y x x =-在原点处相切,则l 的倾斜角为()A.π6B.π4C.3π4 D.5π6【答案】C 【解析】【分析】利用导数几何意义求直线的斜率,进而确定倾斜角.【详解】由231y x '=-,则0|1x y ='=-,即直线l 的斜率为1-,根据倾斜角与斜率关系及其范围知:l 的倾斜角为3π4.故选:C4.已知a ,b 为单位向量,若||||a b a b +=- ,则a b + 与a b - 的夹角为()A.π3B.π2C.2π3 D.3π4【答案】B 【解析】【分析】根据已知,应用向量数量积的运算律求()()a b a b +⋅-即可判断夹角大小.【详解】由题意22()()0a b a b a b +⋅-=-= ,则a b + 与a b - 的夹角为π2.故选:B5.已知()f x 为定义在R 上的奇函数,当0x <时,2()21f x x x =-+,则(2)(0)f f +=()A.2B.1C.8- D.9-【答案】D 【解析】【分析】根据奇函数的定义求解即可.【详解】当0x <时,2()21f x x x =-+,所以()()()2222219f -=--⨯-+=,因为()f x 为定义在R 上的奇函数,所以()()229f f =--=-,且()00f =,所以(2)(0)9f f +=-故选:D6.已知1a xx=+,e e x x b -=+,sin c x x =,则下列结论错误的为()A.[1,1]x ∃∈-,a c >B.[1,1]x ∃∈-,b c >C.[1,1]x ∃∈-,a c <D.[1,1]x ∃∈-,b c<【答案】D 【解析】【分析】举例即可判断ABC ;再根据基本不等式及三角函数的性质即可判断D.【详解】对于A ,当π6x =时,π63626π64a =+>+=,13222c =+=,此时a c >,所以[1,1]x ∃∈-,a c >,故A 正确;对于B ,当0x =时,2b =,c =b c >,所以[1,1]x ∃∈-,b c >,故B 正确;对于C ,当π6x =-时,π606πa =--<,13122c =-+=,此时a c <,所以[1,1]x ∃∈-,a c <,故C 正确;对于D ,当[]1,1x ∈-时,2e e x x b -=≥=+,当且仅当e e x x-=,即0x =时取等号,πsin 2sin 3c x x x ⎛⎫=+=+ ⎪⎝⎭,由[]1,1x ∈-,得πππ1,1333x ⎡⎤+∈-++⎢⎥⎣⎦,而ππππ1π,012332<+<<-+<,所以当π3x +,即π6x =时,πsin 2sin 23c x x x ⎛⎫=+=+= ⎪⎝⎭,所以2≤c ,当且仅当π6x =时取等号,而π06≠,所以[1,1]x ∀∈-,b c >,故D 错误.故选:D.7.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图所示的1,5,12,22被称为五边形数,将所有的五边形数从小到大依次排列,则其第8个数为()151222A.51B.70C.92D.117【答案】C 【解析】【分析】根据题图及前4个五边形数找到规律,即可得第8个数.【详解】由题图及五边形数知:后一个数与前一个数的差依次为4,7,10,13,16,19,22, ,所以五边形数依次为1,5,12,22,35,51,70,92, ,即第8个数为92.故选:C8.已知函数()f x 的定义域为R ,x ∀,y ∈R ,(1)(1)()()f x f y f x y f x y ++=+--,若(0)0f ≠,则(2024)f =()A.2-B.4- C.2D.4【答案】A 【解析】【分析】利用赋值法对,x y 进行赋值结合函数的周期可得答案.【详解】令0x y ==,得()()()()11000f f f f ⋅=-=,即()10f =,令0x =,得()()()()110f f y f y f y ⋅+=--=,得()()-=f y f y ,所以函数()f x 为偶函数,令1x y ==,得()()()2220ff f =-,令1x y ==-,得()()()()()202020f f f f f =--=-,()()2220f f ∴=,()()20f f ∴=或()()20f f =-,若()()20f f =,解得()00f =与已知()00f ≠矛盾,()()20f f ∴=-,即()()2222f f =,解得()22f =,()02f =-,令1y =,得()()()()1211f x f f x f x +⋅=+--,()()()2111f x f x f x ∴+=+--,()()11f x f x ∴+=--,()()2f x f x ∴+=-,∴()()4f x f x +=,所以函数()f x 的周期为4.()()202402f f ∴==-.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数π()2sin 23f x x ⎛⎫=-⎪⎝⎭,则()A.()f x 的最小正周期为π2B.()f x 的图象关于点2π,03⎛⎫⎪⎝⎭成中心对称C.()f x 在区间π0,3⎡⎤⎢⎣⎦上单调递增D.若()f x 的图象关于直线0x x =对称,则01sin 22x =【答案】BC 【解析】【分析】根据正弦型函数的性质,结合代入法、整体法逐一判断各项正误.【详解】由π()2sin 23f x x ⎛⎫=-⎪⎝⎭,最小正周期2ππ2T ==,A 错;由2π2ππ()2sin 20333f ⎛⎫=⨯-= ⎪⎝⎭,即2π,03⎛⎫⎪⎝⎭是对称中心,B 对;由π0,3x ⎡⎤∈⎢⎥⎣⎦,则πππ2[,]333x -∈-,显然()f x 在区间π0,3⎡⎤⎢⎥⎣⎦上单调递增,C 对;由题意00ππ5π2π2π326x k x k -=+⇒=+,故01sin 22x =±,D 错.故选:BC10.已知甲、乙两组数据分别为:20,21,22,23,24,25和a ,23,24,25,26,27,若乙组数据的平均数比甲组数据的平均数大3,则()A.甲组数据的第70百分位数为23B.甲、乙两组数据的极差相同C.乙组数据的中位数为24.5D.甲、乙两组数据的方差相同【答案】BD 【解析】【分析】根据已知平均数的关系求得28a =,再由极差、中位数、方差求法判断各项正误即可.【详解】由题设,2021222324252324252627366a ++++++++++=-,所以28a =,甲组数据中670% 4.2⨯=,故第70百分位数为24,A 错;甲乙组数据的极差都为5,B 对;乙组数据从小到大为23,24,25,26,27,28,故其中位数为252625.52+=,C 错;由上易知:甲的平均数为22.5,乙的平均数为25.5,所以甲的方差为2222221(2.5 1.50.50.5 1.5 2.5)6⨯+++++=3512,乙的方差为2222221(2.5 1.50.50.5 1.5 2.5)6⨯+++++=3512,故两组数据的方差相同,D 对.故选:BD11.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 交于A ,B 两点,若122F F =,且2ABF △的周长为8,则()A.2a = B.C 的离心率为14C.||AB 可以为πD.2BAF ∠可以为直角【答案】AC 【解析】【分析】根据已知可得1c =、2a =,进而有12e =,结合椭圆性质求相交弦长的范围及焦点三角形内角的范围判断各项的正误.【详解】由12221F F c c ==⇒=,如下图2ABF △周长为482a a =⇒=,故2223b a c =-=,所以,椭圆离心率为12e =,A 对,B 错;当AB x ⊥轴,即AB 为通径时2min 2||3b AB a==,且||24AB a <=,所以3||4AB ≤<,故||AB 可以为π,C 对;由椭圆性质知:当A 为椭圆上下顶点时2BAF ∠最大,此时222222c 41os 2a a F c a BA +∠-==,且2(0,π)BAF ∈∠,故2max π)3(BAF =∠,即2BAF ∠不可能为直角,D 错.故选:AC12.如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,ABF △和DCE △均是等边三角形,且23AB =(0)EF x x =>,则()A.//EF 平面ABCDB.二面角A EF B --随着x 的减小而减小C.当2BC =时,五面体ABCDEF 的体积(x)V 最大值为272D.当32BC =时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD 【解析】【分析】A 由线面平行的判定证明;B 设二面角A EF B --的大小为2α,点F 到面ABCD 的距离为h ,则3tan hα=,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI EKJ -,取,AB GI 的中点,M H ,设π(0)2FMH θθ∠=<≤,则3cos ,3sin MH FH θθ==,结合()2FGI EKJ F ABIG V x V V --=-并应用导数研究最值;D 先分析特殊情况:ABF △和DCE △所在平面均垂直于面ABCD 时构成正三棱柱ABF DCE -,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设//BC AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则//BC 面ADEF ,由面BCEF 面ADEF EF =,BC ⊂面BCEF ,则//BC EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则//EF 平面ABCD ,对;B :设二面角A EF B --的大小为2α,点F 到面ABCD 的距离为h ,则3tan hα=,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF x BC ==时tan α取最小值,即α取最小值,即二面角A EF B --取最小值,所以EF x =∈(0,)+∞,二面角先变小后变大,错;C :当2BC =,如图,把五面体ABCDEF 补成直三棱柱FGI EKJ -,分别取,AB GI 的中点,M H ,易得FH ⊥面ABCD ,3FM =,设π(02FMH θθ∠=<≤,则3cos ,3sin MH FH θθ==,()2ABCDEFFGI EKJ F ABIG V x V V V --==-=113sin (26cos )23sin 3cos 23θθθθ⨯⨯+-⨯⨯⨯cos θθθ=+,令()cos f θθθθ=+,则()2f θθθ'=+,令2()02cos cos 10f θθθ'=⇒+-=,可得1cos 2θ=或cos 1θ=-(舍),即π3θ=,π03θ<<,()0f θ'>,()f θ递增,ππ32θ<≤,()0f θ'<,()f θ递减,显然π3θ=是()f θ的极大值点,故max 127()2222f θ=+=.所以五面体ABCDEF 的体积(x)V 最大值为272,C 对;D :当32BC =时,ABF △和DCE △所在平面均垂直于面ABCD 时构成正三棱柱ABF DCE -,此时正三棱柱内最大的求半径342r =<,故半径为2的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当π3FMH ∠=时,3339,22FH IH IF ===,设FIG 的内切圆半径为1r ,则113313922222r ⨯⨯=⨯⨯,可得12r =>,另外,设等腰梯形EFMN 中圆的半径为2r ,则213π33tan434r r ==>=所以,存在x 使半径为2的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设π(02FMH θθ∠=<≤得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于2为关键.三、填空题:本大题共4小题,每小题5分,共20分.13.若π3sin 45α⎛⎫+=- ⎪⎝⎭,则πcos 4α⎛⎫-= ⎪⎝⎭_________.【答案】35-##0.6-【解析】【分析】应用诱导公式有ππππcos cos[()]sin()4424ααα⎛⎫-=+-=+ ⎪⎝⎭,即可求值.【详解】ππππ3cos cos[()sin()44245ααα⎛⎫-=+-=+=- ⎪⎝⎭.故答案为:35-14.《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有_________种.【答案】24【解析】【分析】先求出三人选书没有要求的选法,再排除三人选择的书完全相同的选法即可.【详解】若三人选书没有要求,则有3327=种,若三人选择的书完全相同,则有3种,所以三人选择的书不全相同,不同的选法有27324-=种.故答案为:24.15.已知平面α的一个法向量为(1,0,1)n =,且点(1,2,3)A 在α内,则点(1,1,1)B 到α的距离为_________.【答案】【解析】【分析】由题设得(0,1,2)BA =,应用向量法求点面距离即可.【详解】由题设(0,1,2)BA = ,则点(1,1,1)B 到α的距离为||||BA n n ⋅==16.设ABC 是面积为1的等腰直角三角形,D 是斜边AB 的中点,点P 在ABC 所在的平面内,记PCD与PAB 的面积分别为1S ,2S ,且121S S -=.当||PB =||||PA PB >时,||PA =_________;记PA PB a -=,则实数a 的取值范围为_________.【答案】①.②.(2)5【解析】【分析】以D 为原点,AB为x 轴正方向建立直角坐标系,设00(,)P x y ,根据已知得001||||12y x =-、2200(1)10x y -+=,即可得04x =,0||1y =,应用两点距离公式求||PA ;根据PA PB a -=确定P 的轨迹曲线,并写出方程,利用曲线性质列不等式求参数范围.【详解】以D 为原点,AB为x 轴正方向建立直角坐标系,设00(,)P x y ,则101||2S x =,20||S y =,所以001||||12x y -=,则001||||12y x =-,当||PB =,||||PA PB >时,00x >,即22200||(1)10PB x y =-+=,所以22001(1)(1)102x x -+-=,即200512320x x --=,可得04x =(负值舍),则0||1y =,故||PA ==若0PA PB a -=>,结合双曲线定义知:P 在以,A B 为焦点的双曲线上,但不含顶点,该双曲线为22221()1()22x y a a -=-,即22224414x y a a -=-,双曲线顶点的横坐标的绝对值小于半焦距1,则双曲线与曲线1||||12x y -=有交点,即双曲线的渐近线和曲线1||||12x y -=有交点,则双曲线的渐近线斜率的绝对值小于12,所以221115160424165a a <<⇒<<⇒<<,故4525a <<,所以实数a的取值范围为(,2)5.,(2)5【点睛】关键点点睛:第二空,注意P 在以,A B 为焦点的双曲线上,但不含顶点,将问题化为双曲线的渐近线斜率的绝对值小于12为关键.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos 2a B ab A c +=.(1)求a ;(2)若2π3A =,且ABC 的周长为2+,求ABC 的面积.【答案】(1)2a =;(2)4.【解析】【分析】(1)应用正弦边角关系及和角正弦公式有sin()2sin a A B C +=,再由三角形内角性质即可求边长;(2)应用余弦定理及已知得224b c bc ++=且b c +=1bc =,最后应用面积公式求面积.【小问1详解】由题设(cos cos )2a a B b A c +=,由正弦定理有(sin cos sin cos )2sin a A B B A C +=,所以sin()2sin a A B C +=,而πA B C +=-,故sin 2sin a C C =,又sin 0C >,所以2a =.【小问2详解】由(1)及已知,有2222241cos 222b c a b c A bc bc +-+-===-,可得224b c bc ++=,又2a b c ++=+,即b c +=,所以2()541b c bc bc bc +-=-=⇒=,故13sin 24ABC S bc A ==△.18.如图,在四棱锥E ABCD -中,//AD BC ,22AD BC ==,AB =,AB AD ⊥,EA ⊥平面ABCD ,过点B 作平面BD α⊥.(1)证明:平面//α平面EAC ;(2)已知点F 为棱EC 的中点,若2EA =,求直线AD 与平面FBD 所成角的正弦值.【答案】(1)证明见详解(2)277【解析】【分析】(1)利用三角形相似及等量代换得AC BD ⊥,利用线面垂直得EA BD ⊥,进而得BD ⊥平面EAC ,结合已知条件得证;(2)利用空间向量法可求【小问1详解】设AC 与BD 的交点为O ,连接OF ,因为AD BC ∥,且AB AD ⊥,所以AB BC ⊥,因为22AD =,所以1AD =,AB =,AB AD ⊥,且AB =,2BC =,AB BC ⊥,所以ABD BCA ,所以ABD BCA ∠=∠,所以BAC ABD BAC BCA ∠+∠=∠+∠,因为AB BC ⊥,所以90BAC BCA ∠+∠=︒,所以90BAC ABD ∠+∠=︒,即90BAO ABO ∠+∠=︒,所以90AOB ∠=︒,所以AO OB ⊥,即AC BD ⊥,因为EA ⊥平面ABCD ,BD ⊂平面ABCD ,所以EA BD ⊥,因为EA AC A = ,,EA AC ⊂平面EAC ,所以BD ⊥平面EAC ,又因为平面BD α⊥,且B ∉平面EAC ,所以平面//α平面EAC 【小问2详解】因为AB AD ⊥,EA ⊥平面ABCD ,所以,,AB AD EA 两两垂直,如图,以A 为原点,,,AB AD EA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系A xyz -,则()0,0,0A ,()0,1,0D ,()()(),0,0,2,2,0B E C ,所以())())0,1,0,,0,2,0,2AD BD BC BE ====,因为点F 为棱EC 的中点,所以()1,1,122BF BC BE ⎛⎫=+= ⎪ ⎪⎝⎭,设平面FBD 的一个法向量为(),,n x y z =,则00BD n BF n ⎧⋅=⎪⎨⋅=⎪⎩,所以0202y x y z +=++=⎪⎩,取2x =,得y z =-=,所以平面FBD的一个法向量为(2,n =-,记直线AD 与平面FBD 所成角为θ,则27sin cos ,7AD n AD n AD n θ⋅===,所以直线AD 与平面FBD 所成角的正弦值为277.19.已知数列{}n a 的前n 项和为n S ,2124a a ==,当*n ∈N ,且2n ≥时,1132n n n S S S +-=-.(1)证明:{}n a 为等比数列;(2)设()()111n n n n a b a a +=--,记数列{}n b 的前n 项和为n T ,若21172m m T -+>⨯,求正整数m 的最小值.【答案】(1)证明见解析;(2)3.【解析】【分析】(1)由题设112()n n n n S S S S +--=-,结合已知得到12n n a a +=在*n ∈N 上都成立,即可证结论;(2)由(1)得()()122121nn n n b +=--,裂项相消法求n T ,根据不等式关系得221m ->,即可确定正整数m 的最小值.【小问1详解】当2n ≥时,1111322()n n n n n n n S S S S S S S +-+-=-⇒-=-,即12n n a a +=,又2124a a ==,故12n n a a +=在*n ∈N 上都成立,且12a =,所以{}n a 是首项、公比均为2的等比数列.【小问2详解】由(1)知:2n n a =,则()()1121121212121n n n n n n b ++==-----,所以11111111212121211111133712n n n n n n T -++=-+-+--=----+-+- ,则21211117221712m m m m T -+-+=-+>⨯-⨯,即2121722182m m m -+-⨯-⨯<-=,所以221m ->,可得m>2,而*m ∈N ,故3m ≥,正整数m 的最小值为3.20.已知甲、乙两支登山队均有n 名队员,现有新增的4名登山爱好者a b c d ,,,将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.(1)求,,a b c 三人均被分至同一队的概率;(2)记甲,乙两队的最终人数分别为1n ,2n ,设随机变量12X n n =-,求()E X .【答案】(1)215;(2)3835.【解析】【分析】(1)由题意,,,a b c 三人均被分至同一队,即三人同分至甲队或乙队,分别求出a 被分至甲队即a 摸出红球的概率、b 被分至甲队即b 摸出红球的概率、c 被分至甲队即c 摸出红球的概率,再应用条件概率公式及互斥事件加法求,,a b c 三人均被分至同一队的概率;(2)根据题意有X 可能取值为4,2,0,分析X 各对应值的实际含义,并求出对应概率,进而求期望即可.【小问1详解】,,a b c 三人均被分至同一队,即三人同分至甲队或乙队,记事件A =“a 被分至甲队”,事件B =“b 被分至甲队”,事件C =“c 被分至甲队”,当a 即将摸球时,箱中有2个红球和2个黑球,则a 被分至甲队即a 摸出红球的概率为1()2P A =;当a 被分至甲队时,箱中有2个红球和3个黑球,则b 被分至甲队即b 摸出红球的概率为2(|)5P B A =;当,a b 均被分至甲队时,箱中有2个红球和4个黑球,则c 被分至甲队即c 摸出红球的概率为1(|)3P C AB =;所以121()()(|)255P AB P A P B A ==⨯=,则111()()(|)5315P ABC P AB P C AB ==⨯=,同理知:新增登山爱好者,,a b c 均被分至乙队的概率也为115,所以,,a b c 三人均被分至同一队的概率为215.【小问2详解】由题设,X 可能取值为4,2,0,4X =为新增的4名登山爱好者被分至同一队,则22224(4)24567105P X ⨯⨯⨯==⨯=⨯⨯⨯,2X =为新增的4名登山爱好者中有3名均被分至同一队,其余1名被分至另一队,设新增的第(1,2,3,4)k k =名登山爱好者被单独分至甲队或乙队,则123339(1)2456770P P k ⨯⨯⨯===⨯=⨯⨯⨯,223339(2)2456770P P k ⨯⨯⨯===⨯=⨯⨯⨯,322434(3)2456735P P k ⨯⨯⨯===⨯=⨯⨯⨯,422252(4)2456721P P k ⨯⨯⨯===⨯=⨯⨯⨯,所以12347(2)15P X P P P P ==+++=,X 0=为新增的4名登山爱好者中各有2名被分至甲队和乙队,则52(0)1(2)(4)105P X P X P X ==-=-==,所以475238()4201051510535E X =⨯+⨯+⨯=.21.已知函数1()ln 1x f x a x x -=-+有两个极值点1x ,2x .(1)求实数a 的取值范围;(2)证明:()()2121221f x f x a a x x a -->--.【答案】(1)1(0,2;(2)证明见解析.【解析】【分析】(1)利用导数,结合()f x 的极值点个数,得到0a >且1x ,2x 是22(1)0ax a x a +-+=的两个不同根,列不等式组求参数范围;(2)设1201x x <<<,应用分析法将问题化为证11212211ln 21x x x x x x -<+,令12(0,1)x t x =∈,则证11ln 21t t t -<+,再由12a =对应()f x 单调性即可证结论.【小问1详解】由题设22222(1)()(1)(1)a ax a x a f x x x x x +-+'=-=++且0x >,若0a ≤,则()0f x '<在(0,)+∞上恒成立,即()f x 递增,不可能有两个极值点,不符;故0a >,又()f x 有两个极值点,则1x ,2x 是22(1)0ax a x a +-+=的两个不同正根,所以()()22Δ4144120100a a a a aa ⎧=--=->⎪-⎪->⎨⎪>⎪⎩,可得102a <<,即实数a 的取值范围是1(0,2.【小问2详解】由(1)102a <<且122(1)a x x a-+=,121=x x ,不妨设1201x x <<<,则()()1212f x f x x x -=-1212121211ln ln 11x x a x a x x x x x ----+++-112212122()ln (1)(1)x x x a x x x x x --++=-121212121212ln (ln ln )21x a x a x x a x x x x x x x x -=-=--+++-,要证()()2121221f x f x a a x x a -->--,需证1212ln ln 1211x x a x x a --->--,即1212ln ln 1x x a x x a ->--,只需证121212ln ln 2x x x x x x ->-+,即11212211ln 21x x x x x x -<+,令12(0,1)x t x =∈,则证11ln 21t t t -<+,由(1),12a =时2212(1)(1)02ax a x a x +-+=-≥,即()0f x '≥,所以11()ln 21x f x x x -=-+在(0,)+∞上递增,又01t <<,故()(1)0f t f <=,即11ln 21t t t -<+,综上,()()2121221f x f x a a x x a -->--.【点睛】关键点点睛:第二问,设1201x x <<<,应用分析法将问题转化为证11212211ln 21x x x x x x -<+为关键.22.在平面直角坐标系xOy 中,点(1,0)P ,点A 为动点,以线段AP 为直径的圆与y 轴相切,记A 的轨迹为Γ,直线AP 交Γ于另一点B .(1)求Γ的方程;(2)OAB 的外接圆交Γ于点C (不与O ,A ,B 重合),依次连接O ,A ,C ,B 构成凸四边形OACB ,记其面积为S .(i )证明:ABC 的重心在定直线上;(ii )求S 的取值范围.【答案】(1)24y x=(2)证明见详解;32,2⎛⎫+∞ ⎪ ⎪⎝⎭【解析】【分析】(1)设(),A x y ,根据已知条件列出方程化简即得;(2)(i )因为,,,O A B C 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x ⎧+++=⎨=⎩,得()42416160y d y ey +++=,结合重心公式可得证;(ii )记,OAB ABC △△的面积分别为12,S S ,用已知条件分别表示出12,S S ,进而表示出面积为S 的表达式,然后利用导数求最值即得.【小问1详解】设(),A x y ,则线段AP 的中点坐标为1,22x y +⎛⎫ ⎪⎝⎭,因为以线段AP 为直径的圆与y 轴相切,所以1122x AP +==,化简,得24y x =.【小问2详解】(i )因为,,,O A B C 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x⎧+++=⎨=⎩,消去x ,得()42416160y d y ey +++=,即()()3416160y y d y e +++=,所以123,,y y y 即为关于y 的方程()3416160y d y e +++=的3个根,则()()()()312341616y d y e y y y y y y +++=---,因为()()()()()32123123122313123y y y y y y y y y y y y y y y y y y y y y ---=-+++++-,由2y 的系数对应相等得,1230y y y ++=,即()123103y y y ++=,因为ABC 的重心的纵坐标为()12313y y y ++,所以ABC 的重心在定直线0y =上.(ii )记,OAB ABC △△的面积分别为12,S S ,由已知得直线AB 的斜率不为0设直线AB :1x my =+,联立241x xy y m =+=⎧⎨⎩,消去x ,得2440y my --=,所以12124,4y y m y y +=⋅=-,所以1121122S OP y y =⋅⋅-==,由(i )得,()3124y y y m =-+=-,所以()22233114444x y m m ==⨯-=,即()24,4C m m -,因为()212122444AB x x m y y m =++=++=+,点C 到直线AB的距离d =,所以()22211448122S AB d m m =⋅⋅=⋅+=-,所以)221281181S S S m m =+=-=+-不妨设0m >,且A 在第一象限,即120,0y y ><,340y m =-<,依次连接O ,A ,C ,B 构成凸四边形OACB ,所以()3122y y y y =-+<,即122y y -<,又因为124y y ⋅=-,2242y y <,即222y <,即20y <<,所以122244m y y y y =+=->+=,即24m >,即218m >,所以)218116S m m=+-=,设t =,则324t >,令()()2161f t t t =-,则()()()2221611614816f t t t t t '='=-+--,因为324t >,所以()248160f t t -'=>,所以()f t 在区间32,4∞⎛⎫+ ⎪ ⎪⎝⎭上单调递增,所以()323242f t f ⎛⎫>= ⎪ ⎪⎝⎭,所以S 的取值范围为32,2∞⎛⎫+ ⎪ ⎪⎝⎭【点睛】第二问:(i )关键是把证明ABC 的重心在定直线上转化为方程根的问题,利用韦达定理以及重心公式可得.(ii )关键是把四边形OACB 拆成两个三角形,然后用相同的变量分别表示两个三角形的面积以及变量的取值范围的确定,进而得到四边形OACB 面积的表达式,然后利用导数求最值即得.。
2012年福建省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出分四个选项中,只有一项是符合题目要求的.1.(2012•福建)若复数z满足zi=1﹣i,则z等于()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.43.(2012•福建)下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件4.(2012•福建)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱5.(2012•福建)下列不等式一定成立的是()A.lg(x2+)>lgx(x>0)B.sinx+≥2(x≠kx,k∈Z)C.x2+1≥2|x|(x∈R)D.(x∈R)6.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.7.(2012•福建)设函数则下列结论错误的是()A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数8.(2012•福建)已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B.C.3D.59.(2012•福建)若函数y=2x图象上存在点(x,y)满足约束条件,则实数m的最大值为()A.B.1C.D.210.(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.(2012•福建)(a+x)4的展开式中x3的系数等于8,则实数a=_________.12.(2012•福建)阅读图所示的程序框图,运行相应地程序,输出的s值等于_________.13.(2012•福建)已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为_________.14.(2012•福建)数列{a n}的通项公式a n=ncos+1,前n项和为S n,则S2012=_________.15.(2012•福建)对于实数a和b,定义运算“﹡”:a*b=设f(x)=(2x﹣1)﹡(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是_________.三、解答题:本大题共5小题,共80分,解答题写出文字说明,证明过程或演算步骤.16.(2012•福建)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:品牌甲乙首次出现故障时间x(年)0<x<1 1<x≤2 x>2 0<x≤2 x>2轿车数量(辆) 2 3 45 5 45每辆利润(万元) 1 2 3 1.8 20.9将频率视为概率,解答下列问题:(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(II)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.17.(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°﹣sin13°cos17°(2)sin215°+cos215°﹣sin15°cos15°(3)sin218°+cos212°﹣sin18°cos12°(4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°(5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°(Ⅰ)试从上述五个式子中选择一个,求出这个常数(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.18.(2012•福建)如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.19.(2012•福建)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.20.(2012•福建)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.四、选考题(题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分。
阶段检测三数列与不等式一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b,c为实数,且a<b<0,则下列结论正确的是()A.ac2<bc2B.<C.>D.a2>ab>b22.若集合A={x|x(x-2)<3},B={x|(x-a)(x-a+1)=0},且A∩B=B,则实数a的取值范围是()A.-1<a<3B.0<a<3C.0<a<4D.1<a<43.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.844.已知{a n}是等差数列,a5=15,a10=-10,记数列{a n}的第n项到第n+5项的和为T n,则|T n|取得最小值时的n的值为()A.5或6B.4或5C.6或7D.9或105.设变量x,y 满足约束条件则目标函数z=y-2x的最小值为()A.-7B.-4C.1D.26.已知函数f(x)=若数列{a n}(n∈N*)的前n项和为S n,且a1=,a n+1=f(a n),则S2016=()A.895B.896C.897D.8987.已知定义在R上的函数f(x)对任意x1,x2∈R,x1≠x2,都有(x1-x2)f(x1)-f(x2)]>0,若函数f(x+1)为奇函数,则不等式f(1-x)>0的解集为()A.(-∞,-1)B.(-∞,0)C.(0,+∞)D.(1,+∞)8.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.(-10,+∞)B.(-∞,-10)C.(-∞,+∞)D.(-∞,-8)9.已知点P(m,n)到点A(0,4)和B(-8,0)的距离相等,则+的最小值为()A.-3B.3C.16D.410.函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,若x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,·的取值范围为()A.12,+∞)B.0,3]C.3,12]D.0,12] 11.已知数列{a n}是等差数列,数列{b n}满足b n=a n a n+1a n+2(n∈N*),设S n为{b n}的前n项和,若a12=a5>0,则当S n取得最大值时n 的值为()A.15B.16C.17D.1812.在数列{a n}中,对于任意n∈N*,若存在常数λ1,λ2,…,λk,使得a n+k=λ1a n+k-1+λ2a n+k-2+…+λk a n(λi≠0,i=1,2,…,k)恒成立,则称数列{a n}为k阶数列.现给出下列三个结论:①若a n=2n,则数列{a n}为1阶数列;②若a n=2n+1,则数列{a n}为2阶数列;③若a n=n2,则数列{a n}为3阶数列.其中正确结论的序号是()A.①②B.①③C.②③D.①②③1 2 3 4 5 6 7 8 9 10 11 12 得分二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知集合A={x|x2-2x-3≤0},B={x|log2(x2-x)>1},则A∩B=.14.已知正实数m,n满足m+n=1,且使+取得最小值.若曲线y=x a过点P,则a的值为.15.在数列{a n}中,已知a1=1,a n+1-a n=sin,记S n为数列{a n}的前n项和,则S2016=.16.已知公差为2的等差数列{a n}及公比为2的等比数列{b n}满足a1+b1>0,a2+b2<0,则a3+b3的取值范围是.三、解答题(共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设数列{a n}的前n项和为S n,已知a2=2,S4=4,a n+a n+2=2a n+1对任意n∈N*恒成立.(1)求数列{a n}的通项公式;(2)在平面直角坐标系中,设u=(4,S2),v=(4k,-S3),若u∥v,求实数k的值.18.(本小题满分12分)已知关于x的不等式ax2-3x+2>0的解集为{x|x<1或x>b}.(1)求a,b的值;(2)当c∈R时,解关于x的不等式ax2-(ac+b)x+bc<0(用c表示).19.(本小题满分12分)设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n-a n+1+a n+2)x+a n+1cosx-a n+2sinx满足f'=0.(1)求数列{a n}的通项公式;(2)若b n =2,求数列{b n}的前n项和S n. 20.(本小题满分12分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.在2015年“双十一”网购狂欢节前,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足p=3-(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2p)万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力能满足市场的销售需求.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润.21.(本小题满分12分)已知正项数列{a n},{b n},{c n}满足b n=a2n-1,c n=a2n,n∈N*,数列{b n}的前n项和为S n,(b n+1)2=4S n,数列{c n}的前n项和T n=3n-1.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和A n.22.(本小题满分12分)已知等差数列{a n}的前n项和为S n,a2=2,S5=15,数列{b n}满足:b1=,b n+1=b n(n∈N*),数列{b n}的前n 项和为T n.(1)求数列{a n}的通项公式及前n项和;(2)求数列{b n}的通项公式及前n项和;(3)记集合M=,若M的子集个数为16,求实数λ的取值范围.阶段检测三数列与不等式一、选择题1.D因为a<b<0,所以>,<1,>1,故<,>均不成立;当c2=0时,ac2<bc2不成立.故选D.2.B因为集合A={x|x(x-2)<3}={x|-1<x<3},B={x|(x-a)(x-a+1)=0}={a,a-1},且A∩B=B,所以B⊆A,即B中的两个元素a,a-1都在集合A中,则-1<a<3且-1<a-1<3,那么a的取值范围是0<a<3.3.B由于a1+a3+a5=a1(1+q2+q4)=21,a1=3,所以q4+q2-6=0,所以q2=2(q2=-3舍去),所以a3=6,a5=12,a7=24,所以a3+a5+a7=42.故选B.4.A 由得从而等差数列{a n}的通项公式为a n=40-5n,得T n=(40-5n)+…+(15-5n)=165-30n,因为|T n|≥0,且n∈N*,故当n=5或6时,|T n|取得最小值15.5.A解法一:将z=y-2x化为y=2x+z,作出可行域和直线y=2x(如图所示),当直线y=2x向右下方平移时,直线y=2x+z 在y轴上的截距z减小,数形结合知当直线y=2x+z经过点B(5,3)时,z取得最小值3-10=-7.故选A.解法二:易知平面区域的三个顶点坐标分别为(1,3),(2,0),(5,3),分别代入z=y-2x得z的值为1,-4,-7,故z的最小值为-7.故选A.6.B a1=,a2=f =,a3=f =-3=-,a4=,……,可得数列{a n}是周期为3的数列,一个周期内的三项之和为,又2016=672×3,所以S2016=672×==896.7.B令x1<x2,因为(x1-x2)f(x1)-f(x2)]>0,所以f(x1)<f(x2),故f(x)在R上是增函数.由f(x+1)为奇函数,得f(x)的图象关于点(1,0)对称,由不等式f(1-x)>0,得1-x>1,即x<0.8.A解法一:不等式2x+m+>0可化为2(x-1)+>-m-2,∵x>1,∴2(x -1)+≥2×2=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴-m-2<8,解得m>-10,故选A.解法二:不等式2x+m+>0对一切x∈(1,+∞)恒成立可化为m>,x∈(1,+∞),令f(x)=-2x-,x∈(1,+∞),则f(x)=--2≤-2-2=-2×4-2=-10,当且仅当x=3时取等号,∴m>-10,故选A.9.C因为点P(m,n)到点A(0,4)和B(-8,0)的距离相等,所以=,即2m+n=-6,又>0,>0,所以+≥2=2=2=16,当且仅当即2m=n=-3时取等号.10.D由题意得函数y=f(x)的图象关于点(0,0)对称,则函数y=f(x)为奇函数,由f(x2-2x)+f(2y-y2)≤0,得f(x2-2x)≤f(-2y+y2),又y=f(x)为定义在R上的减函数,所以x2-2x≥-2y+y2,即(x-y)(x+y-2)≥0.作出不等式组表示的平面区域,如图中阴影部分所示,易得·=x+2y,设t=x+2y.易知当直线t=x+2y过点C(4,-2)时,t取得最小值0,当直线过点B(4,4)时,t取得最大值12,即·的取值范围为0,12].11.B设{a n}的公差为d,由a12=a5>0,得a1=-d,d<0,所以a n =d,从而当1≤n≤16时,a n>0,当a≥17时,a n<0,所以当1≤n≤14时,b n>0,b15=a15a16a17<0,b16=a16a17a18>0,当n≥17时,b n<0,故S14>S13>…>S1,S14>S15,S15<S16,S16>S17>S18>….因为a15=-d>0,a18=d<0,所以a15+a18=-d+d=d<0,所以b15+b16=a16a17(a15+a18)>0,所以S16>S14,故当S n取得最大值时n=16.12.D①∵a n=2n,∴∃k=1,λ=2,使a n+k=λa n+k-1成立,∴{a n}为1阶数列,故①正确;②∵a n=2n+1,∴∃k=2,λ1=2,λ2=-1,使a n+k=λ1a n+k-1+λ2a n+k-2成立,∴{a n}为2阶数列,故②正确;③∵a n=n2,∴∃k=3,λ1=3,λ2=-3,λ3=1,使a n+k=λ1a n+k-1+λ2a n+k-2+λ3a n+k-3成立,∴{a n}为3阶数列,故③正确.二、填空题13.答案(2,3]解析因为A={x|x2-2x-3≤0}=-1,3],B={x|log2(x2-x)>1}={x|x2-x>2}=(-∞,-1)∪(2,+∞),所以A∩B=(2,3]. 14.答案解析+=(m+n)=17++≥17+2=25,当且仅当n=4m=时取等号,故点P,由于曲线y=x a过点P,所以=,从而可得a=.15.答案1008解析由a n+1-a n =sin⇒a n+1=a n +sin,∴a2=a1+sinπ=1+0=1,a3=a2+sin=1+(-1)=0,a4=a3+sin2π=0+0=0,a5=a4+sin=0+1=1,如此继续可得a n+4=a n(n∈N*),数列{a n}是一个以4为周期的数列,而2016=4×504,因此S2016=504×(a1+a2+a3+a4)=504×(1+1+0+0)=1008.16.答案(-∞,-2)解析由题意可得该不等式组在平面直角坐标系a1Ob1中表示的平面区域如图中阴影部分所示.当直线a3+b3=a1+4+4b1经过点(2,-2)时a3+b3取得最大值-2,又(2,-2)不在平面区域内,则a3+b3<-2.三、解答题17.解析(1)∵a n+a n+2=2a n+1对任意n∈N*恒成立,∴数列{a n}是等差数列.设数列{a n}的公差为d,∵a2=2,S4=4,∴解得∴a n=a1+(n-1)d=-2n+6.(2)S n =·n=·n=-n2+5n,∴S2=6,S3=6,∴u=(4,6),v=(4k,-6),∵u∥v,∴4×(-6)=6×4k,∴k=-1.18.解析(1)由已知得1,b是方程ax2-3x+2=0的两个实数根,且b≥1,a>0,所以解得(2)由(1)得原不等式可化为x2-(2+c)x+2c<0,即(x-2)(x-c)<0,所以当c>2时,所求不等式的解集为{x|2<x<c},当c<2时,所求不等式的解集为{x|c<x<2},当c=2时,所求不等式的解集为⌀.19.解析(1)由题设可得f'(x)=a n-a n+1+a n+2-a n+1sinx-a n+2·cosx.对任意n∈N*,f'=a n-a n+1+a n+2-a n+1=0,即a n+1-a n=a n+2-a n+1,故{a n}为等差数列.由a1=2,a2+a4=8,求得{a n}的公差d=1,所以a n=2+(n-1)×1=n+1.(2)b n =2=2=2n++2,故S n=b1+b2+…+b n=2n+2·+=n2+3n+1-.20.解析(1)由题意知y=p-x-(10+2p),将p=3-代入,化简得y=16--x(0≤x≤a).(2)由(1)知y=17-,当a≥1时,y≤17-2=13,当且仅当=x+1,即x=1时取等号.所以促销费用投入1万元时,厂家的利润最大,最大利润为13万元.当a<1时,函数y=17-在0,a]上单调递增,所以当x=a时,函数有最大值,所以促销费用投入a万元时,厂家的利润最大,最大利润为万元.综上,当a≥1时,促销费用投入1万元,厂家的利润最大,且最大利润为13万元;当a<1时,促销费用投入a万元,厂家的利润最大,且最大利润为万元.21.解析(1)由(b n+1)2=4S n,得(b1+1)2=4b1,∴b1=1.又(b n-1+1)2=4S n-1,n≥2,则(b n+1)2-(b n-1+1)2=4S n-4S n-1=4b n,n≥2,化简得-=2(b n+b n-1),n≥2,又b n>0,所以b n-b n-1=2,n≥2,则数列{b n}是首项为1,公差为2的等差数列,所以b n=1+2(n-1)=2n-1=a2n-1,所以当n为奇数时,a n=n.由T n=3n-1得c1=2,T n-1=3n-1-1,n≥2,则c n=3n-3n-1=2×3n-1,n≥2,当n=1时,上式也成立,所以c n=2×3n-1=a2n,所以当n为偶数时,a n =2×.所以a n =(2)①当n为偶数时,A n 中有个奇数项,个偶数项,奇数项的和为=,偶数项的和为=-1,所以A n =+-1;②当n为奇数时,n+1为偶数,A n=A n+1-a n+1=+-1-2×=+-1.综上,可得A n =22.解析(1)设数列{a n}的公差为d,由题意得解得所以a n=n,S n =.(2)由题意得=·,当n≥2时,b n =··…··b1=·=,又b1=也满足上式,故b n =.故T n =+++…+①,T n =+++…++②,①-②得T n =+++…+-=-=1-,所以T n =2-.(3)由(1)(2)知=,令f(n)=,n∈N*,则f(1)=1,f(2)=,f(3)=,f(4)=,f(5)=.因为f(n+1)-f(n)=-=,所以当n≥3时,f(n+1)-f(n)<0,f(n+1)<f(n),因为集合M的子集个数为16,所以M中的元素个数为4,所以不等式≥λ,n∈N*的解的个数为4,所以<λ≤1.。
2024届福建省厦门市高三下学期第三次质量检测全真演练物理试题(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题波源位于坐标原点的一列简谐横波,经向右传播到达P点,此时波源处于Q点。
已知这列波振幅,P、Q两点坐标分别为(5m,0)和(0,1.5cm),则( )A.该波的频率为B.该波波源起振方向向下C.波源Q向右运动需要D .该波中的质点,在周期内所走最短路程为第(2)题如图所示的电路中,电源的电动势,内阻不计,电阻,,滑动变阻器的最大阻值,电容器MN 的电容,现将滑动触头L置于最左端a点,合上开关S,经过一段时间电路处于稳定,此时一带电油滴恰好静止在MN之间的P点,下列说法正确的是( )A.油滴带负电B.若断开开关S,则通过R1的电荷量为C.若滑动触头向右滑动,则油滴将向上加速运动D.若从a点向右移动滑动触头L,至aL间电阻为20Ω时,则下极板N的电势降低了4V第(3)题我国科学家吴有训在上世纪20年代进行X射线散射研究,为康普顿效应的确立做出了重要贡献。
研究X射线被较轻物质散射后光的成分发现,散射谱线中除了有波长与原波长相同的成分外,还有其他波长的成分,这种现象称为康普顿效应。
如图所示,在真空中,入射波长为的光子与静止的电子发生弹性碰撞。
碰后光子传播方向与入射方向夹角为37°,碰后电子运动方向与光子入射方向夹角为53°(,),下列说法正确的是()A.该效应说明光具有波动性B.碰撞后光子的波长为C.碰撞后电子的德布罗意波长为D.碰撞后光子相对于电子的速度大于第(4)题下列关于光的说法中正确的是( )A.无影灯是利用光的衍射原理B.增透膜应用了光的偏振现象C.形成泊松亮斑是因为光的衍射D.立体电影应用了光的干涉现象第(5)题在跳高比赛中,运动员跳跃过程可视为斜抛运动,不计空气阻力。
下列反映跳跃过程中运动员水平方向位移的大小x、竖直方向位移的大小y、动能E k、重力瞬时功率大小P、时间t之间关系的图像,可能正确的是( )A.B.C.D.第(6)题硼中子俘获治疗技术(BNCT)是近年来国际肿瘤治疗领域新兴快速发展的精准诊疗技术,其原理是进入癌细胞内的硼原子核吸收慢中子,转变为锂原子核和粒子,并释放出γ光子。
准考证号:姓名:(在此卷上答题无效)2023—2024学年第一学期初中毕业班期末考试数学本试卷共6页.满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.可以直接使用2B 铅笔作图.一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A. 向上一面的点数是2B. 向上一面的点数是奇数C. 向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x²=0B.x²-3x-1=0C.x²-2x+5=0D.x²+1=03.如图1,△ABC 内接于◎0,直径AD交BC 于点P, 连接OB.下列角中,等于的是A. ∠OABB. ∠ACBC. ∠CADD. ∠OPB4.关于y=(x-2)²-1(x为任意实数)的函数值,下列说法正确的是图 1A.最小值是-1B.最小值是2C.最大值是-1D. 最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x, 可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)²=8D.5(1+2x)²=86.如图2,直线l 是正方形ABCD的一条对称轴,l 与AB,CD 分别交于点M,N.AN,BC 的延长线相交于点P, 连接BN.下列三角形中,与△NCP 成中心对称的是A.△NCBB.△BMN图2C.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4 圈才能拧紧,小梧用扳手的 卡口卡住螺帽,通过转动扳 手的手柄来转动螺帽(如图3 所示).以此方式把这个螺帽 拧紧,他一共需要转动扳手 的次数是A.4B.16图3C.24D.32 8.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s (单位:m) 关于滑行的时间t (单位:s )的函数解析式是,则t 的取值范围是A.O≤t≤600B.20≤t≤40C.O≤t≤40 二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他 差别,从袋子中随机摸出1个球,摸出红球的概率是10.抛物线y=3(x-1)²+4的对称轴是11.已知x=1 是方程x²+mx-3=0 的根,则m 的值为 12.四边形ABCD 内接于◎0,E 为 CD 延长线上一点,如图4所示,则D.O≤t≤20图4图中与∠ADE 相等的角是13. 如图5,在△ABC 中,AB=AC=5,BC=6,AD 是△ABC 的角平分线. 把△ABD 绕点A 逆时针旋转90°得到△AEF, 点B 的对应点是点E, 则点D 与点E 之间的距离是14.在平面直角坐标系xOy 中,□ABCD 的对角线交于点0.若点A 的 图5 坐标为(-2,3),则点C 的坐标为 .15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物 的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1 4 6 8 10 12 14累计试验种子数(单位:千粒)15810.5 12.5 14.5 16.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要 准备用以辐射的种子数(单位:千粒): 16.有四组一元二次方程:①x²-4x+3=0和3x²-4x+1=0;②x²-x-6=0和6x²+x-1=0;③x²-4=0和4x²-1=0;④4x²-13x+3=0和3x²-13x+4=0. 这四组方程具有共同特征, 我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个 有两个不相等实数根但没有“相关方程”的一元二次方程:数学试题 第2页(共6页)三、解答题(本大题有9 小题,共86分)17.(本题满分8分解方程x²-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.图619.(本题满分8分)先化简,再求值:,其中m=√2+1.20.(本题满分8分)如图7,AB与◎0相切于点A,OB交O0 于点C,OC=8,AC的长为2π,求BC的长.图7数学试题第3页(共6页)21.(本题满分8分)在矩形ABCD中,点E 在AD边上,∠ABE=60°, 将△ABE 绕点B 顺时针旋转得到△FBG, 使点A的对应点F 在线段BE上.(1)请在图8中作出△FBG;(要求:尺规作图,不写作法,保留作图痕迹)(2)FG 与BC交于点Q, 连接EQ,EC, 若EC=BQ, 请探究AE 与DE的数量关系.图822.(本题满分10分)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m, 横向排列30个车位,每个车位宽为3m, 各车位有相应号码,如:201 表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316 前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.316转图9 停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1 m/s, 载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421 前往401取车,升降台回到第四层40s 后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.数学试题第4页 (共6页)23.(本题满分10分)正方形的顶点T 在某抛物线上,称该正方形为该抛物线的“T 悬正方形”.若直线l:y=x+t与“T 悬正方形”以T为端点的一边相交,且点T 到直线l的距离为√2(2-t),则称直线l 为该正方形的“T 悬割线”.已知抛物线M:y=-(x-1)²+m²-2m+4,其中,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A 悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l 是正方形ABCD的“A悬割线”,现将抛物线M 及正方形ABCD进行相同的平移,是否存在直线l 为平移后正方形的“C 悬割线”的情形?若存在,请探究抛物线M 经过了怎样的平移;若不存在,请说明理由.24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P(P 不与 0重合),连接PC,以点P 为圆心,PC 长为半径的圆交直线BC 于点E,直线AE 与直线CD 交于点F, 如图10所示.(1)当∠ABC=60°时,求证:直线AB与◎P 相切;(2)当AO=2,AF²+EF²=16时,求∠ABC 的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C 与E 不重合,请探究∠AFC与∠CAF 的数量关系.图10数学试题第5页(共6页)25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:【背景】小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A 超市了吗?再开一个能吸引顾客吗?”这个问题引起了大家对超市的吸引力展开研究的兴趣.【过程】为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素”为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p” 作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s (单位:m²) 及其与居民住处的距离r (单位:m), 并对p,s,r 之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大. 这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为 (G是引力常数),我们是不是可以作个类比,试一下看p与的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与对应关系的图11 r²散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A 超市为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系,规定一个单位长度代表1 m 长,则小梧家的坐标为(400,200). A 超市的占地面积为2000m², 规划中的B 超市在A 超市的正东方向.根据(1)中的对应关系,解决下列问题:① 若B 超市与A 超市距离600 m~800m,且对小梧家的吸引力与A 超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划 B 超市开在距A 超市300m处,且占地面积最大为490m²,要想与A 超市竞争百花巷的居民,该规划是否合适?请说明理由.数学试题第6页(共6页)。
2009年3月厦门市高中毕业班质量检查数学(理科)分析数学(理科)客观题统计数学(理科)分题质量统计数学(理科)分数段统计填空题:(题组长:禾山中学 周卓)1. 11题不容易出情况,得分率应该是最高的。
2. 本小题是要写出渐近线方程,标准答案是03=±y x 。
学生出现了x y 3±=,y x 33±=,0322=±y x 这几种正确形式,还有x y 212±=等没化简的。
最多出现漏写x 的情况(3±=y ),以及漏写正负号的情况(x y 3=);还有3±=xy;写成平方式的:012422=+y x 、012422=-y x ;还有1322=±yx 的这几种错误。
3. 13题很多0.32,0.64的答案。
4. 14题标准答案是64,有学生写成62,也正确。
但是有写成n2,没有求出n 来。
5. 15题有学生没省清题意直接写2。
需要的是比分2:0。
第16题:(题组长:湖滨中学 李明 科技中学 钟旗法)本题主要考查函数零点的概念,三角函数性质、三角恒等变换等基本知识,考查推理和运算能力.其他解法:(许多同学书写的不够完整)由())1f x x π=--,列表如下:∴max ()1.8f x x ==时, 另有学生通过作图由图像获得答案。
存在的主要问题: 1. 求得())4f x x π=-,漏掉-1, 也有不少同学漏掉了2;2.由()2sin cos cos 21f x x x x =--直接得T π=,缺乏理由; 3. 值域中只求了当38x π=1,忘了求值域;4. 没求22,()2cos 2)5a f x x x T aπ=+=直接得. 5. 解题格式不够规范,甚至出现只有答案,没有过程的现象;6. 审题不认真,有部分学生用求导的方法求得a ,把“零点”看做或理解为“极值点”; 7. 公式sin cos )a x b x x ϕ+=+有一部分同学运用不够熟练,出现符号错误,丢失大量的分值;8. 解题过程中的组织能力不强,许多同学出现漏答的情况,即最后没有“点题”。
绝密★启用前试卷类型:A2023-2024学年福州市高三年级第三质量检测评分参考数学2024.4一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足(i 是虚数单位),则z =A .1-B .1C .i-D .i解析:∵i i 1i z +=+,∴i 1z =,即i z =-,故选C.2.已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,cos α=,(,2)P m 为其终边上一点,则m =A .4-B .4C .1-D .1解析:∵cos α=,∴2tan 2m α==,∴1m =,故选D .解析:结合该函数为偶函数,及()03f =可判断应选A.4.在菱形ABCD 中,若||||AB AD AB -= ,且AD 在AB 上的投影向量为AB λ,则λ=A .12-B .12C .22-D .22解析:由已知AB AD AB -=知该菱形中AB AD BD ==,∴由D 向AB 作垂线,垂足即为AB 中点,∴12λ=,故选B .5.已知5log 2a =,2log b a =,1(2bc =,则A.c b a >>B.c a b>> C.a b c >> D.b c a>>解析:∵55log 2log 51a =<=,∴2log 0b a =<,1(12b c =>,∴c a b >>,故选B.6.棱长为1的正方体1111ABCD A B C D -中,点P 为1BD 上的动点,O 为底面ABCD 的中心,则OP 的最小值为 A.33B.63C.66D.32解析:在正方体中,易知AC BD ⊥,1AC DD ⊥,且1BD DD D = ,∴AC ⊥平面1BDD ,易知当OP ⊂平面1BDD ,且1OP BD ⊥时,OP 的长度最小,在1RT BDD △中,不难求得66OP =,故选C.7.若直线y ax b =+与曲线e xy =相切,则a b +的取值范围为A .(,e]-∞B .[2,e]C .[e,)+∞D .[2,)+∞解析:设切点为00(,e )x x ,则0e ,x a =∴切线方程为000e ()e x x y x x =-+,则00(1)e x b x =-,∴00(2)e x a b x +=-,设00()(2)e x f x x =-,则00()(1)e x f x x '=-,易知函数()(1)e f x f ≤=,又(2)02f =<,故可判断选A.(由图象知当且仅当切线与曲线相切于()1,e 时,11e e a b a b +=⨯+==最大,亦可知选A.)8.已知函数()2sin cos )f x x x x ωωω=+(0)ω>在π(0,)3上单调递增,且对任意的实数a ,()f x 在(,π)a a +上不单调,则ω的取值范围为A .5(1,]2B .5(1,]4C .15(,22D .15(,]24解析:∵π()2sin cos )2sin(2)3f x x x x x ωωωω=+=-+∵()f x 在π(0,3上单调递增,∴πππ2332ω⋅-≤,∴54ω≤,∵对任意的实数a ,()f x 在区间(,π)a a +上不单调,∴()f x 的周期2πT <,∴2π2π2T ω=<,∴12ω>,∴1524ω<≤,故选D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ABDACDBC9.双曲线2222:13x y C a a-=(0)a >的左、右焦点分别为1F ,2F ,且C 的两条渐近线的夹角为θ,若12||2F F e =(e 为C 的离心率),则解析:易知该双曲线实半轴为a ,半焦距为2a ,∴离心率22ae a==,∴焦距44a =,即1a =,∴选项A 正确,选项C 错误;易知C 的两条渐近线的斜率为3k a=±=,∴这两条渐近线的倾斜角分别为π3和2π3,∴C 的两条渐近线的夹角为π3,∴选项B ,D 正确;综上所述,应选ABD .10.定义在R 上的函数()f x 的值域为(,0)-∞,且(2)()()0f x f x y f x y ++-=,则A .(0)1f =-B .2(4)[(1)]0f f +=C .()()1f x f x -=D .()()2f x f x +-≤-解析:令0x y ==,则()()2000f f+=,∵函数()f x 的值域为(,0)-∞,∴(0)1f =-,选项A 正确;令1x =,0y =,则2(2)[(1)]f f =-,令2x =,0y =,则24(4)[(2)][(1)]f f f =-=-,∴选项B 错误;令0x =,则(0)()()0f f y f y +-=,∴()()(0)1f y f y f -=-=,即()()1f x f x -=,∴选项C 正确;∵()0f x ->,()0f x -->,∴[()()]2f x f x -+-≥∴()()2f x f x +-≤-,故选项D 正确;综上所述,应选ACD .11.投掷一枚质地均匀的硬币三次,设随机变量1,1,(1,2,3)n n n X n ⎧==⎨-⎩第次投出正面,第次投出反面,.记A 表示事件“120X X +=”,B 表示事件“21X =”,C 表示事件“1231X X X ++=-”,则A .B 和C 互为对立事件B .事件A 和C 不互斥C .事件A 和B 相互独立D .事件B 和C 相互独立解析:考查选项A ,事件B 和C 均会出现“反,正,反”的情况,故选项A 错误;考查选项B ,事件A 和C 均会出现“反,正,反”的情况,故选项B 正确;考查选项C ,易知12211()(22P A C ==,1()2P B =,事件AB 为前两次投出的硬币结果为“反,正”,则1()4P AB =,∴1()()()4P AB P A P B ==,故选项C 正确;考查选项D ,由选项AC 可知311()(28P BC ==,1()2P B =,在事件C 中三次投出的硬币有一次正面,两次反面,则23313()(28P C C ==,∴()()()P BC P B P C ≠,故选项D 错误;综上所述,应选BC .三、填空题:本题共3小题,每小题5分,共15分.12.160;13.2;14.22mm +;1或2.12.62()x x+的展开式中常数项为.解析:易知该二项展开式通项为662()r r r C x x-,∴当3r =时,得到常数项为160,故应填160.13.某圆锥的体积为π3,其侧面展开图为半圆,则该圆锥的母线长为.解析:设该圆锥的母线长为l ,底面圆半径为r ,根据侧面展开图为半圆得2ππr l =,即2l r =,又根据圆锥体积得1ππ33r =,解得1r =,2l =,故应填2.14.设n T 为数列{}n a 的前n 项积,若n n T a m +=,其中常数0m >.则2a =(结果用m 表示);若数列1{}nT 为等差数列,则m =.解析:易知112m T a ==,∴12221)(2m a a a a m =+=+,解得222a m m =+,故应填22m m +;(方法一)211111111111111n n n n n n n n T T m a m a m a m ma a m m m a ---------=-=-=-----+(2)n ≥,若数列1{}n T 为等差数列,则2111n n m ma a ----为常数d ,①若0d =,则11n a -=(2)n ≥恒成立,即1n a =(1)n ≥恒成立,∴2m =;②若0d ≠,则1211n n dm dm a a --=--,∴2,,11dm dm ==⎧⎨⎩解得1,1,d m ==⎧⎨⎩综上所述,若数列1{}nT 为等差数列,则1m =,或2m =,故应填1或2.(方法二)∵1{}n T 为等差数列,∴111n n d T T -=+(2)n ≥,易知112T m =,且12(1)n n d T m=+-,当2n ≥时,∵n n T a m +=,∴1n n n T T m T -+=,∴111n n m T T -=+,∴由12(1)n n d T m =+-,可得22(1)1(2)m n d n d m+-=++-,∴2(1)1(2)m dn m d m-=-++-对于任意n 恒成立,∴1,21(2)0,m m d m =⎧⎪⎨-++-=⎪⎩或0,21(2)0,d m d m =⎧⎪⎨-++-=⎪⎩解得1,1,m d =⎧⎨=⎩或0,2,d m =⎧⎨=⎩综上所述,若数列1{}nT 为等差数列,则1m =,或2m =,故应填1或2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,且sin sin a C c B =,2π3C =.(1)求B 的大小;(2)若ABC △的面积为4,求BC 边上中线的长.解:(1)∵sin sin a C c B =,∴由正弦定理,得sin sin sin sin A C C B =,…………2分∵0πC <<,∴sin 0C >,∴sin sin A B =,………………………………………3分∵0πA <<,0πB <<,∴A B =,……………………………………………………5分∵πA B C ++=,且2π3C =,∴π6B =.……………………………………………6分(2)依题意1sin 42ab C =,………………………………………………………………7分∵A B =,∴a b =,………………………………………………………………8分212πsin 23a ==,解得a =,…………………………………………10分设边BC 的中点为D ,∴32CD AC ==∴在ACD △中,由余弦定理知2222cos AD AC CD AC CD C=+-⋅⋅332π2132cos4234=+-⨯=,………………………………………………………12分∴BC 边上中线的长为212.……………………………………………………………13分16.(15分)如图,在三棱柱111ABC A B C -中,平面11ACC A ⊥平面ABC ,12AB AC BC AA ====,1A B =.(1)设D 为AC 中点,证明:AC ⊥平面1A DB ;(2)求平面11A AB 与平面11ACC A 夹角的余弦值.(第16题图)解:(1)∵D 为AC 中点,且2AB AC BC ===,∴在ABC △中,有BD AC ⊥,且BD =……………………………………………1分∵平面11ACC A ⊥平面ABC ,且平面11ACC A 平面ABC AC =,∴BD ⊥平面11ACC A ,………………………………………………………………………2分∵1A D ⊂平面11ACC A ,∴1BD A D ⊥,……………………………………………………3分∵1A B =,BD =1A D ,……………………………………………………4分∵1AD =,12AA =,1A D =,∴由勾股定理,有1AC A D ⊥,……………………………………………………………6分∵AC BD ⊥,1A D BD D = ,∴AC ⊥平面1A DB ,…………………………………………………………………………7分(2)如图所示,以D 为原点,DA ,DB ,1DA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -,可得(1,0,0)A,1A,B ,………………………………………………9分∴1(AA =-,(AB =-,…………………………………………………10分设平面11A AB 的法向量为(,,)x y z =n ,则由10,0,A A B A ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0,x x ⎧-+=⎪⎨-+=⎪⎩令x =1y =,1z =,∴=n ,…………………………………………12分由(1)可知,BD ⊥平面11ACC A ,∴平面11ACC A的一个法向量为(0,BD =,…………………………………………13分记平面11A AB 与平面11ACC A 的夹角为α,∴5cos ||5||BD BD α⋅==n |n |,∴平面11A AB 与平面11ACC A 夹角的余弦值为5.………………………………………15分17.(15分)从一副扑克牌中挑出4张Q 和4张K ,将其中2张Q 和2张K 装在一个不透明的袋中,剩余的2张Q 和2张K 放在外面.现从袋中随机抽出一张扑克牌,若抽出Q ,则把它放回袋中;若抽出K ,则该扑克牌不再放回,并将袋外的一张Q 放入袋中.如此操作若干次,直到将袋中的K 全部置换为Q.(1)在操作2次后,袋中K 的张数记为随机变量X ,求X 的分布列及数学期望;(2)记事件“在操作1n +()n *∈N 次后,恰好将袋中的K 全部置换为Q .”为n A ,记()n n P P A =.(i )在第1次取到Q 的条件下,求总共4次操作恰好完成置换的概率;(ii )试探究1n P +与n P 的递推关系,并说明理由.解:(1)由题意X 的取值可能为0,1,2,……………………………………………1分当0X =时,即第一次取出K ,第二次也取出K ,∴211(0)22318P X ==⨯=++,…………………………………………………………2分当1X =时,即第一次取出Q ,第二次取出K ,或第一次取出K ,第二次取出Q ,∴2223135(1)22222231488P X ==⨯+⨯=+=++++,……………………………3分当2X =时,即第一次取出Q ,第二次也取出Q ,∴221(2)22224P X ==⨯=++,…………………………………………………………4分∴X 的概率分布列为…………………………………………………………………5分∴X 的数学期望1519()0128848E X =⨯+⨯+⨯=.……………………………………6分(2)(i )记事件“第1次取到Q ”为B ,事件“总共4次操作恰好完成置换”为C ,则1()2P B =,………………………………………………………………………………7分依题意,若第1次取出Q ,则剩余的3次操作,须将袋中K 全部置换为Q ,①若第2次亦取出Q ,则第3次和第4次均须取出K ,X 012P185814其概率为1221122+22+23+132⨯⨯⨯=;………………………………………………………8分①若第2次取出K ,则第3次须取出Q ,第4次须取出K ,其概率为1231322+23+13+164⨯⨯⨯=;………………………………………………………9分∴13()53264(|)1()322P CB P C B P B +===,即在第1次取到Q 的条件下,总共4次操作恰好完成置换的概率为532.…………………………………………………………………………10分(ii )(方法一)由题可知若事件1n A +发生,即操作2n +次后,恰好将袋中的K 全部置换为Q ,①当第1次取出Q ,则剩余的1n +次操作,须将袋中K 全部置换为Q ,概率为212+22n n P P ⨯=;……………………………………………………………………12分②当第1次取出K ,则从第2次起,直到第1n +次均须取出Q ,且第2n +次取出K ,概率为23113(()2+23+13+184n n⨯⨯=⨯;………………………………………………………14分∴1+113(284n n n P P +⨯=.…………………………………………………………………15分(方法二)由题可知若事件1n A +发生,即操作2n +次后,恰好将袋中的K 全部置换为Q ,则一定有第2n +次(最后一次)取出K ,①当第1n +次(倒数第二次)取出Q ,则须在之前的n 次操作中的某一次取出K ,概率为333+14n n P P ⨯=;……………………………………………………………………12分②当第1n +次(倒数第二次)取出K ,则从第1次起,直到第n 次均须取出Q ,概率为3221111()((2+22+23+1822n n n +⨯⨯=⨯=;…………………………………………14分∴133+1(42n n n P P ++=.……………………………………………………………………15分18.(17分)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于M ,N 两点,且当l 的斜率为1时,|8MN =|.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点).记线段MN 的中点为R ,若||3QR ≤,求MNQ △面积的取值范围.解:(1)不妨设l 的方程为2px my =+,11(,)M x y ,22(,)N x y ,联立l 与C 的方程,得2220y mpy p --=,…………………………………………1分∴122y y mp +=,212y y p =-,…………………………………………………………2分则21212||()22(1)MN x x p m y y p p m =++=++=+,…………………………………3分∴由题可知当1m =时,||8MN =,∴2p =,…………………………………………4分∴C 的方程为24y x =.……………………………………………………………………5分(2)由(1)知1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得2(21,2)R m m +,……………………………6分易知C 的准线方程为1x =-,又l 与C 的准线交于点P ,∴2(1,)P m--,……………7分则直线OP 的方程为2mx y =,………………………………………………………………8分联立OP 与C 的方程,得22y my =,∴2(,2)Q m m ,……………………………………9分∴Q ,R 的纵坐标相等,∴直线QR x ∥轴,……………………………………………11分∴222|||21|1QR m m m =+-=+,…………………………………………………………12分∴MNQ QRM QRN S S S =+△△△121||||2QR y y =-3222(1)2||m QR =+,…………14分∵点Q (异于原点),∴0m ≠,…………………………………………………………15分∵||3QR ≤,∴13||QR <≤,∴3222||QR <≤即MNQ S ∈△.…………………………………………17分19.(17分)若实数集A ,B 对a A ∀∈,b B ∀∈,均有(1)1b a ab +≥+,则称A B →具有Bernoulli 型关系.(1)判断集合{|1}M x x =>,{1,2}N =是否具有Bernoulli 型关系,并说明理由;(2)设集合{|1}S x x =>-,{|}T x x t =>,若S T →具有Bernoulli 型关系,求非负实数t 的取值范围;(3)当*n ∈N时,证明:1158n k k n -=<+∑.解:(1)依题意,M N →是否具有Bernoulli 型关系,等价于判定以下两个不等式对于1x ∀>是否均成立:①1(1)1x x +≥+,②2(1)12x x +≥+,…………………………………2分∵1x ∀>,1(1)1x x +=+,22(1)1212x x x x+=++>+∴M N →具有Bernoulli 型关系.………………………………………………………4分(2)(方法一)令()(1)1b f x x bx =+--,x S ∈,(0,)b ∈+∞,则1()[(1)1]b f x b x -'=+-,…………………………………………………………………5分①当1b =时,显然有(1)1b a ab +=+,∴(1)1b x xb +≥+成立;………………………6分②当1b >时,若10x -<<,则10(1)(1)1b x x -+<+=,即()0f x '<,∴()f x 在区间(1,0)-上单调递减,若0x =,则1(10)10b -+-=,即(0)0f '=,若0x >,则10(1)(1)1b x x -+>+=,即()0f x '>,∴()f x 在区间(0,)+∞上单调递增,∴()f x 的最小值为(0)0f =,∴()(0)0f x f ≥=,∴(1)(1)0b x bx +-+≥,∴(1)1b x xb +≥+成立;………………………………………………………………8分③当01b <<时,若10x -<<,则10(1)(1)1b x x -+>+=,即()0f x '>,∴()f x 在区间(1,0)-上单调递增,若0x =,则1(10)10b -+-=,即(0)0f '=,若0x >,则10(1)(1)1b x x -+<+=,即()0f x '<,∴()f x 在区间(0,)+∞上单调递减,∴()f x 的最大值为(0)0f =,∴()(0)0f x f ≤=,∴(1)(1)0b x bx +-+≤,即(1)1b x bx +≤+,∴当x S ∈,且01b <<时,(1)1b x xb +≥+不能恒成立,…………………………10分综上所述,可知若S T →具有Bernoulli 型关系,则{|1}T x x ⊆≥,∴非负实数t 的取值范围为[1,)+∞.……………………………………………………11分(方法二)当1b =,或01b <<时,与方法一相同;…………………………………8分当1b >时,若10ab +≤,∵(1)01b a ab +>≥+,∴(1)1b a ab +≥+,若10ab +>,则1ab >-,又1b >,∴101b <<,∴由方法一的结论,可知11(1)11b ab ab a b +≤+⋅=+,即1(1)1b ab a +≤+,…………………………………………………………………………9分∵10ab +>,且(1,)a ∈-+∞,∴1[(1)](1)b b b ab a +≤+,即1(1)b ab a +≤+,即(1)1b a ab +≥+;………………………10分∴若集合{|1}S x x =>-,{|}T x x t =>具有Bernoulli 型关系,则{|1}T x x ⊆≥,∴非负实数t 的取值范围为为[1,)+∞.…………………………………………………11分(3)∵1112222211((1)k k k k k k-+==+,…………………………………………12分显然211k >-,且1012k<<,由(2)中的结论:当01b <<时,(1)1b x xb +≤+,可知122231111(1)1+122k k k k k +≤⋅=+,………………………………………………………………………………………13分当2k ≥时,33121(1)111[]24()4(1)(1)4(1)(1)k k k k k k k k k k k k +--≤==---+-+,∴1221111(1)1[4(1)(1)k k k k k k +≤+--+,2k ≥,………………………………………15分当1n =时,1158n k k n -=<+∑显然成立;…………………………………………16分当2n ≥时,11122311[1]24(1)4(1)n n n k k k k k k k k k --====+<++--+∑∑∑211111111515[[24(1)(1)242(1)84(1)8n k n n n n k k k k n n n n ==++-=++⋅-=+-<+-+++∑,综上所述,当*n ∈N时,1158n k k n -=<+∑.……………………………………17分。
福建省厦门市(新版)2024高考数学部编版质量检测(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,若对任意的,当时,都有,则实数的取值范围为()A.B.C.D.第(2)题双曲线的顶点到渐近线的距离为()A.2B.C.D.1第(3)题已知直线与圆相交于A,B两点,当取得最大值时,则m=()A.B.C.1D.3第(4)题执行下面的程序框图,如果输入三个实数、、,要求输出这三个数中最小的数,那么空白的判断框中应填入()A.B.C.D.第(5)题若,则()A.B.C.D.第(6)题2020年1月17日,国家统计局发布了2019年全国居民人均消费支出及其构成的情况,并绘制了如图的饼图.根据饼图判断,下列说法不正确的是()A.2019年居民在“生活用品及服务”上人均消费支出的占比为6%B.2019年居民人均消费支出为21350元C.2019年居民在“教育文化娱乐”上人均消费支出小于这8项人均消费支出的平均数D.2019年居民在“教育文化娱乐”、“生活用品及服务”、“衣着”上的人均消费支出之和大于在“食品烟酒”上的人均消费支出复数对应的点在第三象限内,则实数m的取值范围是()A.B.C.D.无解第(8)题已知集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,且,,,则()A.的取值范围为B.存在,,使得C.当时,D.t的取值范围为第(2)题盒中有编号为1,2,3,4的四个红球和编号为1,2,3,4的四个白球,从盒中不放回的依次取球,每次取一个球,用事件表示“第次首次取出红球”,用事件表示“第次取出编号为1的红球”,用事件表示“第次取出编号为1的白球”,则()A.B.C.D.第(3)题设动直线l:()交圆C:于A,B两点(点C为圆心),则下列说法正确的有()A.直线l过定点(2,3)B.当取得最大值时,C.当∠ACB最小时,其余弦值为D.的最大值为24三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若对于任意,都有,则实数的取值范围是___________.第(2)题若函数在区间内恰有一个零点,则实数a的取值范围是___.第(3)题设复数,若复数对应的点在直线上,则的最小值为___________四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线的虚轴长为,点在上.设直线与交于A,B两点(异于点P),直线AP与BP的斜率之积为.(1)求的方程;(2)证明:直线的斜率存在,且直线过定点.第(2)题已知函数f(x)=2|x+1|+|x-2|.(1)求f(x)的最小值m;(2)若a,b,c均为正实数,且满足a+b+c=m,求证:.第(3)题记的内角,,的对边分别为,,,已知,.(1)若,求的面积;(2)若,求.如图,为圆锥的顶点,是底面圆的一条直径,,是底面圆弧的三等分点,,分别为,的中点.(1)证明:点在平面内.(2)若,求平面与平面夹角的余弦值.第(5)题已知函数,且.(1)证明:曲线在点处的切线方程过坐标原点.(2)讨论函数的单调性.。
2024年普通高等学校招生全国统一考试模拟考数学满分:150分考试时间:120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知随机变量()23,X N σ ,且()24P x m<<=,()15P x n<<=,则()25P x <<的值为()A.2m n + B.2n m - C.12m - D.12n -【答案】A 【解析】【分析】由正态分布曲线的性质即可得解.【详解】()()()()()112523352415222m n P x P x P x P x P x +<<=<≤+<<=<<+<<=.故选:A.2.已知101mx A x mx ⎧⎫+=≤⎨⎬-⎩⎭,若2A ∈,则m 的取值范围是()A.1122m -≤< B.1122m -≤≤ C.12m ≤-或12m >D.12m ≤-或12m ≥【答案】A 【解析】【分析】将2x =代入101mx mx +≤-,然后转化为一元二次不等式求解可得.【详解】因为2A ∈,所以21021m m +≤-,等价于()()21210210m m m ⎧+-≤⎨-≠⎩,解得1122m -≤<.故选:A3.若抛物线2y mx =的准线经过双曲线222x y -=的右焦点,则m 的值为()A.4- B.4C.8- D.8【答案】C 【解析】【分析】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【详解】因为双曲线222x y -=的右焦点为()2,0,又抛物线2y mx =的准线方程为4mx =-,则24m -=,即8m =-.故选:C4.已知三棱锥A BCD -中,AB ⊥平面BCD ,2AB =,3BC =,4CD =,5BD =,则该三棱锥外接球的表面积为()A.29π4 B.19π2C.29πD.38π【答案】C 【解析】【分析】取BD 中点E ,根据已知可得E 为BCD △的外心,过E 作底面的垂线OE ,使12OE AB =,可得O 为三棱锥外接球的球心,计算球的半径,由球的表面积公式可得结果.【详解】在BCD △中,因为3BC =,4CD =,5BD =,所以222BC CD BD +=,所以BC CD ⊥,取BD 中点E ,则E 为BCD △的外心,且外接圆的半径为1522r BD ==,过E 作底面的垂线OE ,使12OE AB =,又AB ⊥平面BCD ,则O 为三棱锥外接球的球心,所以外接球的半径2222529144R OE BE =+=+=,所以三棱锥外接球的表面积为2294π4π29π4R =⨯=,故选:C.5.1024的所有正因数之和为()A.1023B.1024C.2047D.2048【答案】C 【解析】【分析】根据等比数列前n 项求和公式计算即可求解.【详解】由题意知,1010242=,则1024的所有正因数之和为11012101(12)2222204712⨯-++++==- .故选:C6.二维码与我们的生活息息相关,我们使用的二维码主要是2121⨯大小的特殊的几何图形,即441个点.根据0和1的二进制编码规则,一共有4412种不同的码,假设我们1万年用掉15310⨯个二维码,那么所有二维码大约可以用()(参考数据:lg20.301,lg30.477≈≈)A.11710万年 B.12010万年C.12310万年D.12510万年【答案】A 【解析】【分析】利用取对数法进行化简求解即可.【详解】1 万年用掉15310⨯个二维码,∴大约能用441152310⨯万年,设441152310x =⨯,则44144115152lg lg lg2(lg3lg10)441lg2lg3154410.3010.47715117310x ==-+=--≈⨯--≈⨯,即11710x ≈万年.故选:A .7.在一次数学模考中,从甲、乙两个班各自抽出10个人的成绩,甲班的十个人成绩分别为1210x x x 、、、,乙班的十个人成绩分别为1210,,,y y y .假设这两组数据中位数相同、方差也相同,则把这20个数据合并后()A.中位数一定不变,方差可能变大B.中位数可能改变,方差可能变大C.中位数一定不变,方差可能变小D .中位数可能改变,方差可能变小【答案】A 【解析】【分析】不妨设12101210,x x x y y y ≤≤≤≤≤≤ ,表达出两组数据的中位数,根据中位数相同得到5566x y y x ≤≤≤或5566y x x y ≤≤≤,则合并后的数据中位数是562x x +或者562y y +,中位数不变,再设第一组数据的方差为2s ,平均数为x ,第二组数据的方差为2s ,平均数为y ,根据公式得到合并后平均数为ω,方差为2s ',2222211(()22s s x y s ωω=+-+-≥',得到结论.【详解】不妨设12101210,x x x y y y ≤≤≤≤≤≤ ,则1210x x x 、、、的中位数为562x x +,1210y y y 、、的中位数为562y y +,因为565622x x y y ++=,所以5566x y y x ≤≤≤或5566y x x y ≤≤≤,则合并后的数据中位数是562x x +或者562y y +,所以中位数不变.设第一组数据的方差为2s ,平均数为x ,第二组数据的方差为2s ,平均数为y ,合并后总数为20,平均数为ω,方差为2s ',{}22222110()10(1010s s x s y ωω⎡⎤⎡⎤=+-++-⎣⎦'⎣⎦+222222221111((((.2222s x s y s x y s ωωωω⎡⎤⎡⎤=+-++-=+-+-≥⎣⎦⎣⎦如果均值相同则方差不变,如果均值不同则方差变大.故选:A.8.若曲线1exax y +=有且仅有一条过坐标原点的切线,则正数a 的值为()A.14B.4C.13D.3【答案】A 【解析】【分析】设切点0001(,)ex ax x +,利用导数的几何意义求得切线方程,将原点坐标代入,整理得20010ax x ++=,结合Δ0=计算即可求解.【详解】设1()e x ax y f x +==,则1()e xax a f x -+-'=,设切点为0001(,)e x ax x +,则0001()e x ax a f x -+-'=,所以切线方程为0000011()e e x x ax ax a y x x +-+--=-,又该切线过原点,所以00000110(0)e e x x ax ax a x +-+--=-,整理得2010ax x ++=①,因为曲线()y f x =只有一条过原点的切线,所以方程①只有一个解,故140a ∆=-=,解得14a =.故选:A【点睛】关键点点睛:本题主要考查导数的几何意义,切点未知,设切点坐标,由导数的几何意义求出切线方程,确定方程的解与根的判别式之间的关系是解决本题的关键.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若1b c >>,01a <<,则下列结论正确的是()A.a a b c <B.log log b c a a >C.a a cb bc <D.log log c b b a c a>【答案】BC 【解析】【分析】由已知可得,由幂函数性质可判断A;由对数函数性质可判断B;由幂函数性质可判断C;由不等式的性质可判断D.【详解】对于A :∵01a <<,幂函数a y x =在(0,)+∞上单调递增,且1b c >>,∴a a b c >,故选项A 错误;对于B :∵01a <<,∴函数log a y x =在(0,)+∞上单调递减,又∵1b c >>,∴log log log 10a a a b c <<=,∴110log log b c c a>>,即0log log b c a a >>,故B 正确;对于选项C :∵01a <<,则10a -<, 幂函数1a y x -=在(0,)+∞上单调递减,且1b c >>,∴11a a b c --<,∴a a cb bc <,故选项C 正确;对于选项D :由选项B 可知:0log log b c a a >>,∴0log log b c a a <-<-,∵1b c >>,∴(log )(log )b c c a b a -<-,∴log log c b b a c a <,故D 错误.故选:BC.10.已知圆22:1O x y +=,圆22:()(1)4,R C x a y a -+-=∈,则()A.两圆的圆心距OC 的最小值为1B.若圆O 与圆C 相切,则a =±C.若圆O 与圆C 恰有两条公切线,则a -<<D.若圆O 与圆C 相交,则公共弦长的最大值为2【答案】AD 【解析】【分析】根据两点的距离公式,算出两圆的圆心距1d ≥,从而判断出A 项的正误;根据两圆相切、相交的性质,列式算出a 的取值范围,判断出B,C 两项的正误;当圆O 的圆心在两圆的公共弦上时,公共弦长有最大值,从而判断出D 项的正误.【详解】根据题意,可得圆22:1O x y +=的圆心为(0,0)O ,半径1r =,圆22:()(1)4C x a y -+-=的圆心为(,1)C a ,半径2R =.对于A ,因为两圆的圆心距1d OC ==≥,所以A 项正确;对于B ,两圆内切时,圆心距||1d OC R r ==-=1=,解得0a =.两圆外切时,圆心距||3d OC R r ==+=3=,解得a =±.综上所述,若两圆相切,则0a =或a =±,故B 项不正确;对于C ,若圆O 与圆C 恰有两条公切线,则两圆相交,||(,)d OC R r R r =∈-+,(1,3),可得13<<,解得a -<<0a ≠,故C 项不正确;对于D ,若圆O 与圆C 相交,则当圆22:1O x y +=的圆心O 在公共弦上时,公共弦长等于22r =,达到最大值,因此,两圆相交时,公共弦长的最大值为2,故D 项正确.故选:AD .11.已知函数()f x 的定义域为R ,()()()eeyxf x f y f x y +=+,且()11f =,则()A.()00f =B.()21ef -=C.()e xf x 为奇函数D.()f x 在()0+∞,上具有单调性【答案】AC 【解析】【分析】根据题意,令0x y ==即可判断A ,令1x =,1y =-,即可判断B ,令y x =-结合函数奇偶性的定义即可判断C ,令y x =即可判断D 【详解】对A :令0x y ==,则有()()()0000eef f f =+,即()00f =,故A 正确;对B :1x =,1y =-,则有()()()1111e 11e f f f -+--=,即()()()1e 1e0f f f =-+,由()00f =,()11f =,故()01e ef =-+,即()21e f -=-,故B 错误;对C :令y x =-,则有()()()eexx f x f f x x x --=+-,即()()()e 0e x x x f f x f -=+-,即()()e exxf x f x --=-,又函数()f x 的定义域为R ,则函数()e x f x 的定义域为R ,故函数()e xf x 为奇函数,故C 正确;对D :令y x =,则有()()()eexxf x f x f x x +=+,即()()22exf x f x =,即有()()22e x f x f x =,则当ln 2x =时,有()()ln 22ln 221ln 2e f f ==,即()()2ln 2ln 2f f =,故()f x 在()0,∞+上不具有单调性,故D 错误.故选:AC三、填空题:本题共3小题,每小题5分,共15分.12.已知复数()2cos isin 1iz θθθ+=∈+R 的实部为0,则tan2θ=______.【答案】43【解析】【分析】利用复数()2cos isin 1iz θθθ+=∈+R 的实部为0,求出tan 2θ=-,再利用二倍角公式得出结论.【详解】 复数()()()()()()2cos isin 1i 2cos sin sin 2cos i2cos isin 1i 1i 1i 2z θθθθθθθθθ+-++-+===∈++-R 的实部为0,2cos sin 0,tan 2θθθ∴+=∴=-.22tan 44tan21tan 143θθθ-∴===--.故答案为:43.13.已知空间中有三点()0,0,0O,()1,1,1A -,()1,1,0B ,则点O 到直线AB 的距离为______.【答案】305【解析】【分析】求出,OA AB 的坐标,求出cos ,OA AB,根据点O 到直线AB 的距离为sin ,OA OA AB 即可求解.【详解】因为()0,0,0O ,()1,1,1A -,()1,1,0B ,所以()()1,1,1,0,2,1OA AB =-=-,所以OA AB == ,()()1012113OA AB ⋅=⨯+-⨯+⨯-=-.所以cos ,OA ABOA AB OA AB⋅==-所以10sin ,5OA AB === .所以点O 到直线AB的距离为sin ,55OA OA AB ==.故答案为:305.14.设函数2()f x x ax b =++,对于任意的实数a ,b ,总存在0[0,4]x ∈,使得()f x t ≥成立,则实数t 的取值范围是________.【答案】2t ≤【解析】【分析】分情况讨论a 不同取值时函数2()u x x ax b =++在[0,4]上的范围,从而确定()f x 的最大值,将对任意实数a ,b ,总存在实数0[0x ∈,4]使得不等式0()f x t 成立,转化为min ][()max t f x ≤恒成立,即可解决.【详解】因为存在0[0,4]x ∈,使得()f x t ≥成立,所以max ()t f x ≤,因为对于任意的实数a ,b ,max ()t f x ≤,所以min ][()max t f x ≤恒成立,设()f x 的最大值为M (b ),令2()u x x ax b =++,二次函数的对称轴为2a x =-,当<02a-,即a>0时,()u x 单调递增,此时()16+4+b u x a b ,当28b a ≥--时,M (b )16+4+a b =,当28b a <--时,M (b )b =-,从而当0a >时,28b a =--时M (b )取最小值,M (b )2+8>8min a =,当40a -<£时,()u x 在[0,)2a -上单调递减,在[2a-,4]上单调递减,2()1644a b u x a b -+≤≤++,所以当21288b a a =--时,2min 1()2888M b a a =-++≥.当84a -≤≤-时,()u x 在[0,2a -上单调递减,在[2a-,4]上单调递减,2()4a b u x b -+≤≤,所以当218b a =时,2min 1()28M b a =≥.当a <-8时,()u x 单调递减,16+4a+()b u x b ≤≤,当28b a ≤--时,M (b )164a b =---,当28b a >--时,M (b )b =,从而当a <-8时,28b a =--时M (b )取最小值,M (b )28>8min a =--.综合得min ()2M b =.所以2t ≤.故答案为:2t ≤【点睛】本题主要考查函数的图象和性质的应用,考查函数的单调性和最值,考查恒成立和存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.用1,2,3,4,5这五个数组成无重复数字的五位数,则(1)在两个偶数相邻的条件下,求三个奇数也相邻的概率;(2)对于这个五位数,记夹在两个偶数之间的奇数个数为X ,求X 的分布列与期望.【答案】(1)12(2)分布列见解析,()1E X =【解析】【分析】(1)设A =“数字2,4相邻”,设B =“数字1,3,5相邻”,利用排列数公式求出()n A ,()n AB ,最后根据古典概型的概率公式计算可得;(2)依题意X 的所有可能取值为0,1,2,3,求出所对应的概率,即可得到分布列与数学期望.【小问1详解】设A =“数字2,4相邻”,设B =“数字1,3,5相邻”,则数字2,4相邻时的五位数有2424A A 48=个,数字2,4相邻,数字1,3,5也相邻的五位数的个数为232232A A A 24=,则()()()241482n AB P B A n A ===;【小问2详解】依题意X 的所有可能取值为0,1,2,3,由题意知“X 0=”表示2个偶数相邻,则()242455A A 20A 5P X ===,“1X =”表示2个偶数中间共插入了1个奇数,则()21323355A C A 31A 10P X ===,“2X =”表示2个偶数中间共插入了2个奇数,则()22223255A A A 12A 5P X ===;“3X =”表示2个偶数中间共插入了3个奇数,则()232355A A 13A 10P X ===,所以X 的分布列为X0123P2531015110则X 的期望为()231101231510510E X =⨯+⨯+⨯+⨯=.16.已知在正三棱柱111ABC A B C -中,2AB =,11AA =.(1)已知E ,F 分别为棱1AA ,BC 的中点,求证://EF 平面11A B C ;(2)求直线1A B 与平面11A B C 所成角的正弦值.【答案】(1)证明见解析(2)1510【解析】【分析】(1)G 为1B C 中点,通过证明1//EF A G ,证明//EF 平面11A B C ;(2)以A 为坐标原点,建立空间直角坐标系,向量法求线面角的正弦值.【小问1详解】取1B C 中点G ,连接1A G ,FG .G ,F 分别为1B C ,BC 中点,1//GF BB ∴且112GF BB =,又E 为1AA 中点,11//A E BB ∴且1112A E BB =,1//GF A E ∴且1GF A E =,故四边形1A EFG 是平行四边形,1//EF A G ∴.而EF ⊄平面11A B C ,1A G ⊂面11A B C ,//EF ∴平面11A B C .【小问2详解】如图以A 为坐标原点,AC ,1AA 分别为y ,z 轴建立空间直角坐标系,则()10,0,1A ,)3,1,0B,)13,1,1B ,()0,2,0C ,则())1110,2,1,3,1,0A C AB =-= .设平面11A B C 的法向量为(),,n x y z = ,则1112030A C n y z A B n x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令1x =,得3y =,3z =-,(1,3,3n ∴=-.又)13,1,1A B =- ,1332315cos ,1054A B n ∴=⨯.即直线1A B 与平面11A B C 所成角的正弦值是1510.17.三角学于十七世纪传入中国,此后徐光启、薛风祚等数学家对此深入研究,对三角学的现代化发展作出了巨大贡献,三倍角公式就是三角学中的重要公式之一,类似二倍角的展开,三倍角可以通过拆写成二倍角和一倍角的和,再把二倍角拆写成两个一倍角的和来化简.(1)证明:3sin 33sin 4sin x x x =-;(2)若11sin101n n ⎛⎫︒∈⎪+⎝⎭,,*n ∈N ,求n 的值.【答案】(1)证明见解析(2)5n =【解析】【分析】(1)利用两角和的正弦公式及倍角公式证明即可;(2)将sin10︒转为方程314302x x -+=的一个实根,通过函数的单调性及零点存在性定理即可求解.【小问1详解】因为()sin 3sin 2sin 2cos cos 2sin x x x x x x x=+=+()22sin cos cos 12sin sin x x x x x=⋅+-()2332sin 1sin sin 2sin 3sin 4sin x x x x x x =-+-=-;【小问2详解】由(1)可知,31sin 303sin104sin 102︒︒︒=-=,即sin10︒是方程314302x x -+=的一个实根.令()31432f x x x =-+,()()()212332121f x x x x '=-=+-,显然10sin10sin 302︒︒<<=,当102x <<时,()0f x <′,所以()31432f x x x =-+在10,2⎛⎫⎪⎝⎭上单调递减,又3114066f ⎛⎫⎛⎫=⨯> ⎪ ⎪⎝⎭⎝⎭,31111174305552250f ⎛⎫⎛⎫=⨯-⨯+=-< ⎪ ⎪⎝⎭⎝⎭,所以11sin10,65︒⎛⎫∈ ⎪⎝⎭,即5n =.18.已知圆22:(1)16A x y ++=和点()1,0B ,点P 是圆上任意一点,线段PB 的垂直平分线与线段PA 相交于点Q ,记点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)点D 在直线4x =上运动,过点D 的动直线l 与曲线C 相交于点,M N .(ⅰ)若线段MN 上一点E ,满足ME MD ENDN=,求证:当D 的坐标为()4,1时,点E 在定直线上;(ⅱ)过点M 作x 轴的垂线,垂足为G ,设直线,GN GD 的斜率分别为12,k k ,当直线l 过点()1,0时,是否存在实数λ,使得12k k λ=若存在,求出λ的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)12λ=【解析】【分析】(1)根据中垂线的性质可得42QA QB AB +=>=,由椭圆的定义可知动点Q 的轨迹是以,A B 为焦点,长轴长为4的椭圆,从而求出轨迹方程;(2)(ⅰ)设直线l 的方程为y kx m =+,设112200(,),(,),(,)M x y N x y E x y ,与椭圆联立韦达定理,把线段长度比转化为坐标比,代入韦达定理化简即可得点E 在定直线330x y +-=上;(ⅱ)利用坐标表示两个斜率,然后作商,将韦达定理代入即可判断.【小问1详解】由题意知圆心(1,0)A -,半径为4,且QP QB =,2AB =,则42QA QB QA QP PA AB +=+==>=,所以点Q 的轨迹为以,A B 为焦点的椭圆,设曲线的方程为()222210x y a b a b+=>>,则24,22a c ==,解得2,1a c ==,所以2223b a c =-=,所以曲线C 的方程为22143x y +=;【小问2详解】(ⅰ)因为直线l 的斜率一定存在,设直线l 的方程为y kx m =+,因为D ()4,1在l 上,所以41k m +=,由22143y kx m x y =+⎧⎪⎨+=⎪⎩得()()222348430k x kmx m +++-=,()()()()22222Δ81634348430km k m k m =-+-=-+>,设112200(,),(,),(,)M x y N x y E x y ,则()21212224383434m km x x x x k k--+==++,,由ME MD EN DN =得10102244x x x x x x --=--,化简得()()1212120428x x x x x x x ⎡⎤+-=-+⎣⎦,则()202224388428343434m km km x k k k --⎛⎫⎛⎫⨯-⨯=+ ⎪ ⎪+++⎝⎭⎝⎭,化简得00330kx m x ++-=,又因为00y kx m =+,所以00330x y +-=,所以点E 在定直线330x y +-=上.(ⅱ)因为直线y kx m =+过()1,0,所以0k m +=,直线方程为y kx k =-,从而得()4,3D k ,1(,0)G x ,由(ⅰ)知,()221212224383434k k x x x x k k-+==++,2122113,4y k k k x x x ==--,所以()()()()12121212122121214444333x kx k k y x x x x x k x x k x x k x x -----+=⨯==---()()()22222222222222224384434413434282344334k k x x k x k k k k k x k x x k ---+-+-++===⎡⎤⎡⎤⎛⎫+-⎣⎦--⎢⎥ ⎪+⎝⎭⎣⎦,所以存在实数12λ=,使得1212k k =.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.19.对于数列{}n a ,数列{}1n n a a +-称为数列{}n a 的差数列或一阶差数列.{}n a 差数列的差数列,称为{}n a 的二阶差数列.一般地,{}n a 的k 阶差数列的差数列,称为{}n a 的1k +阶差数列.如果{}n a 的k 阶差数列为常数列,而1k -阶差数列不是常数列,那么{}n a 就称为k 阶等差数列.(1)已知20,24,26,25,20是一个k 阶等差数列{}n a 的前5项.求k 的值及6a ;(2)证明:二阶等差数列{}n b 的通项公式为()()()()()121321111222n b b n b b n n b b b =+--+---+;(3)证明:若数列{}n c 是k 阶等差数列,则{}n c 的通项公式是n 的k 次多项式,即0kin ii c nλ==∑(其中iλ(01i k = ,,,)为常实数)【答案】(1)3k =,610a =(2)证明见解析(3)证明见解析【解析】【分析】(1)根据定义直接进行求解,得到3k =,并根据二阶差数列的第4项为5-,求出一阶差数列的第5项为10-,得到方程,求出610a =;(2)令1n n n d b b +=-,根据二阶等差数列的定义得到112213212n n n n d d d d d d b b b ----=-==-=-+ ,再利用累加法求出()()()()()321211112212n b n n b b b n b b b =---++--+;(3)数学归纳法证明出()1,nmi S m n i==∑为n 的1m +次多项式,利用引理可证出结论.【小问1详解】{}n a 的一阶差数列为4,2,1-,5-;二阶差数列为2-,3-,4-;三阶差数列为1-,1-,1-为常数列,故{}n a 为三阶等差数列,即3k =,二阶差数列的第4项为5-,故一阶差数列的第5项为10-,即6510a a -=-,故610a =.【小问2详解】令1n n n d b b +=-,因为{}n b 是二阶等差数列,所以112213212n n n n d d d d d d b b b ----=-==-=-+ ,因此()()()()()()1122113212112n n n n n d d d d d d d d n b b b b b ---=-++++-+=--++- ,所以()()()112211n n n n n b b b b b b b b ---=-++++-+ 1211n n d d d b --=++++ ()()()()()()321211231021n n b b b n b b b =-+-+++-++--+ ()()()()()321211112212n n b b b n b b b =---++--+,命题得证.【小问3详解】证明:先证一个引理:记()1,nmi S m n i==∑,(),S m n 是n 的1m +次多项式,数学归纳法:当1m =时,()()11,12312S n n n n =++++=+ 是n 的2次多项式,假设(),S k n 是n 的1k +次多项式,对0,1,,1k m =- 都成立,由二项式定理,()11101C mm m k k m k n nn +++=+-=∑,规定001=,将n 取0,1,2,…,n ,得101-=,()110111C 1mm k km k ++=+-=∑,()111212C2mm m kkm k +++=+-=∑,……,()11101C mm m k km k n nn +++=+-=∑,求和可得()()111110011C1C2CC ,mmmmm k kk kk k k m m m m k k k k n n S k n +++++====+=++++=∑∑∑∑ ,则()()()()()111101C ,1C ,,m m k m m k mn n S k S m n n m S m -+++=+-=+=∑,故()()()11101C ,,1m m k m k n S k n S m n m -++=+-=+∑是n 的1m +次多项式,引理得证.回到本题,由(2)可知,2阶等差数列的通项是n 的2次多项式,假设k 阶等差数列{}n c 的通项公式是n 的k 次多项式,对于1k +阶等差数列,它的差数列{}n c '是k 阶等差数列,即0kin i i c n λ='=∑,故1111101n k nn i iii i jc c c c jλ--===⎛⎫'=+=+ ⎪⎝⎭∑∑∑,由引理可知,此为n的k次多项式,命题得证.【点睛】数列新定义问题,主要针对于等差,等比,递推公式和求和公式等综合运用,对常见的求通项公式和求和公式要掌握牢固,同时涉及数列与函数,数列与解析几何,数列与二项式定理,数列与排列组合等知识的综合,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。
2012年厦门市高三3月份质量检查数学(理科)试卷第Ⅰ卷 (选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题所给的四个答案中有且只有一个答案是正确的.1.已知集合{}20,A m =,{}1,2B =,那么“1m =-”是“{}1A B = ”的A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件2.已知1tan 47πα⎛⎫+= ⎪⎝⎭,则tan α= A. 65-B. 1-C. 34-D. 653.如图,已知幂函数y x α=的图像过点(2,4)P ,则图中阴影部分的面积等于A .163 B .83 C . 43 D .234.执行右边的程序框图,输出S 的值等于A .10 B. 6 C. 3 D. 2 5.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆybx a =+中的b 为7,据此模型, 若广告费用为10万元,预报销售额等于A .42.0万元B .57.0万元C .66.5万元D .73.5万元6.如图, O 为正方体ABCD -A 1B 1C 1D 1的底面ABCD 的中心,则下列 直线中与B 1O 垂直的是A .A 1D B.AA 1 C .A 1D 1D .A 1C 17.已知函数()[](]23,1,23,2,5x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩ ,则方程()1f x =的解是A .或2B 或3C 或4D .48.设01(1),n nn x a a x a x +=+++ 若1263n a a a +++= ,则展开式中系数最大的项是A.215xB .320xC .321xD .335x1A C9.已知F 是椭圆2222:1x y C a b += (0)a b >>的右焦点,点P 在椭圆C 上,且线段PF 与圆22239c b x y ⎛⎫-+= ⎪⎝⎭(其中222c a b =-)相切于点Q2PQ QF →→=,则椭圆C 的离心率等于A.3 B. 23 C. 2 D. 1210.如图,正五边形ABCDE 的边长为2,甲同学在ABC ∆中用余弦定理解得AC =乙同学在Rt ACH ∆中解得1cos 72AC =,据此可得cos72 的值所在区间为 A.(0.1,0.2) B. (0.2,0.3) C. (0.3,0.4) D. (0.4,0.5)第Ⅱ卷 (非选择题 共100分)二.填空题:本大题共5小题,每小题4分,共20分. 11.已知a R ∈,若11aii+-为纯虚数,则a 的值等于 . 12. 已知实数,x y 满足0,,260x y x x y >⎧⎪≥⎨⎪+-≤⎩,则2y x +的最小值等于 .13.已知等差数列{}n a 的首项11=a ,公差d =2, 其前n 项和n S 满足242=-+k k S S ,则k = .14.如图ABC ∆中,DB AD 2=,EC AE =2,BE CD P =若(,)AP xAB y AC x y R =+∈,则x y +=15.记函数()f x 的导数为(1)()fx ,(1)()f x 的导数为(2)()f x , ,(1)()n fx - 的导数为()*()()n f x n N ∈.若()f x 可进行n 次求导,则()f x 均可近似表示为:()()()()()()()()()()12323000001!2!3!!n n fffffx fx x x x n ≈+++++若取4n =,根据这个结论,则可近似估计自然对数的底数e ≈ (用分数表示)(注:()!121n n n =⨯-⨯⋅⋅⋅⨯⨯)三、解答题:本大题共6小题,共80分.解答应写出必要文字说明、证明过程或演算步骤. 16. (本小题满分13分)从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则另从BBC(Ⅰ)求一次摸球后结束试验的概率1P 与两次摸球后结束试验的概率2P ; (Ⅱ)记结束试验时的摸球次数为ξ,求ξ的分布列及其数学期望E ξ.17.(本小题满分13分)如图,A 为双曲线22:1M x y -=的右顶点,平面上的动点P 到点A 的距离与到直线:1l x =-的距离相等. (Ⅰ) 求动点P 的轨迹N 的方程;(Ⅱ)已知双曲线M 的两条渐近线分别与轨迹N 交于点B ,C (异于原点).试问双曲线M 上是否存在一点D ,满足2DB DC DA ⋅= ?若存在,求出点D 坐标;若不存在,请说明理由.18.(本小题满分13分)如图,从山脚下P 处经过山腰N 到山顶M 拉一条电缆,PN处测得M 、N 的仰角分别为45︒,30︒,在N 处测得M 的仰角为30(1) 求此山的高度;(2) 试求平面PMN 与水平面所成角的余弦值.19.(本小题满分13分)设函数()sin 3cos f x m x x =+()x R ∈,试分别解答下列两小题.(I )若函数()f x 的图象与直线y n =(n 为常数)相邻两个交点的横坐标为127,1212x x ππ==, 求函数()y f x =的解析式,并写出函数()f x 的单调递增区间;(II )当m =ABC ∆中,满足()f A =1BC =, 若E 为BC 中点,试求AE 的最大值.20. (本小题满分14分)已知函数()()ln(1)f x x kx k R =+-∈ (Ⅰ)若()f x 的最大值为0,求k 的值;(Ⅱ)已知数列{}n a 满足11a =,()*11ln(1)2n n n a a a n N +=+-∈. (ⅰ)求证:1232n a a a a +++< ;(ⅱ)是否存在*n N ∈,使得(0,1]n a ∉,若不存在,请给予证明;若存在,请求出n .21.本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵0101M ,N 1010-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(Ⅰ)求矩阵NN ;(Ⅱ)若点P(0,1)在矩阵M 对应的线性变换下得到点/P ,求/P 的坐标。
(2)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程是x ty 2t 1=⎧⎨=+⎩(t 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的极坐标方程是2cos ρ=θ (ⅠxOy 中,求圆C 的直角坐标方程(Ⅱ)求圆心C 到直线l 的距离。
(3)(本小题满分7分)选修4-5:不等式选讲 已知函数()1f x x =- (Ⅰ)解不等式()2f x >;(Ⅱ)求函数()()5y f x f x =-++的最小值。
2012年厦门市高三3月份质量检查数学(理科)评分标准一.选择题; ABCBD DCBAC二.填空题:11.1 12. 2 13. 5 14. 57 15 6524三.解答题:16.本题考查古典概型互斥事件和独立事件的概率,随机变量的分布列及数学期望等知识与方法;考查运算求解能力以及应用概率知识分析解决问题的能力;考查必然与或然思想。
解:(Ⅰ)一次摸球结束试验的概率21631==P ; ………………………………………3分 二次摸球结束试验的概率2P 316463=⨯=; ……………………………………6分(Ⅱ)依题意得: ξ的所有可能值有1,2,3,4 ……………………………………… 7分()()111,223P P ξξ====,()3255366636P ξ==⨯⨯=; …………………………………………………………9分 ()321614P ξ==⨯⨯⨯=; ………………………………………………………11分∴E ξ115161123423363636=⨯+⨯+⨯+⨯=。
………………………………………13分17.本题主要考查抛物线的定义、双曲线的性质、向量数量积等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想解:(1)方法一:依题意, )0,1(A …………………………………………1分 设点),(y x P ,点P 到直线l 的距离为d ;则d PA =即1)1(22+=+-x y x …………… 3分 化简得:x y 42= ………………4分方法二:依题意, )0,1(A ………………………………………… 1分H 由抛物线定义知:动点P 的轨迹N 是以)0,1(A 为焦点,直线l :1-=x 为准线的抛物线.……3分其方程为x y 42=. …………………………………………4分 (2)易求双曲线M 的渐近线方程为x y ±= …………………………- ………………5分 联立抛物线方程x y 42=,可得点)4,4(B 、)4,4(-C ………………………- ………………7分 设点),(y x D ,则1≥x - …………………………- …………… 8分由2DA DC DB =∙⇒2222)1(16)4(y x y x +-=-+-…………………-………………10分⇒61-=x …………………………………………12分∵1≥x ∴不存在点D 满足题意. …………………………………………13分 18.本题主要考查空间线面关系、空间角、解三角形等基础知识;考查空间想象能力,考查运算求解能力以及分析问题解决问题的能力;考查数形结合、化归与转化等数学思想.解:如图(1)过M 作MA 垂直过P 的水平面于A ,过N 作NB 垂直过P 的水平面于B ,则MA NB连接AB ,PA ,PM ,PB ,过N 作NH MA ⊥于H ,依题意得:四凌锥P-ABNM 的底面ABNM 为直角梯形, ………1分30,45,30NPB MPB MNH ∠=︒∠=︒∠=︒ …………3分11sin 30,22NB NP a MH MN a ∴=︒=== …………5分 山高113222MA MH HA MH NB MN NP a =+=+=+=米 ……………………6分(2) 解法1:设平面PMN 与水平面所成角为θ,则3,,,22AP MA a MP AB PB ===== MNP ∆中,2221cos 28NP NM MN MNP NP NM +-∠==⋅ …………………………………………8分212MNP S NP NM ∆=⋅=, ……………………………………10分 APB ∆为直角三角形,2128ABP S AP PB a ∆=⋅=…………………………………………12分cos 7ABP MPN S S θ∆∆∴== …………………………………………13分 解法2:以A 为原点AB 、AM 分别为y 、z 轴建立直角坐标系,Hzyx不妨设1a =,则313(0,0,),),(224M N P ………………………………………7分3331(,),(,,)442442PM PN =--=- ……………………………………8分设平面MNP 的一个法向量(,,)n x y z =,则00n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩即3304231042x y z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩令1x =,解得n = …………………10分 又水平面PAB 的一个法向量3(0,0,)2m AM == , …………………………………………11分设平面PMN 与水平面所成角为θ,则31cos m n m n θ⋅⋅==⋅=, ………………………………………12分 平面PMN与水平面所成角的余弦7. …………………………………………13分解法3:设直线MN 与AB 交于点C ,连PC , 过B 作BD 垂直于PC 于点D ,连ND.则NDB ∠为所求二面角的平面角 ……………………………………9分 由MA NB ,31,22MA a NB a ==得,24BC a BD a ==, ……………………………………10分tan ,cos 37NDB NDB ∠=∴∠= …………………………………………12分 平面PMN与水平面所成角的余弦7. …………………………………………13分HCD考查三角求值与变换的运算能力,以及向量、基本不等式等数学工具的应用转化能力。