课堂训练:223.1 第2课时 旋转作图及变换
- 格式:doc
- 大小:192.28 KB
- 文档页数:6
23.1图形的旋转第2课时旋转作图关键问答①确定图形经旋转后得到的对应图形的方法是什么?②怎样确定已知点旋转后的对应点?1.①将图23-1-17绕中心按顺时针方向旋转60°后可得到的图形是()图23-1-17图23-1-182.观察下列图案,将图23-1-19顺时针旋转90°得到的是()图23-1-19图23-1-203.②如图23-1-21,扎西坐在旋转的秋千上,请在图中分别画出点A,B,C的对应点A′,B′,C′.图23-1-21命题点1利用旋转性质作图[热度:90%]4.③将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()图23-1-22 方法点拨③旋转180°前后的两个图形,旋转中心和一组对应点在一条直线上.5.④图23-1-24中将图23-1-23在平面上旋转可以得到的是________.(填序号)图23-1-23图23-1-24解题突破④可根据图上方的顶点旋转后的位置来判断下方两分支的位置.6.⑤如图23-1-25,画出等边三角形ABC绕点B顺时针旋转90°后的图形(△A′BC′),并连接AC′,CA′.直接写出∠ABC′,∠CAC′,∠A′CB,∠CA′B的度数.图23-1-25方法点拨⑤将作旋转图形转化成先作图形上的关键点旋转后的对应点再顺次连接对应点.命题点2在网格中利用旋转性质作图[热度:86%]7.⑥如图23-1-26,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()图23-1-26图23-1-27方法点拨⑥掌握在网格中作互相垂直且相等的两条线段的方法,是在网格中利用旋转性质作图的基础.8.⑦在如图23-1-28所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O顺时针旋转90°后的△A′B′C′.图23-1-28易错警示⑦旋转作图时,一定要避免出现旋转方向的错误.9.⑧2017·宁夏如图23-1-29,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.图23-1-29方法点拨⑧利用图形变换作图时,将图形的变换转化成图形的顶点的变换.点进行旋转变换时,要先把点与旋转中心连接,把长度记作a,再按要求的方向作旋转角,并在旋转角的另一边上找到与旋转中心的距离等于a的点,即对应点.命题点3旋转作图的综合应用[热度:90%]10.⑨2017·宁波如图23-1-30,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图23-1-30①中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图②中的△ABC绕点C按顺时针方向旋转90°,画出经旋转后的三角形.图23-1-30方法点拨⑨作已知图形的轴对称图形的对应点的方法是先过点作对称轴的垂线段,再在垂线段的延长线上截取等于垂线段长度的线段.11.○10⑪在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°.(1)按要求画图:以点B为旋转中心,将△AOB绕点B按顺时针方向旋转60°,得到△A′O′B(点A,O的对应点分别为点A′,O′).(2)求:①∠A′BC的度数;②OA+OB+OC的值.图23-1-31解题突破○10通过旋转,把OA+OB+OC转化成求A′,C两点间的距离.模型建立⑪实际上,若点O为Rt△ABC内任一点,则点O到三个顶点的距离和的最小值是斜边与长直角边平方和的算术平方根.12.⑫在俄罗斯方块游戏中,所有出现的方格体会自动下落,如果一行中九个方格齐全,那么这一行会自动消失.已拼好的图案如图23-1-32所示,现又出现一个小方格体,必须对其进行以下哪项操作,才能拼成一个完整图案,图23-1-33使其全部自动消失()A.顺时针旋转90°,向下平移至边界B.逆时针旋转90°,向下平移至边界C.顺时针旋转90°,向右平移至边界D.逆时针旋转90°,向右平移至边界易错警示⑫注意题目条件:所有出现的方格体会自动下落,因此不要误选向下平移.13.⑬你知道风靡全球的魔方吗?它是匈牙利建筑学教授鲁比克为帮助学生增强空间思维能力而发明的教学工具,魔方的任何一面都可水平转动而不影响其他方块.如图23-1-33是一个三阶魔方,如果将任何一面顺时针或逆时针旋转90°视作一次操作,那么由甲图到乙图至少需要进行这样的操作()图23-1-33.1次B.2次C.3次D.4次解题突破⑬可以进行具体操作来达到解题目的.典题讲评与答案详析1.B 2.A3.解:如图所示.4.D[解析] 将△AOB绕点O旋转180°得到△DOE后,点A,O,D在一条直线上,点B,O,E在一条直线上.5.③[解析] 已知题图上方的顶点旋转到左侧时,下方的两个分支中,粗分支在上,细分支在下,故③符合题意.6.[导学号:04402152] 解:△A ′BC ′如图所示. ∵△ABC 是等边三角形, ∴∠ABC =60°,∴∠ABC ′=∠ABC +∠CBC ′=60°+90°=150°. 在△ABC ′中,AB =BC ′,∴∠BAC ′=12×(180°-150°)=15°,∴∠CAC ′=∠BAC -∠BAC ′=60°-15°=45°.在△A ′BC 中,BC =BA ′,∠A ′BC =∠CBC ′-∠C ′BA ′=90°-60°=30°,∴∠A ′CB =∠CA ′B =12×(180°-30°)=75°.7.C8.解:△A ′B ′C ′如图所示.9.解:(1)如图,△A 1B 1C 1即为所求. (2)如图,△A 2B 2C 2即为所求.10.解:(1)(答案不唯一)如图所示.(2)如图,△A′B′C即为所求.11.解:(1)如图所示.(2)连接AA′,OO′如图所示.∵△A′O′B是由△AOB按顺时针方向旋转60°得到的,∴△OBO′,△ABA′是等边三角形,O′A′=OA,∴∠BOO′=∠BO′O=60°,OB=OO′,∠ABA′=60°.∵∠BOC=∠AOB=∠A′O′B=120°,∴∠BOC+∠BOO′=180°,∠BO′O+∠A′O′B=180°,∴C,O,O′,A′四点共线,∴OA+OB+OC=OC+OO′+O′A′=CA′.在Rt△ABC中,∵∠ABC=30°,AC=1,∴AB=BA′=2,BC=3,∴∠A′BC=∠ABC+∠ABA′=90°,∴CA′=BC2+A′B2=7,∴OA+OB+OC=7.12.[导学号:04402154]C[解析] 观察图形可知,出现的小方格体需顺时针旋转90°,向右平移至边界.13.[导学号:04402155]C【关键问答】①找图形上几个关键点(通常是顶点),作关键点旋转后的对应点,顺次连接对应点可以得到图形旋转后对应的图形.②连接点与旋转中心,然后以旋转中心为顶点,顺时针(或逆时针)作旋转角,在旋转角的另一条边上,截取与已知点到旋转中心的距离等长的线段,便可以得到已知点的对应点.。
第2课时旋转作图及变换知识点1.图形旋转的性质是:(1)旋转前后的图形;(2)对应点到旋转中心的距离;(3)对应点与旋转中心所连线段的夹角等于2.简单的旋转作图---旋转作图的步骤(1)确定旋转;(2)找出图形的关键点;(3)将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个角,得到此关键点的对应点;(4)按图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。
一、选择题1.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等2.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()。
A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(• )A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5 △ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50° B.210° C.50°或210° D.130°二、填空题6.图形的平移、旋转、轴对称中,其相同的性质是_________.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.8、如图,将△OAB绕点0按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=lcm,则A′B长是_______cm.9、如图,在平面直角坐标系中,点A的坐标为(1,4),将线段O A绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是___________.10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.11.如图,在直角坐标系中,已知点)0,3A、)4,0(B,对△OAB连续作旋转变换,依次得到三角形①、②、(③、④…,则三角形⑩的直角顶点的坐标为__________.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A 、O 、C 三点在同一条线上,△AOB 与△COD 是能够重合的图形。
旋转》画图练习一、实践操作画图练1.画出将图形向上平移3格、向右平移8格后得到的图形。
2.画出顺时针旋转90度后的三角形图形。
3.画出长方形向右平移3格后再绕点34旋转的图形。
画出下面图形的另一半,使它成为轴对称图形。
4.画出顺时针旋转90度后的“O”图形。
画出逆时针旋转90度后的“A”图形。
5.画出逆时针旋转90度后的小旗图形。
二、旋转练题1.在右图中,指针从A开始,逆时针方向旋转90度到B;指针从A开始,顺时针方向旋转90度到D。
2.指针从B开始,顺时针方向旋转90度到C;指针从B到A,顺时针旋转了90度;指针从B到C,顺时针旋转了90度。
指针从C到D,顺时针旋转了90度;指针从C开始,逆时针方向旋转90度到B。
3.没有第三个问题。
三、旋转练题1.将①号图形绕A点按顺时针方向旋转90度;将②号图形绕A点按逆时针方向旋转90度;将③号图形绕A点按逆时针方向旋转90度;将④号图形绕A点按顺时针方向旋转90度;将⑤号图形绕A点按逆时针方向旋转90度;将⑥号图形绕A点按逆时针方向旋转90度。
2.将①号图形绕A点按逆时针方向旋转90度;将②号图形绕A点按顺时针方向旋转90度;将③号图形绕A点按顺时针方向旋转90度;将④号图形绕A点按逆时针方向旋转90度;将⑤号图形绕A点按顺时针方向旋转90度;将⑥号图形绕A点按顺时针方向旋转90度。
3.将①号图形绕A点按顺时针方向旋转90度;将②号图形绕B点按顺时针方向旋转90度;将③号图形绕C点按顺时针方向旋转90度;将④号图形绕D点按顺时针方向旋转90度;将⑤号图形绕O点按顺时针方向旋转90度;将⑥号图形绕O点按顺时针方向旋转90度。
将上述9个图形全部绕O点按顺时针方向旋转90度。
人教版2021年九年级上册:23.1图形的旋转同步练习第2课时旋转作图一、选择题1.下列图形绕某个点旋转72°后能与自身重合的是()2.如图是几种汽车轮轴的图案,图案绕中心旋转90°后能与原来的图案重合的是()3.下列选项中可以看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 ()4.[芜湖期中]正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A.30°B.60°C.120°D.180°5.在平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点A'处,则点A'的坐标为()A.(-2,3)B.(-3,0)C.(1,0)D.(0,-1)6.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么点A(2,5)的对应点A'的坐标是()A.(9,2)B.(7,2)C.(9,4)D.(7,4)7.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()8.(2020·青岛)如图,将△ABC 先向上平移1个单位长度,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4)9.(2020·枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( )A.()-3,3B.()-3,3C.()-3,2+3D.()1,2+3二、填空题10.旋转作图的步骤和方法:(1)确定旋转中心、____________及____________; (2)作出图形的关键点经过旋转后的__________; (3)按一定的顺序连接对应点.11.把一个图案进行旋转变换,选择不同的旋转中心、不同的旋转方向、不同的_____________,会有不同的效果.12.正八边形绕它的中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为 . 三、解答题13.如图,在平面直角坐标系中,等边△OAB 的边长为2,y 轴的正半轴恰好是△OAB 的角平分线,先将△OAB 绕点O 按顺时针方向旋转120°,再关于y 轴对称后得到△A 1B 1O ,求点A 1的坐标..14.在图中作出“三角旗”绕点O 逆时针旋转90°后的图案.15.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求DP的长及点D的坐标.16.(2020·鄂尔多斯)(1)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′.②在①中所画图形中,∠AB′B=________°.(2)【问题解决】如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.17.如图,边长为3的正方形纸片ABCD的相邻边AB,AD分别在x轴、y轴的正半轴上,点E在纸片上,点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,此时点E的对应点为E1,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,此时点E1的对应点为E2,以此类推,这样连续旋转2020次,求点E2020的坐标.18.[安徽中考]如图,在由边长为1个单位长度的小正方形组成的网格中,给出以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1;(A1,B1分别为点A,B的对应点)(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.参考答案一、选择题1.下列图形绕某个点旋转72°后能与自身重合的是(B)2.如图是几种汽车轮轴的图案,图案绕中心旋转90°后能与原来的图案重合的是(B)3.下列选项中可以看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 (B)4.[芜湖期中]正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为(C)A.30°B.60°C.120°D.180°5.在平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点A'处,则点A'的坐标为(D)A.(-2,3)B.(-3,0)C.(1,0)D.(0,-1)6.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么点A(2,5)的对应点A'的坐标是(A)A.(9,2)B.(7,2)C.(9,4)D.(7,4)7.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是(C)8.(2020·青岛)如图,将△ABC先向上平移1个单位长度,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是(D)A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4)9.(2020·枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( )A.()-3,3B.()-3,3C.()-3,2+3D.()1,2+3【点拨】如图,过点B ′作B ′H ⊥y 轴于点H . ∵∠AOB =∠B =30°,∴AB =OA =2.∵将△AOB 绕点O 逆时针旋转90°得到△A ′OB ′, ∴A ′B ′=AB =2,OA ′=OA =2,∠A ′OB ′=∠A ′B ′O =30°. ∴∠B ′A ′H =60°. ∴∠A ′B ′H =30°. ∴A ′H =12A ′B ′=1.∴B ′H =A ′B ′2-A ′H 2=3,OH =OA ′+A ′H =3. ∴点B ′的坐标是(-3,3).【答案】A 二、填空题10.旋转作图的步骤和方法:(1)确定旋转中心、____________及____________;(2)作出图形的关键点经过旋转后的__________;(3)按一定的顺序连接对应点.【答案】旋转角度旋转方向对应点11.把一个图案进行旋转变换,选择不同的旋转中心、不同的旋转方向、不同的_____________,会有不同的效果.【答案】旋转角度12.正八边形绕它的中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为45°.三、解答题13.如图,在平面直角坐标系中,等边△OAB的边长为2,y轴的正半轴恰好是△OAB的角平分线,先将△OAB绕点O按顺时针方向旋转120°,再关于y轴对称后得到△A1B1O,求点A1的坐标..解:先将△OAB绕点O按顺时针方向旋转120°,点A的对应点在x轴的正半轴上,且坐标为(2,0),再关于y轴对称后得点A1的坐标为(-2,0).14.在图中作出“三角旗”绕点O逆时针旋转90°后的图案.解:如图.15.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求DP的长及点D的坐标.解:∵△AOB是等边三角形,∴∠OAB=60°.由旋转得∠OAB=∠PAD=60°,AD=AP.∵OA=3,AP平分∠OAB,∴∠OAP=30°,∴AP=2OP.∵OP2+32=(2OP)2,∴OP=√3,AP=2√3,∴AD=AP=2√3.∵∠OAP=30°,∠PAD=60°,∴∠OAD=30°+60°=90°,∴点D的坐标为(2√3,3).16.(2020·鄂尔多斯)(1)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′.解:如图①,△AB′C′即为所求.②在①中所画图形中,∠AB′B=________°.【答案】45(2)【问题解决】如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.解:如图②,过点E作EH⊥CD,交CD的延长线于点H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°.∴∠B=∠EAH.又∵AB=AE,∴△ABC≌△EAH(AAS).∴BC=AH,EH=AC.∵BC=CD,∴CD=AH.∴DH=AC=EH.∴∠EDH=45°.∴∠ADE=135°.17.如图,边长为3的正方形纸片ABCD的相邻边AB,AD分别在x轴、y轴的正半轴上,点E在纸片上,点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,此时点E的对应点为E1,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,此时点E1的对应点为E2,以此类推,这样连续旋转2020次,求点E2020的坐标.解:∵正方形的边长为3,∴OB=3,∵点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,∴E1(5,2),以此类推,E2(8,1),E3(10,1),E4(13,2),…,观察可知:纵坐标的变化规律是四次一个循环(2,1,1,2),2020÷4=505,∴点E2020的纵坐标与点E4相同,纵坐标为2,横坐标为3×2020+1=6061,∴点E2020的坐标为(6061,2).18.[安徽中考]如图,在由边长为1个单位长度的小正方形组成的网格中,给出以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1;(A1,B1分别为点A,B的对应点)(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.解:(1)如图所示,线段A1B1即为所求.(2)如图所示,线段B1A2即为所求.。
1 第2课时 旋转作图及变换
知识点
1.图形旋转的性质是:(1)旋转前后的图形 ;(2)对应点到旋转中心的距离 ;
(3)对应点与旋转中心所连线段的夹角等于
2.简单的旋转作图---旋转作图的步骤
(1)确定旋转 ;
(2)找出图形的关键点;
(3)将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个角,得到此关键点的对
应点;
(4)按图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。
一、选择题
1.在图形旋转中,下列说法错误的是( )
A .在图形上的每一点到旋转中心的距离相等
B .图形上每一点移动的角度相同
C .图形上可能存在不动的点
D .图形上任意两点的连线与其对应两点的连线长度相等
2.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )
3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是( )。
A.60°
B.90°
C.72°
D.120°
4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(• )
A .左上角的梅花只需沿对角线平移即可
B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°
C .右下角的梅花需先沿对角线平移后,再顺时针旋转180
D .左下角的梅花需先沿对角线平移后,再顺时针旋转90°
5 △ABC 绕着A 点旋转后得到△AB ′C ′,若∠BAC ′=130°,∠BAC=80°,•则旋转角等于( )
A .50°
B .210°
C .50°或210°
D .130°
二、填空题
6.图形的平移、旋转、轴对称中,其相同的性质是_________.
7.如图,△ABC 和△ADE 均是顶角为42°的等腰三角形,BC 、DE 分别是底边,图中的△ABD 绕A 旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.
2
8、如图,将△OAB 绕点0按逆时针方面旋转至△0A ′B ′,使点B 恰好落在边A ′B ′上.已知AB=4cm ,BB′=lcm ,则
A ′
B 长是_______cm .
9、如图,在平面直角坐标系中,点A 的坐标为(1,4),将线段O A 绕点O 顺时针旋转90°得到线段OA ′,
则点A′的坐标是___________.
10.如图,自正方形ABCD 的顶点A 引两条射线分别交BC 、CD 于E 、F ,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E 、F 分别在边BC 、CD 上移动时,BE+•DF•
与EF 的关系是________.
11.如图,在直角坐标系中,已知点)0,3( A 、)4,0(B ,对△OAB 连续作旋转变换,
依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为__________.
三、综合提高题
12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?
3
13.如图:若∠AOD=∠BOC=60°,A 、O 、C 三点在同一条线上,△AOB 与△COD 是能够重合的图形。
求:(1)旋转中心;
(2)旋转角度数;
(3)图中经过旋转后能重合的三
角形共有几对?若A 、O 、C
三点不共线,结论还成立
吗?为什么?
(4)求当△BOC 为等腰直角三角形
时的旋转角度
(5)若∠A=15°,则求当A 、C 、B 在同一条线上时的旋
转角度 F E
B
D
14作图⑴.如图,以点O 为中心,把点P 顺时针旋转45°.
.
O P .
⑵如图,以点O 为中心,把线段AB 逆时针旋转90°.
4 A
B
O .
⑶.如图,以点O 为中心,把△ABC 顺时针旋转120°.
B
A
C
.O
⑷.如图,以点B 为中心,把△ABC 旋转180°.
B
A
C
15.如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.
16、如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.
(1)求x 的取值范围;
为直角三角形,求x 的值.
17.如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到C
5 11OA B ∆.
(1)线段1OA 的长是_____________,1AOB ∠的度数是_____________;
(2)连结1AA ,求证:四边形11OAA B 是平行四边形.
B 1A O B
A 1
23.1.2
知识点1形状与大小不变, 相等,旋转角
2.(1)转中心、旋转方向、旋转角
1-5ADCBC
6.图形变换前后大小与形状不变
7. △ACE,全等,CE 8. 3CM
9.(-4,1) 10. BE+•DF•=EF
11.(36,0). ∵每三次变换为一个循环,直角顶点的横坐标为12336⨯=. 12---14略
15.解:∵四边形ABCD 、四边形AKLM 是正方形
∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°
∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的 ∴BK=DM
16.解:(1)在△ABC 中,∵1=AC ,x AB =,x BC -=3.
∴⎩
⎨⎧>-+->+x x x x 3131,解得21<<x . (2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,无解.
②若AB 为斜边,则1)3(22+-=x x ,解得3
5=x ,满足21<<x . ③若BC 为斜边,则221)3(x x +=-,解得3
4=x ,满足21<<x . ∴35=x 或3
4=x .
6
17.、解:(1)6,135°;(2)11190AOA OA B ∠=∠=︒,
∴11//OA A B . 又11OA AB A B ==,∴四边形11OAA B 是平行四边形.。