第一章 有限元的基本理论
- 格式:ppt
- 大小:19.74 MB
- 文档页数:88
有限元基本原理
有限元基本原理是一种数值分析方法,用于解决连续介质力学问题。
它将连续物体离散化为有限数量的小单元,通过对这些小单元的力学行为进行建模和分析,来推导出整体结构的力学特性。
有限元分析的步骤如下:
1. 离散化:将结构或物体分割成有限数量的小单元,例如三角形或四边形。
这些小单元被称为有限元素。
2. 建立数学模型:在每个有限元素内,选择适当的数学表达式来描述变形和应力分布。
这些表达式通常基于线性弹性理论或非线性材料模型。
3. 形成刚度矩阵:通过将每个有限元素的刚度矩阵组合起来,形成整体系统的刚度矩阵。
刚度矩阵描述了结构在受力作用下的刚度和变形响应。
4. 施加边界条件:给定结构的边界条件,例如约束和载荷。
这些条件可用于限制结构的自由度和模拟外部加载。
5. 求解方程:将边界条件应用到刚度矩阵上,并求解得到结构的位移和应力分布。
6. 分析结果:利用位移和应力分布,评估结构的强度、刚度、变形等力学特性。
这些结果可以帮助设计师优化结构并预测其
行为。
有限元基本原理的核心思想是将复杂的力学问题转化为小单元内的简单数学表达式,并通过组合这些单元的行为来推导整体结构的力学性能。
这种方法具有广泛的应用领域,包括结构分析、流体力学、热传导等。
有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
它包括大位移大应变及大位移小应变问题。