当前位置:文档之家› 衬砌台车受力分析

衬砌台车受力分析

衬砌台车受力分析
衬砌台车受力分析

全液压自行式台车受力分析

台车在衬砌过程中,两侧边模主要受混主要受砼的侧向挤压力,顶部模板主要受砼的压力,门架部份既受侧向力又受正压力。由于模板最下端和台车最宽处存在截面积差,故在浇注过程中,台车还是受砼对它的浮力。

一侧压力的确定(侧压力只与浇注混凝土高度有关,与厚度无关)。

根据《建筑手册》中“现浇砼结构模板的设计”可知侧压力公式为:

F=0.22r

c t

β

1

β

2

V1/2

F—新浇筑砼对模板的最大侧压力(KN/M2)r

c

—混凝土的重力密度(KN/M3)

t 0—新浇筑混凝土的初时间(h),可按实测确定,当缺乏试验资料时,可采用t

=200/(T+15)计算(T为混凝土的温度o C)

V—混凝土的浇筑速度(m/h)

β

1

—外加剂影响修正参数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2

β

2

—混凝土坍落度影响修正参数,当坍落度小于30mm时取0.85,50∽90mm时取1.0, 110∽150mm时取1.15

1、各参数的确定:

①r

c

取24KN/ M3

②t

=200/(T+15)

=200/(25+15)

=5

③V的确定

施工时采用混凝土输送泵浇注,输送泵排量为25∽30m3/h,取最大值30m3/h,浇注

混凝土平均厚度取1.0m,台车长度为10m,两边平衡浇注,考虑到浇注时,换管与

时间耽误,取修正系数0.75,故:

0.75x30m3/h=(1.0x10xV)x2

V=1.125m/h

④β

1

取1.0

⑤β

2

取1.15

2、侧压力计算:

F=0.22x24x5x1.125x1x1.15

=32.20 KN/M2

二、边模的强度验算

1、模板强度验算

面板厚度8mm,间距250布置75#角钢,将侧压力视为均布载荷:

均布载荷:q=F x 0.25/1000

=32.2x0.25/1000

=8.05N/mm

弯矩: M=ql2/8

=8.05x15002/8

=226.4x104 N·mm

模板截面模量: W=1/6 x (250x42)+9.93x103x2

=20.526 x 103 mm3

设计应力:σ=M/W

= 226.4x104/(20.526x103)

=215N/mm2

=110.3N/mm2

m

模板强度合符要求。

为模板设计许用应力规范值。

注:f

m

2、弧板强度验算:

弧板截面模量W=1/6[12 x (250/2)2]

=31.250 x 103mm3

为了计算方便,将弧板按直板计算:

均布载荷: q=(Fx2025/1000)x1/2

=32.2 x 2025/1000 x 1/2

=32.60N/mm

弯矩: M=ql/8

=32.6x20252/8

=1671x104N·mm

设计应力:σ=M/W

=1671x104/(3x31.25x103)

=215N/mm

=178.24N/mm2≤f

m

(注:所有弯矩至少由3块弧板承担)

弧板强度合符要求。

3、弧板联接梁的强度验算:

弧板联接梁为[20#组焊

截面模量: W=191.4x103 x2

=382.8x103 mm3

均布载荷: q=Fx1500/1000

=32.2x1500/1000

=48.3N/mm

弯矩: M=ql2/8

=48.3x15002/8

=1358.4x104 N·mm

设计应力:σ=M/W

=1358.4x104/(382.8x103)

=35.56N/mm<

m

弧板联接梁强度符合要求

三、上拱板的强度验算

上拱板与横梁联接成为一个穹形钢体,承受的正压力远大于侧向压力,故只需对上模板受正压力进行强度验算。

模板每平方米上所受正压力,即混凝土的自重,衬砌厚度按1.5米计算,正压力:

N=24 KN/m3 x 1.5m

=36 KN/m2

较侧压力32.2KN/m2稍大,但上模板刚度较下模板好。由下模板的计算可知,设计应力远小于许用应力,通过计算亦可得出上模板强度是符合要求的,在此不作计算。

四、浮力计算:

根据手册查得上浮力为132N/m2

截面积差为:(10.700-7.84)x10=28.6m2

=132N/m2x28.6m2

上浮力:F

=3.775KN

远小于台车自重,可略不计。

友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!

隧道初期支护验算

第三章 初期支护结构验算 3.1 确定计算参数 (1)根据《公路隧道设计规范JTGD702004》确定的支护参数见表3.1 表3.1 初期支护结构设计参数表 (2)隧道的几何尺寸及围岩的计算参数见表3.2 表3.2 隧道设计参数表 ①其中0p H γ= ,γ为围岩的容重,H 为隧道埋深; ②表中隧道当量半径a 为将隧道形状视为圆形时圆的半径,对马蹄形隧道,其计算当量半径a 可用下式求得 22 ()22B F a F += 式中:F ——隧道开挖高度,cm ; B ——隧道开挖宽度,cm 。 代入数值得: 22()22B F a F +==22 1280()1005.6221005.6a +=?=943cm (3)初期支护材料的力学性能 C20喷射混凝土极限抗压强度cs R 取10MPa (喷射混凝土抗压强度龄期为3天);

C20喷射混凝土极限应变0.3%s ε=; 砂浆与围岩之间的抗剪强度g 0.4MPa τ=; V 级围岩单轴极限抗压强度R=20MPa 。 3.2 计算隧道周边设计支护阻力i p 与径向位移i u 通过查阅相关资料可知,对于V 级围岩,其径向松弛主要在距洞壁2.5m 深的范围内,马蹄形隧道围岩发生松弛时,其等代圆的计算当量半径p R (塑性区的塑性半径)可用下式计算: 2 2 2( )()22() p B W F W R F W +++=+ 式中:W ——为隧道围岩松弛范围对V 级围岩,W=250cm ; 代入数值计算可得: 2 2 2( )()22() p B W F W R F W +++=+ = 22 12802250()(1005.6250)29432(1005.6250) cm +?++=?+ 当假定隧道为圆形,围岩视为各向同性、均匀、连续、初始地应力只考虑围岩的自重应力,侧压力系数1λ=。根据弹塑性理论和莫尔-库伦强度准则,可导出: (1)隧道围岩塑性区半径p R 和周边支护阻力i p 的关系: 1sin 2sin 0(1sin cos cot )() cot r r p r r i r r R p C C a p C φ φφφφ---+=+ 式中:p R ——塑性区半径; a ——隧道当量半径; 0p ——隧道围岩的自重应力; i p ——隧道的设计支护阻力,即隧道围岩开挖后达到弹塑性应力平衡时,必

隧道衬砌台车验收

南昆铁路南百段增建二线NBSG-3标 中铁四局项目经理部第二分部 隧道衬砌台车 验收资料 中铁四局集团有限公司 二0一五年八月 目录 1、工程概况 (1) 2、隧道衬砌台车基本原则 ............. 错误!未定义书签。 3、台车计划进场时间 (1) 4、台车要求 (1) 5、审批验收 (1) &二次衬砌 (2) 7、模板台车的强度刚度校核一台车受力验算 (6) 8、衬砌钢模板台车验收单........................................... ..13 9、隧道二衬台车安装验收记录表..................................... ..15 10、二衬台车检测记录表 (16)

隧道衬砌台车验收资料 1、工程概况 2、隧道衬砌台车基本原则 ①本标段为壹个长隧道,00 个洞口,每个洞口设置一台衬砌台车。 ②严格根据《南昆铁路南百建指施工标准化管理汇编》(隧道)中相关要求,对二衬台车执行准入制度,选择专业厂家进行生产。 3、台车计划进场时间 满足现场隧道二衬需求。 4、台车要求 为保证衬砌工程质量,隧道一般地段(含洞身、明洞、加宽段)的二衬施工采用全断面模板台车和泵送作业。 因隧道出口场地较狭窄,隧道台车难以直接拼装,需在桥台旁拓宽,搭建一个贝雷架平台作为台车的拼装工作面。 台车模板支撑桁架门下净空应满足隧道衬砌前方施工所需大型设备通行要求,设计台车净高为00m ,因此施工前须对过往机械进行通知,台车上标示明显的限高牌。桁架各层平台高度满足混凝土施工要求,利于工人进行安管、混凝土捣固等施工作业,安装上下行的爬梯。 按照《标准化管理指南》(隧道)中相关要求设置作业窗,窗口尺寸00cm xoocm,且整齐划一;作业窗周边进行加强,避免应力集中引起周边变形,窗门应平整、严密、不漏浆。 5、审批验收 台车的审批验收共分为两阶段,由监理单位组织成立专门的审批验收小组,对每座隧道的隧道二衬台车进行审批验收。 第一阶段(二衬台车进场前报批):我项目部进场后应立即着手进行二衬台车进场前的准备工作,现已向监理单位上报拟进场二衬台车的数量、台车长度、外观几

梁底模板和梁侧模板支撑架计算

梁底模板支撑架计算 计算依据《建筑施工模板安全技术规范》(JGJ162-2008)。 一、计算参数: 新浇混凝土梁名称 KL12 新浇混凝土梁计算跨度(m) 3.8 混凝土梁截面尺寸(mm×mm) 300*700 新浇混凝土结构层高(m) 5.8 梁侧楼板厚度(mm) 130 二、模板体系设计 新浇混凝土梁支撑方式梁两侧有板,梁板立柱共用(A) 梁跨度方向立柱间距la(mm) 900 梁两侧立柱间距lb(mm) 1000 步距h(mm) 1500 新浇混凝土楼板立柱间距l'a(mm)、l'b(mm): 900、900 混凝土梁居梁两侧立柱中的位置居中 梁左侧立柱距梁中心线距离(mm) 500 梁底增加立柱根数 2 梁底增加立柱布置方式:按梁两侧立柱间距均分 梁底增加立柱依次距梁左侧立柱距离(mm) 500 梁底支撑小梁根数 4 每纵距内附加梁底支撑主梁根数 0 梁底支撑小梁最大悬挑长度(mm) 100 结构表面的要求结构表面隐蔽 三、面板验算 取单位宽度1000mm,按三等跨连续梁计算,计算简图如下: W=bh2/6=1000×15×15/6=37500mm3,I=bh3/12=1000×15×15×15/12=281250mm4 q1=0.9max[1.2(G1k+ (G2k+G3k)×h)+1.4Q2k,1.35(G1k+ (G2k+G3k)×h)+1.4×0.7Q2k]×b=0.9max[1.2×(0.1+(24+1.5)×1)+1.4×2,1.35×(0.1+(24+1.5)×1)+1.4×0.7×2]×1=32.868kN/m q1静=0.9×1.35×[G1k+(G2k+G3k)×h]×b=0.9×1.35×[0.1+(24+1.5)×1]×1=31.104kN/m q1活=0.9×1.4×0.7×Q2k×b=0.9×1.4×0.7×2×1=1.764kN/m q2=(G1k+ (G2k+G3k)×h)×b=[0.1+(24+1.5)×1]×1=25.6kN/m 1、强度验算 Mmax=0.1q1静L2+0.117q1活L2=0.1×31.104×0.2672+0.117×1.764×0.2672

模板台车

模板台车分析介绍 一、在限元计算模型 本计算模型是采用MSC/PARAN有限元分析软件进行建立的,并经过反复完善后得到的。 该12m全液压钢模板台车的有限元模型主要由3部分组成,即:顶模、边模、架体。其中顶模、边模的模型较为简单,主要由平面单元和L型梁单元构成,中间加以必要的连接法兰板,而架体主要由各种截面形状的梁单元组成。其中划分有限元单元62221个划分出节点共80271个,关联节点24356个。 对该模型简单介绍分为以下三个部分: 1、顶模部分 为真实反映L型钢、连接法兰与顶模面板,顶纵梁与顶模台梁的连接关系,L型钢、连接法兰、顶纵梁做了偏置,顶模单元3维加偏置模型。 2、边模部分 与顶模类似,边模的L型钢及连接法兰也做了偏置。对于顶模与边模之间的铰接关系,在有限元模型中用两端处理为单向铰的刚性单元表现。 3、架体模型 架体有限元模型为二维杆件梁单元构成,边模通梁与架体通过丝杆连接,丝杆两端处理为单向铰接。 二、边界的处理 在有限元计算中,对边界与荷载的处理是最为重要的五环节,依据模板台车在实际施工过程中的使用情况,我信计算模型中采用了以下几种边界条件的处理方式。 1、对轨千斤顶与钢轨接触处 对轨千顶在施工过程中作用有限,不约束其高度方向(总体坐标Y向)位移是合理的,所以在实际模型中仅仅约束对丝杆下端X、Z两个方向位移。 2、行走车轮与钢轨接触处的处理 模板台车车轮与钢轨始终保持接触,所以约束其X、Y、Z三向平动位移是合理的; 3、对地丝杆与地面的接触 由于模板台车实际使用中对地丝支撑在混凝土地面上,因此在模型中将地丝杆与地面的接触处处理为约束X、Y、Z平动自由度。 三、载荷的施加 台车在工作时受混凝土的压力,压力由混凝土自重、震捣力,混凝土入仓产生的冲击力组合而成,台车模板所承受的载荷可以按静水压力计算,计算公式为: P=γ*h γ为混凝土比重,h为混凝土灌注高度 四、分析结果 此次分析计算是采用MSC/NASTRAN程序进行的,具体分析结果简介如下: 1、衬砌高度H=3.5m时,模板最大变形为2.38mm。 1、衬砌高度H=4.5m时,模板下部最大变形为1.03mm,边模板最大变形为3.85mm。 1、在台车最后封顶时,最大变形在台梁处,为3.56mm。 第四章技术说明 一、概要: 客运专线模板台车标准高,要求严,各个施工单位对此都比较重视,我们中隧集团多次组织专家对客运专线模板台车进行研讨,制定了中隧集团客运专线模板台车设计制造标准。为了进一步提高衬砌台车的可靠性和经济性,我公司特联合中国航天科技集团第十一研

xxx隧道衬砌台车结构计算书(建筑助手)

XXXXXXXXXX引水隧道项目衬砌台车计算书 编制: 校核: 审核: 2017年10月

xxxxx项目衬砌台车计算书 1.计算依据 1、《xxxxx施工图设计》 2、《衬砌台车结构设计图》 3、《钢结构设计规范》(GB 50017-2003) 4、《混凝土结构设计规范》(GB 50010-2002) 2. 概况 xxxxx隧道衬砌模板系统及台车布置图如下图2.1-2.2。隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。 衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。顶拱支撑采用H200×200×8.0立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。衬砌台车门式框架立柱采用H200×200×8.0型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。本衬砌台车与顶拱支撑焊接为一个整体。进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。侧模支撑系统的螺旋丝杆,每断面设置4个。下部螺旋丝杆水平支承于台车的I20a 纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。模板系统及台车构件均采用Q235普通型刚。

隧道衬砌计算

第五章隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。 5.2隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的力,并进行结构截面设计。 5.3隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。取单位长度(1m )的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3 ),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14 ),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14 单元,只保留受压的COMBIN14 单元。

图5-1受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4结构检算及配筋 本隧道主要验算明洞段、V级围岩段和W级围岩段衬砌结构。根据隧道规深、浅埋判定方法可知,V级围岩段分为超浅埋段、浅埋段和深埋段。W级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力 图、建立图和弯矩图。从得出的结果可知,V级围岩深埋段,所受力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)V级围岩 围岩重度 1 8.5kN /m3,弹性抗力系数 k 300MPa /m ,计算摩擦角 o,泊松比u=0.4 。 0 45 (2)C25 钢筋混凝土 容重25kN / m3,截面尺寸 b h 1.0m 0.6m ,弹性模量E 29.5G Pa 。 轴心抗压强度:f ed 12.5MP a ;弯曲抗压强度:f cmd 13.5MP a ;轴心抗拉强度:f cd 1. 33 M P a ;泊松比u=0.2 ; (3)HPB235钢筋物理力学参数 密度:s 7800kg / m3;抗拉抗压强度: f std f sed 188MP a;弹性模量: E s 210GP a; 5.4.2结构力图和变形图(V级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算,而根据对称性可知只需要对截面8、11、47进行检算

地梁受力与顶板梁受力分析

地梁受力与顶板梁受力相反是吗地梁受力与顶板梁受力相反是吗,,,,板梁是下部筋受力下部钢筋大板梁是下部筋受力下部钢筋大,,,,地梁受力与顶板梁受力相反是吗,板梁是下部筋受力下部钢筋大,而上部主要是支座筋,而地梁相反正确,地梁(基础梁)受力与普通梁正好相反,所以受力筋与支座筋位置也正好相反。地梁受力与框架梁梁受力相反,支座负筋位置也相反是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别: 当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算 是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别: 当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算。是不同的,因为他们的受力是相反的地梁承受基础的反作用力,荷载是向上的,而板顶梁承受的是向下的荷载,两者受力是相反的地梁承受地基反力方向向上,顶梁承受荷载向下,所以受力相反,至于钢筋上部大或下部大那就不一定,要作受力分析.基础梁是基础的一种型式,是结构的一部份,用于承受上部负荷及调整各基础内力,使各基础处于轴心受压或小偏心受压,改善基础受力的连续基础,它一般与桩基、条基、筏基共同受力,单一的基础梁受力已很少见。条基、筏基中的梁应该叫肋梁,肋梁和条基翼板或筏基板共同组成条基或筏基。基础拉梁是为了减少不均匀沉降,防止形变的拉压杆传力构件,它把水平荷载均匀地传给各个基础,有时充当上部墙体的基础。 拉梁顾名思义是连接和协调了两端的独基、承台或基础梁,许多拉梁共同起作用,把整个建筑物基础联合成刚度协调、变形一致的基础。基础梁的作用:1.提高结构整体性;2.抵抗柱底弯矩及剪力;3.调节沉降;4.承受底层填充墙荷载等。基础梁分为:

衬砌台车受力分析

全液压自行式台车受力分析 台车在衬砌过程中,两侧边模主要受混主要受砼的侧向挤压力,顶部模板主要受砼的压力,门架部份既受侧向力又受正压力。由于模板最下端和台车最宽处存在截面积差,故在浇注过程中,台车还是受砼对它的浮力。 一侧压力的确定(侧压力只与浇注混凝土高度有关,与厚度无关)。 根据《建筑手册》中“现浇砼结构模板的设计”可知侧压力公式为: F=0.22r c t β 1 β 2 V1/2 F—新浇筑砼对模板的最大侧压力(KN/M2)r c —混凝土的重力密度(KN/M3) t 0—新浇筑混凝土的初时间(h),可按实测确定,当缺乏试验资料时,可采用t =200/(T+15)计算(T为混凝土的温度o C) V—混凝土的浇筑速度(m/h) β 1 —外加剂影响修正参数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2 β 2 —混凝土坍落度影响修正参数,当坍落度小于30mm时取0.85,50∽90mm时取1.0, 110∽150mm时取1.15 1、各参数的确定: ①r c 取24KN/ M3 ②t =200/(T+15) =200/(25+15) =5 ③V的确定 施工时采用混凝土输送泵浇注,输送泵排量为25∽30m3/h,取最大值30m3/h,浇注 混凝土平均厚度取1.0m,台车长度为10m,两边平衡浇注,考虑到浇注时,换管与 时间耽误,取修正系数0.75,故: 0.75x30m3/h=(1.0x10xV)x2 V=1.125m/h ④β 1 取1.0 ⑤β 2 取1.15 2、侧压力计算: F=0.22x24x5x1.125x1x1.15 =32.20 KN/M2 二、边模的强度验算 1、模板强度验算 面板厚度8mm,间距250布置75#角钢,将侧压力视为均布载荷: 均布载荷:q=F x 0.25/1000 =32.2x0.25/1000 =8.05N/mm 弯矩: M=ql2/8 =8.05x15002/8 =226.4x104 N·mm 模板截面模量: W=1/6 x (250x42)+9.93x103x2 =20.526 x 103 mm3 设计应力:σ=M/W

隧道施工衬砌台车一般问题及解决办法

隧道施工衬砌台车一般问题及解决办法 1、台车安装前需做好哪些方面的准备工作? 台车运抵工地需准备好以下安装工作: (1)安装场地。视台车的大小,需留出堆放及安装场地,一般需 20m x 20m; (2)枕木和钢轨。枕木一般为15mm x 15mm x 800mm,钢轨为43kg级重轨; (3)起吊设备。大部台车安装门架时,可利用工地现有的挖机或装载机直接安装,但安装上部台架及模板时,必须用16吨及以上的吊机配合安装; (4)安装辅助人员6-8名,一般由厂家售后服务人员进行台车安装; (5)焊机、气割设备,处理台车运输过程中加固部件的连接件; (6)木板,一般要求厚5cm以上,用于搭架安装操作平台。 2、如何确定台车中线? 台车在定位时,必须先确定台车中线。确定中线的办法很简单,在顶部中心位置有一定位十字线,其交点即为厂家在制作台车就已定好的台车中线点,通过该点并引出重力垂线,即可找出台车中线。 3、顶升油缸设计在下面时,如何测量台车断面尺寸? 当顶升油缸设计在下面时,由于两侧油缸妨碍测量工具直接测量,故不好测量台车最宽点等尺寸。可在台车模板上引出一水平线,通过水平仪等工具,使其两侧位置高度一致,并焊接一杆件(如细螺纹钢等),再通过测量引出杆件,得出其断面宽度尺寸。 4、台车如何进行定位? 台车在进行衬砌工作前,必须要对台车进行定位,使台车轮廓断面尺寸与要求尺寸一致。台车行走至待衬砌断面后,通过以下几个动作进行定位:

(1)通过操作液压系统的平移油缸调节台车中线,使其与隧道中线对齐; (2)操作液压系统顶升油缸,使台车升至标准衬砌高度,然后旋紧基础千斤,之后复核高度尺寸; (3)操作液压系统,使侧向油缸活塞杆伸出并达到标准衬砌断面,然后人工扳动侧向支撑丝杆千斤,使之达到侧向油缸支撑位置并旋紧; (4)完成以上几个动作后,应进行断面尺寸的复核,以防有误。 5、台车如何脱模? 台车衬砌完一组后,需经过8-24小时才能脱模。脱模的动作与定位动作相反: (1)拆去挡头模板; (2)拆除边模侧向支撑丝杆千斤(一般去掉模板这头的千斤销子即可),并将侧向油缸收回到一定的脱模距离; (3)收缩顶升油缸,使台车下降到一定的位置后,脱模完成。 6、一般台车使用哪种脱模剂? 为了使台车衬砌后更好的脱模,且使衬砌好的混凝土表面光洁滑亮,一般都需要用到脱模剂,脱模剂的选择可视用户的具体情况而有所不同,一般有以下几种方式:专业脱模剂、机油、植物油、模板漆,其中模板漆可以衬砌三至五模后刷一次。 7、如何解决台车前后模搭接时局部出现弧度不吻合的情况? 台车模板在焊接、运输等过程中会发生局部的小的焊接变形及塑性变形,安装时售后服务人员会根据需要进行适当的调整,以使安装好后的台车其轮廓误差控制在3mm以内,模板间错台及错缝控制在1mm以内。衬砌最初两组时,由于最前及最后模板间存在的孔位误差,在一定程度上会促使模板局部产生较小的线性误差,造成前后端模板搭接时出现局部弧度不吻合的现象。这一现象是正常的,不影响台车的正常使用,当衬砌完第一组后,第二模

隧道二衬台车模板受力验算

隧道二衬台车模板受力验算 隧道全液压二次衬砌台车长度一般分为6m、9m、12m等规格。由于模板面板采用1.5m宽的整块钢板经冷弯拼接而成,故隧道二衬脱模后的混凝土表面光滑平整,拼接缝小,外观非常漂亮。同时施工时大大减小安装模板的劳动强度,成为隧道二衬施工中的得力助手。 二衬台车模板分顶模、左右边模三部分,分别通过顶升和左右两边的液压系统来调整和校正模板的正确位置。混凝土由混凝土输送泵泵送入模,混凝土的自重及边墙压力靠模板来支承。模板的整体刚度、强度由拱板、托架和千斤顶来共同支承,保证模板工作时的绝对可靠。由于顶模受到混凝土自重(浇筑后初凝前)、施工荷载以及泵送口封口时的挤压力等荷载的共同作用,其受力条件显然比其它部位的模板更加复杂、受力更大、结构要求更高。由于台车边模与顶模的结构构造基本一致,而边模一般不承受混凝土白重,荷载较小,因此对台车模板进行受力验算时只考虑顶模的影响。 台车模板一般由宽1.5m、厚8mm的整块钢板冷弯拼接而成,从台车的轴线方向看是一个圆柱壳状体,且是由多个1.5m长的圆柱壳状体组合而成。通过计算可知模板下的托架支承以及弧形拱板(肋板.宽220mm,厚12mm)的强度和刚度是足够的.而顶模受到各种荷载的共同作用是最大的。因此.取台车顶部模板最顶部2m宽度、1.5m长度的这部分模板建立力学模型,进行受力分析和验算并校核模板的强度和刚度。其受力简图如图l所示。该模板厚8mm,背筋采用∠75×6加强角钢.间距250mm。

如图1所示.建立力学模型的这部分模板上的荷载由两部分组成.一是混凝土的自重:二是混凝土输送泵泵送口进行封口时产生的较大挤压力,该值的取值是不确定的.它与泵送封口时的操作有极大的关系。如果混凝土已经灌满,而操作人员仍然泵送混凝土,混凝土输送泵的理论出口压力(36.5kg/㎝)很大,就有可能造成模板的严重变形。由于输送管的长度及高度的变化,泵送接口处的压力实际有多大,目前没有理论及实验验证的数据可供参考。据此情况。操作工就必须及时掌握和控制泵送过程,随时观察灌注情况,根据操作经验判定是否灌满,并及时停止泵送,进行封口。 1、建立力学模型部分的混凝土自重荷载P1 如图1所示,该部分的为宽2m,长1.5m,厚0.8m的混凝土,查《路桥施工计算手册》C40~C60混凝土密度近似取为2.45t/m3,(参考[l]中258页)则混凝土自重为W: W=2×1.5×0.8×2.45=5.88(t)。 折算成单位面载荷Pl:

1隧道衬砌台车管理制度

目录 一、目的 (2) 二、适用范围: (2) 三、隧道衬砌台车的作业规定 (2) 1、台车操作前的准备工作 (2) 2、隧道衬砌台车作业流程图及在操作过程中的注意事项 (3) 3、操作注意事项 (6) 4、定位装置 (7) 5、排气装置 (7) 6、混凝土壁厚检测装置 (7) 7、注浆口使用方法 (8) 8、维修保养 (8)

隧道衬砌台车管理制度 一、目的 为了提高使施工效率的大幅度提高,而且使施工能保证质量、保证安全、提高效益,杜绝危险操作,充分发挥隧道衬砌台车的作用,特制定本制度。 二、适用范围: 本制度适用于xxxxxx隧道衬砌台车施工全过程的管理。 三、隧道衬砌台车的作业规定 1、台车操作前的准备工作 ⑴全断面移动用钢轨铺设时,尽可能保持正确位置。 中心线偏离:±100mm以下(注:模板台车横移量为±100mm,超过此范围将无法保持到中心位置,请一定注意) 钢轨铺设水平误差:±10mm 钢轨铺设不平度:±50mm以下 ⑵为防止地面下沉、钢轨高低不平,一定要铺设枕木,且接地压力要足够承受模板台车及混凝土压力。 ⑶开工前请确认以下事项:①扶手是否固定好。②梯子螺钉是否松动。 ⑷全断面模板台车移动后请一定固定好。 ⑸车辆通过模板台车时,一定要降低速度,千万注意不能冲撞台车台架,台架内侧如果有电缆,请注意采取措施。 ⑹作业平台上如果放置物品,请放在不影响工作线路的走向的位置。 ⑺考虑台车内照明线路的走向。 ⑻扶手负重时是比较危险的

如果要挂东西请注意以下事项:①扶手上所挂物品能否承受。②作业时不能踏到上面。③不能作安全带支点。 ⑼全断面模板台车所用螺钉二个月请紧固一次(普通螺钉),使用强力螺钉的地方,必须按现定的扭力紧固。 ⑽作业前请一定确认丝杠所用的销子,必须穿开口销,如果没有开口销,丝杠销子会掉下。 2、隧道衬砌台车作业流程图及在操作过程中的注意事项 ⑴隧道衬砌台车作业流程图 ⑵操作注意事项 ①把模板台车走行装置在钢轨上固定好后,防止模板台车移动。 ②底部千斤顶上升时,为防止地盘下沉,千斤顶底座下必须垫上木材。 ③横移油缸把模板修正到中心时,左右横移量不能超过±100mm。 ④主油缸上升时,为了使模板不倾斜,四个主油缸要同时作业,单独操作可能使模板和主油缸损坏。同时确保与后侧浇注完毕面贴合,测定与正式设计尺寸一致。 ⑤侧模油缸伸出,使侧模与设计尺寸一致,确认模板周围是否有作业员和物品。操作时要两支油缸同时作业,如果单独作业时将损坏模板。 ⑥把侧模下侧用丝杠拧紧过程中,考虑浇注时荷重,为防止模板变形,请拧紧丝杠。 ⑦伸出底模油缸让底模与设计尺寸相符,确认模板周围无人时再操 隧道衬砌台车作业流程图

钢模板台车受力分析

12米公路双线隧道液压衬砌台车刚度验算书 一、前言 该全断面钢模板砼衬砌隧道台车(简称台车)的整个荷载(混凝土、台车自重、混凝土侧压力、混凝土震动捣荷载及混凝土入仓冲击荷载等)是以整个成型断面钢模板竖向、水平方向上各支承油缸及千斤传向于支承门架。钢模板本身承受浇注混凝土时的面荷载;门架承受台车行走及工作时的竖向及水平荷载(见台车总图),各荷载分项系数,除新浇混凝土自重及模板自重取1.2外,其余施工荷载分项系数取1.4。 台车结构受力分析应考虑工作及非工作两种情况下的荷载,由于门架是主要的承重物体,必须保证有足够的强度、刚度及稳定性。因此,强度校核时应以工作时的最大荷载为设计计算依据;非工作时,台车只有自重,结构受力较小,此种情况作为台车的行走校核及门架纵梁的强度验算,本篇暂不考虑。 由于台车顶模、左右边模受力不同,其载荷分析可成两部分,然后再进行载荷组合,对门架进行强度校核。 二、模板载荷分析 由于顶模受到混凝土自重、混凝土侧压力、混凝土震动捣荷载及混凝土入仓冲击荷力等荷载的作用,其受力条件显然比其它部位的模板更复杂、受力更大、结构要求更高。由于边模与顶模的设计结构一样,边模不受混凝土自重,载荷较小,因此对其强度分析时只考虑顶模。 顶模板通过托架总成承受整个上部模板的载荷,而托架纵梁共由

12支承点(8个螺旋千斤、4个液压油缸、)承受竖向载荷并传力于门架。 顶部模板承受的载荷有最大开挖1.2米时的混凝土自重及注浆口封口时该处的挤压力。由于混凝土输送泵通过几十米的水平管道及竖直管道向台车输送混凝土,与注浆口接口处的局部挤压力较大,其它地方压力较小。因此,强度计算时,只考虑自重荷载的压力对模板影响这在工程计算中是不可行的,在实际设计时,局部加强顶模及考虑一定的安全系数。由于上部挤压应力没有确切的理证数据可作参考,台车设计一般根据国外类似结构及经验加以考虑。 台车顶模沿洞轴方向看是一个圆柱壳,只不过它是由多个1.5米高的圆柱形组合而成。计算时,假设顶模下托架支承立柱的刚度是足够的(18#工字钢),而顶模最危险处应在最顶部(由于灌注时的压力)。因此,其力学模型可取最顶部托架中间两根立柱间的顶模长度、一块模板1.5米宽的这部分进行受力分析及强度校核,其受力简图如下1。 图1、分析部分受力简图

隧道结构计算

重庆交通大学教案 第6章隧道结构计算 6.1 概述 6.1.1 引言 隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。各种围岩都是具有不同程度自稳能力的介质,即周边围岩在很大程度上是隧道结构承载的主体,其承载能力必须加以充分利用。隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。 隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。从现有资料看,最初的计算理论形成于十九世纪。其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。因为构件的刚度很大,故将其视为刚性体。计算时按静力学原理确定其承载时压力线位置,检算结构强度。 在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图6-1所示。在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性 94

模板支架受力分析要点讲解

模板支架受力分析要点讲解 (1)、《建筑施工扣件式钢管脚手架安全技术规范》对模板支架计算规定: 1)、模板支架立杆轴向力设计值 不组合风荷载时:N=1.2∑NGk+1.4∑NQk 组合风荷载时:N=1.2∑NGk+0.85×1.4∑NQk 式中∑NGk——模板支架自重、新浇砼自重与钢筋自重标准值产生的轴向力总和; ∑NQk——施工人员及施工设备荷载标准值、振捣砼时产生的荷载标准值产生的轴向力总和。 2)、模板支架立杆的计算长度l0 l0=h+2a 式中h——支架立杆的步距; a——模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度。 3)、对模板支架立杆的计算长度l0=h+2a的理解 为保证扣件式钢管模板支架的稳定性,规范中支架立杆的计算长度是借鉴英国标准《脚手架实施规范》 (BS5975-82)的规定,即将立杆上部伸出段按悬臂考虑,这有利于限制施工现场任意增大伸出长度。若步高为1.8m,伸出长度为0.3m,则计算长度为l0=h+2a=1.8+0.6=2.4m,其计算长度系数μ=2.4/1.8=1.333,比目前通常取μ=1 的值提高33.3%,对保证支架稳定有利。 (2)、扣件抗滑承载力的计算复核:

扣件钢管支架的双扣件抗滑试验用钢管扣件搭设模板支架,水平杆将荷载通过扣件传给立杆。步高在1.8m以内时,其承载力主要由扣件的抗滑力决定。 双扣件抗滑试验表明: 扣件滑动:2t 扣件抗滑设计:1.2t

(3)、扣件钢管支模计算实例: 预应力大梁1000*2650mm,27m跨。钢管排架间距600 *600mm 1)荷载计算 恒载 砼:1×2.65×2.4=6.36t/m 钢筋:1×2.65×0.25=0.66t/m 模板:(1+2.51+2.51) ×0.03=0.18t/m

高中物理受力分析模板及其例题

高中物理受力分析专题 (一)受力分析 物体之所以处于不同的运动状态,是由于它们的受力情况不同.要研究物体 的运动,必须分析物体的受力情况.正确分析物体的受力情况, 如何分析物体的受力情况呢?主要依据力的概念、从物体所处的环境(有多少个物体接触)和运动状态着手,分析它与所处环境的其它物体的相互联系;一般采取以下的步骤分析: 1.确定所研究的物体,优先考虑整体,然后隔离 分析其他物体对研究对象的作用力,不要找该物体施于其它物体的力,譬如所研究的物体叫A,那么就应该找出“甲对A”和“乙对A”及“丙对A”的力……而“A对甲”或“A对乙”等的力就不是A所受的力。也不要把作用在其它物体上的力错误地认为通过“力的传递”作用在研究对象上。 2.按顺序画力 (1)先画重力:作用点画在物体的重心. (2)次按接触面依次画每个接触面上的弹力和摩擦力 绕研究对象逆时针(或顺时针)观察一周,看对象跟其他物体有几个接触点(面),分析完一个接触点(面)后,再依次分析其他的接触点(面)。对每个接触点(面)若有挤压,则画出弹力,若还有相对运动或趋势,则画出摩擦力. 要熟记:弹力的方向一定与接触面或接触点的切面垂直,摩擦力的方向一定沿着接触面与物体相对运动(或趋势)方向相反。 判断静摩擦力方向时时可以采用假设光滑、假设有(无)、相互作用、力的大

小、运动状态、对称等方法进行判断。 再画其他场力:看是否有电、磁场力作用,如有则画出场力. 顺口溜:一重、二接触面上的力(依次画出每个接触点的弹力和摩擦力)、再其它。 3.进行合成或者分解 当物体受两个力,并且力的大小相等时,考虑使用合成的方法,此时利用菱形知识进行计算。其他情况使用分解。 分解的原则: (1)当物体受三个力静止时,分解谁也行,把某个力分到其他两个力的反向延长线上。 (2)其他情况,分解既不在运动方向所在直线也不在与其垂直方向上的力,并且把力分到这两个方向上。 (3)通过三角函数将分力表达出来 (4)列出两个方向上力的关系来。如果平衡就列平衡关系,如果不平衡就F 合 =ma. 4. 相关公式 弹簧弹力:F 弹 =kx 滑动摩擦力:f=μF N ,此公式只适用于滑动摩擦力的计算,期中F N 一定是压力不 一定是重力。 (二)受力分析练习: 1.(2010·新课标全国卷·T18)(6分)如图所示,一物块置于水平地面上。当用与水平方向成60°角的力F 1拉物块时,物块做匀速直

隧道台车计算书

隧道台车计算书 (一)概述: 根据贵单位承建的隧道工程可知:贵方所需台车是全液压边顶拱砼衬砌钢模台车(以下简称台车)。此台车是以电机驱动行走机构带动台车移动,利用液压油缸和螺旋千斤进行模板立模和脱模来进行隧洞砼浇注的设备。根据对隧道衬砌长度的要求,台车设计为12米,总重量126T,全液压边顶拱砼具有结构合理可靠、操作方便、成本较低、衬砌速度快、隧道砼成形面好等优点。 (二)台车的结构设计: 台车主要由模板部份、台架部份、平移机构、门架部份、行走机构、液压系统、支承千斤、电气控制系统等组成。 1、模板部份: 模板部份由两块顶模和两块侧模组成一个砼横向断面,两块顶模 用螺栓连接两侧模与顶模用铰耳销轴连接,8块模板的宽度均为 1.5米,,纵向由8块组成12米的模板总长,每块模板之间用螺 栓连接,模板面板厚度为δ12mm,模板加强筋用槽钢[12B和槽 钢[16A做成,加强筋的间距为250m m,其弧板宽度为300 m m。 模板连接梁采用槽钢[20b合成.。 2、台架部份:台架由4根上纵梁,9根弦梁和63根小立柱组成。主要是承受顶 模上部砼及模板的自重。其上纵梁由钢板δ=14mm/δ=12mm焊成 工字截面,横梁采用工字钢I25b.小立柱采用工字钢I20b制成。 3、平移机构:平移机构在前后门架横梁各安装一套,平移油缸4个(HSGK02— B100/55)。平移油缸的作用是利用其左右移动来调整模板中心线

与隧洞中心线相吻合,其工作压力为16 MPa,最大推力为20吨, 水平移动行程为左右各100 m m。 4、门架部份:门架由下纵梁、立柱、横梁及纵向连接梁组成。各横梁及立柱用 连接梁和斜拉杆连接,各构件均用螺栓连接成一个整体。是整个 台车的主要承重结构件。门架下纵梁用δ14mm和δ12m m钢板 焊成箱形截面。立柱和横梁采用δ14mm和δ12mm钢板焊接成工 字截面,以增加门架抗砼的侧压力。 5、行走机构:台车行走机构由2套主动机构,2套从动机构组成。主动机构由2 台5.5KW同步电机驱动摆线减速器,再通过链条、链轮减速驱动 门架行走。利用电机的正反转可实现台车的前进与后退,其行走 速度为6m/min,行走轮直径为φ300mm。从动机构不安装电机和 减速器。起支撑和行走作用。 6、液压系统:液压系统由4个竖向油缸(前已作叙述)、6个侧向油缸(HSGK— B100/55 mm)、4个平移油缸(前面已作叙述)和一套泵站组成。 侧模板的立模和脱模由侧模油缸来完成。同时起着支承侧模板及 侧墙砼压力的作用,其工作压力为16MPa,推力为30吨。泵站系 统利用一个三位四通换向阀进行换向,控制各油缸的伸缩。4个 竖向油缸各由一个换向阀控制,侧模每边3个油缸由一个换向阀 控制,4个平移油缸前后各2个由一个换向阀控制。每个竖向油 缸安装1个液压锁紧阀来锁定每个竖向油缸,确保台车在浇注时 不致下降.液压油泵流量为10L/ min,电机功率为4KW,液压系 统工作压力为16M Pa。 7、支承千斤:支承千斤由台架千斤、侧向千斤和门架支承千斤三部份组成。侧 向千斤主要用来支承砼的侧向压力和调整侧模板位置,螺杆直径

模板受力分析

模板台车受力分析 1、台车构成 隧道全断面衬砌台车主要由门型框架(纵梁、横梁、底梁、竖撑、顶推螺杆斜撑)、面板(顶模板、边模板、加强肋)、行走系统(滑动钢轮、电动机)、液压系统、连接件及紧固装置构成。各构(杆)件采用M20螺栓连接,螺栓孔均采用机械成孔,孔径较螺栓杆体大2mm。。。。。。。 台车构造具体见图一、图二。 图一:全断面衬砌台车构造图

图二:9m长衬砌台车侧视图整体式衬砌台车总体构造如下所示: 顶模总成:2组; 顶部架体:1组; 升降油缸:4件; 平移装置:2组; 门架体:1组; 边模总成:2组; 边模丝杠:26件; 边模通梁:8件; 边模油缸:4件; 底部丝杠体:14件。

台车标准长度为9m时,设置12个工作窗口。 二、台车结构受力检算 模板支架如图1所示。 计算参照《建筑结构荷载规范》(GB50009-2001)、《混凝土结构工程施工质量验收规范》(GB50204-2002)、《铁路混凝土与砌体工程施工规范》(TB10210-2001)、《钢结构设计规范》(GB50017-2003)、《砼泵送施工技术规程》(JG/T3064-1999)。 1、荷载计算 (1)、荷载计算 1)、上部垂直荷载 永久荷载标准值: 上部混凝土自重标准值:1.9×0.6×11.0×24=200.64KN 钢筋自重标准值:9.8KN 模板自重标准值:1.9×11.0×0.01×78.5=16.4KN 弧板自重标准值:(11.0×0.3×0.01×2+11.0×0.3×0.01)×78.5=7.77KN 台梁立柱自重:0.0068×(1.15+1.45)×2×78.5=2.78KN 上部纵梁自重:(0.0115×8.2+0.015×1.9×2)×78.5=11.88KN 可变荷载标准值: 施工人员及设备荷载标准值:2.5 振捣混凝土时产生的荷载标准值:2.0

隧道衬砌模板台车安全操作规程(最新版)

隧道衬砌模板台车安全操作规 程(最新版) The safety operation procedure is a very detailed operation description of the work content in the form of work flow, and each action is described in words. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0605

隧道衬砌模板台车安全操作规程(最新版) 、隧道衬砌模板台车安全操作规程 1、在模板台车行走时,台车前后左右顶部应设防护岗,统一指挥信号;操作人员要听从指挥,严守工作岗位。台车移动应平稳缓慢,严禁生拉硬拽,强行前进或后退。 2、定位模板台车时,首先将钢轨的内外两侧进行支撑加固后,在行施工作业,以防钢轨侧翻或移位 3、模板台车上必须采用低压照明,台车作业地段,必须保证有足够的照明设施; 4、有通过模板台车的动力线、照明线与模板台车应有绝缘设施,并且电线路应悬挂,禁止动力线,常用照明线路直接放置在地面上,或者捆绑在模板台车构件上,甚至浸泡在水中,放炮作业时,应将达不到安全距离的电线路覆盖。

5、模板台车在拆除时,不得把大梁上的所有螺帽或螺栓全部拆除,必须严格按照操作程序,进行拆除,所打的锚杆位置、深度、数量、抗拉强度等,必须符合安全要求。 6、台车上的工作平台、跳板、脚手架,工作台的底板必须铺设严密,木板的端头必须搭在支点上。 7、模板台车两端头的操作平台护栏高度不得低于1米,梯子的安装必须焊接牢固,架设合理,便于操作,不得有钉子露头和突出的尖角,并符合安全要求。 8、模板台车作业地段,应与开挖工作面必须保证一定的安全距离。一是安全爆破飞石距离有保证;二是放炮后的振动波对混凝土质量有影响,机具的伤害,台车立模堵头支撑的伤害。 9、台车上严禁堆放撬捧,铁锤,锚杆,堆放物品必须牢固平放或放入工具箱内。 10、模板台车在脱模时,不得先把四角丝杆拆掉,必须严格按照机电室制定的“操作规程”办事,不得违章操作。 11、各种电缆通过台车时,不得放入水中渗泡,或有漏电的现

现浇梁侧模板受力分析

现浇箱梁钢模板设计说明及受力验算 计算者: 复核者: 项目负责人: 2016.06

现浇箱梁钢模板受力计算书 1.基本情况 现浇箱梁梁高截面有1.7m,1.9m,2.7m,3.3m,设计的钢模板结构类似,受力计算时按最大梁高3.3m计算,采用混凝土泵车下灰,按照局部最快浇筑速度(层厚0.4米)三小时完成,约0.133m/h,为了安全起见,浇注混凝土速度按照0.2m/h,混凝土入模温度约28℃,钢模板材料使用说明:面板采用6mm钢板,横筋为10#双槽钢,最大间距450mm,纵筋采用10*100扁钢,法兰为δ12mm*100厚扁钢。螺栓采用M20*60. 2.荷载计算 2.1混凝土侧压力 (1)根据我国JGJ162-2008《建筑施工模板安全技术规》4.1中,新浇注混凝土作用在模板上的最大侧压力可按下列公式计算,并取其中的较小值。 F=0.22Rс.Tβ1β2V?(T=200/(28+15)=4.65) F=Rс.H 带入数据得 F=0.22*24*5*1.0*1.15*0.2?=12.7KN/㎡ F=24*3.3=79.2KN/㎡ 取两者中较小值,即F1=12.7KN/㎡ (2)混凝土侧压力设计值:F=F1*分项系数*折减系数

F=21.3*1.2*0.85=12.96KN/㎡ (3)倾倒混凝土时产生的水平荷载 查建筑施工手册17-78表为2KN/㎡ 荷载设计值为2*1.4*0.85=2.38 KN/㎡ (4)混凝土振捣产生的荷载 查路桥施工计算手册8-1表为2KN/㎡ 荷载设计值为2*1.4*0.85=2.38 KN/㎡ (5)施工人员及小型设备载荷标准值可取2.5KN/㎡ 荷载设计值为2.5*1.4*0.85=2.97 KN/㎡ (6)风荷载计算 根据虎门二桥工程施工图设计《第一部分-总体路线-第一册》总说明2.1-跨江大桥建设条件,经过为期一年(2008年9月1日-2009年8月31日)的虎门二桥桥位气象观测与研究,并综合考虑气象站、沙田测风站的同期实测风资料,推算得到虎门二桥桥位距海平面各高度、各重现期10min平均风速,见下表。 表3 桥位各关键高度不同重现期10min平均风速计算值(m/s)

相关主题
文本预览
相关文档 最新文档