桥梁工程水文计算
- 格式:doc
- 大小:215.50 KB
- 文档页数:6
关于铁路跨河桥梁工程防洪评价常见问题分析摘要:由于各个行业之间的差别,桥梁设计部门不一定能全面触及有关水利方面的规划、设计、水情、工情等。
跨河桥梁建设对河道的影响,主要体现在河道管理范围内设置的桥墩束窄了河道过水断面,水流过桥墩时需克服桥墩阻力,造成局部能量的损失,从而在桥墩前形成一定水位壅高和水头损失,增加了防洪压力,基于此,本文对防洪评价工作中常见若干问题以及铁路跨河桥梁工程防洪评价的措施进行了分析。
关键词:铁路跨河桥梁;防洪;评价铁路建设和水利建设都是基础性的民生工程,铁路建设中跨河桥梁工程要考虑水流阻力、堤防安全、防汛通道等影响因素,同时涉及铁路工程投资和水利工程安全及维护费用,因此防洪评价十分重要。
铁路跨河桥梁工程防洪评价目的是就工程建设可能对工程所在地堤防、建筑物的防洪影响进行分析评价,并提出相应的措施和建议。
评价工作主要从桥梁工程建设前后河势及水位变化情况上着手分析工程建设对相应河道行洪及周边河岸(堤) 安全的影响,并从有利于防洪安全、满足河道正常行洪的角度,对桥梁工程的建设规模、型式、高程控制等提出合理建议和补救意见,提出减少或消除其不利影响的措施。
1 防洪评价工作中常见若干问题1.1防洪评价工作开展滞后防洪评价分析工作需在桥梁工程开展可行性研究阶段开展并在可行性研究报告报交通主管部门批准前报省水利厅许可批准,但一些桥梁工程项目在已经完成了工程可行性研究阶段的立项批复工作后才开展项目的防洪评价工作,忽视了防洪评价结论对项目建设方案可能改变影响的风险,对推进项目前期工作开展形成了被动局面,例如某扩建工程防洪评价报告在大桥扩建工程即将进入施工图评审阶段才完成项目防洪评价报告上报要求许可批准。
1.2忽视防洪评价工作对项目建设方案论证和比选的重要作用一些桥梁工程项目,没有充分考虑防洪评价分析的重要结论和建议,如设计阻水比偏大,超过了一般的设计控制参考值,或者左右两幅交通桥的桥墩不合理的错孔布置,造成初选的建设方案阻水严重或者严重影响了河床稳定,最终影响了方案的选定,耗费了工作时间和投入,影响了项目的各项工作顺利推进。
公路桥工程水文勘测设计规范篇一:公路桥涵通用规范3 设计要求3.1 桥涵布置3.1.1 桥梁应根据公路功能、地基、通行能力及抗洪能力要求,结合水文、地质、通航、环境等条件进行综合设计。
特大、大桥桥位应选择河道顺直稳定、河床地质良好、河槽能通过大部分设计流量的河段。
桥位不宜选择在河汊、沙洲、古河道、急弯、汇合口、港口作业区及易形成流冰、流木阻塞的河段以及断层、岩溶、滑坡、泥石流等不良地质的河段。
3.1.2 当桥址处有二个及二个以上的稳定河槽,或滩地流量占设计流量比例较大,且水流不易引入同一座桥时,可在各河槽、滩地、河汊上分别设桥,不宜用长大导流堤强行集中水流。
平坦、草原、漫流地区,可按分片泄洪布置桥涵。
天然河道不宜改移或裁弯取直。
3.1.3 桥梁纵轴线宜与洪水主流流向正交。
对通航河流上的桥梁,其墩台沿水流方向的轴线应与最高通航水位时的主流方向一致。
当斜交不能避免时,交角不宜大于5°;当交角大于5°时,宜增加通航孔净宽。
3.1.4 桥涵水文、水力的计算应符合《公路工程地质勘察规范》(JTJ064)和《公路工程水文勘测设计规范》(JTGC30)的规定。
3.1.5 通航海轮桥梁的桥孔布置及净高应满足《通航海轮桥梁通航标准》(JTJ311)的规定。
通航内河桥梁的桥孔布置及净高应满足《内河通航标准》(GB 50139)的规定,并应充分考虑河床演变和不同通航水位航迹线的变化。
3.1.6 为保证桥位附近水流顺畅,河槽河岸不发生严重变形,必要时可在桥梁上下游修建调治构造物。
调治构造物的形式及其布置应根据河流性质、地形、地质、河滩水流情况以及通航要求、桥头引道、水利设施等因素综合考虑确定。
非淹没式调治构造物的顶面,应高出桥涵设计洪水频率的水位至少0.25,必要时尚应考虑雍水高、波浪爬高、斜水流局部冲高、河床淤积等影响。
允许淹没的调治构造物的顶面应高出常水位。
单边河滩流量不超过总流量的15%或双边河滩流量不超过25%时,可不设导流堤。
兰州中立黄河大桥水文分析提要:通过对中立黄河大桥的水文计算,分析了大型水库群下游桥址处复杂的流量水位计算问题,供今后大型水库群下游桥梁水文分析参考。
关键词:兰州;中立黄河大桥;水文分析1流域概况中立黄河大桥位于兰州市中部,黄委会兰州水文站(中山铁桥处)下游约2.70km处,桥址以上控制流域面积约为222 560km2,桥址距入海口约为3 348km。
径流主要来源于上游流域内的降雨和冰雪融水,年径流量的分配随降雨和气温的变化而异。
自1968年以来,桥址上游黄河干流相继建成了龙羊峡、刘家峡、盐锅峡、八盘峡水库,已经形成了梯级调蓄,特别是刘家峡的建成和截流,对下游河段洪峰流量的削减作用尤为明显,桥址上游的主要来水受到了刘家峡水库的控制。
汛期一般为6-9月,个别年份略有提前或推迟。
6-10月年径流量约占全年平均值的62%,9月份水量最丰,月平均流量达1 732m3/s。
枯水期为12-3月份,径流量约为年平均值的17.30%,2-3月份平均流量为506 m3/s。
流域内植被较差,水土流失较为严重。
2设计流量分析2.1兰州水文站1968年以来的实测洪水资料统计法兰州水文站距桥址仅2.70km,中间无较大支流汇入,其流量完全可以代表桥址处的流量。
兰州水文站1937年建站,积累了较长系列的观测资料。
1968年刘家峡水库建成后,下泄洪水受到水库的控制,自1968年以来兰州水文站20年的实测资料,在一定程度上真实地反应了上游水库调蓄后本河段洪水的情况和规律。
其缺陷是资料系列较短,延伸到设计频率时,未直接反应出相同频率下刘家峡水库控制下泄流量因素的影响。
1968年以来兰州站实测资料统计成果见表1。
Q1%=6 508m3/s2.2待定系数法本方法利用1969-1988年水库截流后下游水文站的实测洪峰资料,以上诠站为主要来水,以兰州站实测对应流量作为干流及区间的复合流量,逐年统计分析出区间入流形成桥址流量的比例系数K值,即K=(Q兰州-Q上诠)/∑Q支流则桥址处百年流量为:Q1%桥址= Q1%上诠+K∑Q1%支流式中:Q1%上诠——上诠站百年一遇流量统计值,Q1%上诠=6 080m3/s;∑Q1%支流——区间大支流百年流量之和,∑Q1%支流=3960m3/s。
水利专业常用计算公式、枢纽建筑物计算1、 进水闸进水流量计算: Q=B 0Ss m ( 2gH o 3) 1/2式中:m —堰流流量系数e —堰流侧收缩系数2、 明渠恒定均匀流的基本公式如下: 流速公式: u = C .. Ri 流量公式 Q = Au = AC Ri 流量模数K = A C , R式中:C —谢才系数,对于平方摩阻区宜按曼宁公式确定,即C = !R 1/6nR —水力半径(m ); i —渠道纵坡;2A —过水断面面积(m );n —曼宁粗糙系数,其值按 SL 18确定。
3、 水电站引水渠道中的水流为缓流。
水面线以a1型壅水曲线和b1型落水曲线最为常见。
求解明渠 恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。
逐段试算法的基本公式为式中:△ x ---- 流段长度(m );g -------- 重力加速度(m/s2 );h 1、h 2 ---------------- 分别为流段上游和下游断面的水深(m );v 1、V 2 --------------- 分别为流段上游和下游断面的平均流速( m/s ); a 1、a 2――分别为流段上游和下游断面的动能修正系数;i △ x=av 22gi-i f2g(222 2、 1 . +.- 17h f 1 n 1 v 1 丄n 八2—|f1 〒 i f 2 或if —=—T -------------- 2 V或iA2 R 4/3 I R1R4/3R 2 丿式中:h f——△ x段的水头损失(m;n 1、n2――分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则R 1、R a――分别为上、下游断面的水力半径(m);A 1、A分别为上、下游断面的过水断面面积(m2);4、各项水头损失的计算如下:(1)沿程水头损失的计算公式为n1=n2=n ;i x 'n f v f“PR73n 2V2RT(2)渐变段的水头损失,当断面渐缩变化时,水头损失计算公式为:/ 2 2 、V 2V1hs= hc+hf =fc ———+ i f LQ 2g丿5、前池虹吸式进水口的设计公式(1)吼道断面的宽高比:b o/h o=1.5 — 2.5 ;(2)吼道中心半径与吼道高之比:r0/h 0=1.5 — 2.5 ;(3)进口断面面积与吼道断面面积之比:A/A°=2 — 2.5 ;(4)吼道断面面积与压力管道面积之比:A0/A M=1—1.65 ;(5)吼道断面底部高程(b点)在前池正常水位以上的超高值:△z=0.1m(6)进口断面河吼道断面间的水平距离与其高度之比:l/P=0.7 —0.9 ;6、最大负压值出现在吼道断面定点a处,a点的最大负压值按下式确定:h B、a -—厂h°•0亠二h w2g式中:/—前池内正常水位与最低水位之间的高差(m;h0 —吼道断面咼度(m);二h w —从进水口断面至吼道断面间的水头损失(m ;p / —因法向加速度所产生的附加压强水头(m。
精心整理水利专业常用计算公式一、枢纽建筑物计算1、进水闸进水流量计算:Q=B 0δεm (2gH 03)1/2式中:m —堰流流量系数 ε—堰流侧收缩系数最为常见。
求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。
逐段试算法的基本公式为△x=f21112222i -i 2g v a h 2g v a h ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+式中:△x ——流段长度(m );g ——重力加速度(m/s2);h 1、h 2——分别为流段上游和下游断面的水深(m ); v 1、v 2——分别为流段上游和下游断面的平均流速(m/s ); a 1、a 2——分别为流段上游和下游断面的动能修正系数; f i ——流段的平均水里坡降,一般可采用⎪⎭⎫ ⎝⎛+=-2f 1f -f i i 21i 或⎪⎪⎭⎫⎝⎛+=∆=3/4222224/312121f f v n R v n 21x h i R n 1=n 2 0.2m ; (6)进口断面河吼道断面间的水平距离与其高度之比:l/P=0.7—0.9; 6、最大负压值出现在吼道断面定点a 处,a 点的最大负压值按下式确定: 式中:Z —前池内正常水位与最低水位之间的高差(m );h 0—吼道断面高度(m );∑wh—从进水口断面至吼道断面间的水头损失(m );γ/p *—因法向加速度所产生的附加压强水头(m )。
附加压强水头按下式计算:式中:0γ—吼道断面中心半径(m ) 计算结果,须满足下列条件:式中: h a —计算断面处的大气压强水柱高(m ); H v —水的气化压强水柱高(m ) 最小淹没深度S ,可按下式估算:式中:0γF —吼道断面的水流弗劳德数,000gh /V F =γ。
B —坝址处的河谷宽度(相当于坝顶的部仪),m 。
L —蓄水后库区延伸长度(回水长度),km(公里)。
H —最大坝前水深,m 。
K —按库尾蓄水断面与坝址蓄水断面之比采用的系数: l:lO 时,K=32;1:5时,K=27(2)根据淹没面积初估: V=HA/KV—水库总库容,104·m3(万立米)。
水利专业常用计算公式一、枢纽建筑物计算1、进水闸进水流量计算:Q=B0δεm(2gH3)1/2式中:m—堰流流量系数ε—堰流侧收缩系数2、明渠恒定均匀流的基本公式如下:流速公式:u=Q=K=A3△x=f1112 22i-i 2g2g⎭⎝⎭⎝式中:△x——流段长度(m);g——重力加速度(m/s2);h 1、h2——分别为流段上游和下游断面的水深(m);v 1、v2——分别为流段上游和下游断面的平均流速(m/s);a 1、a2——分别为流段上游和下游断面的动能修正系数;f i——流段的平均水里坡降,一般可采用⎪⎭⎫ ⎝⎛+=-2f 1f -f i i 21i 或⎪⎪⎭⎫⎝⎛+=∆=3/4222224/312121f f v n R v n 21x h i R 式中:h f ——△x 段的水头损失(m );n 1、n 2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n 2=n ; R 1、R 2——分别为上、下游断面的水力半径(m ); A 1、A 2——分别为上、下游断面的过水断面面积(㎡); 4、各项水头损失的计算如下: (1)沿程水头损失的计算公式为(25(1(2(3(4(5 (66式中:h a —计算断面处的大气压强水柱高(m ); H v —水的气化压强水柱高(m ) 最小淹没深度S ,可按下式估算:式中:0γF —吼道断面的水流弗劳德数,000gh /V F =γ。
虹吸的发动与断流宜选用以下的几种装置和方法来实现: (1)用真空泵抽气发动,可根据设计条件和工况做设备选型; (2)自发动;(3)水力真空装置; (4)水箱抽气装置。
断流装置常采用真空破坏阀。
在已知h B 、a 值时,真空破坏时的瞬间最大进气量可按下式估算: 式中:μ—真空破坏阀系统的流量系数;a ω—真空破坏阀的断面面积(㎡);a ρρ、—分别为水河空气的密度。
7、水库蓄水容积 1、总库容估算公式(1V B L H K (2V A K 2V ho F C 水库为不完全年调节C=O.2~0.4 水库为完全年调节C=O.5~1 水库为不完全多年调节C=l~1.3 水库为完全多年调节C=1.3~1.5 3、水库灌溉放水流量估算公式:Q=CA Q —最大灌溉放水流量,m3/s 。
浅析桥梁工程中的水文学应用桥梁工程是一门综合性强、专业性较高的工程学科,其中水文学的应用是桥梁设计与施工中不可或缺的一部分。
水文学是研究水文现象及其规律的学科,它对于桥梁工程的设计和建设具有重要意义。
本文将从水文过程分析、水文参数确定、水工计算等方面,浅析桥梁工程中的水文学应用。
首先,桥梁工程中的水文学应用主要包括水文过程分析。
水文过程分析是指对流域内降雨-径流过程的研究,通过对流域内的降雨过程进行分析,可以确定洪水过程的基本特征,为桥梁的设计提供必要的水文参数。
在桥梁设计中,我们需要考虑的是设计过程中的洪水流量,通过水文过程分析,我们可以了解到流域内的降雨情况,从而确定所需的设计洪水流量。
只有合理确定了设计洪水流量,才能保证桥梁的安全可靠。
其次,水文学在桥梁工程中的应用还体现在水文参数的确定上。
水文参数是衡量洪水的各种要素,包括流量、洪峰流量、径流系数等。
在桥梁设计中,准确确定水文参数是非常重要的。
通过对流域的水文资料进行收集和整理,结合水流观测资料,可以对所需水文参数进行合理估算。
严谨的水文参数确定是确保桥梁工程安全性的重要基础,只有基于真实可靠的水文参数进行设计,才能避免洪水对桥梁结构的不利影响。
最后,水文学在桥梁工程中的应用还涵盖了水工计算。
水工计算是指通过对水流进行计算分析,确定洪水过程和水流特征,进而对桥梁工程进行设计与施工方案的制定。
水工计算需要准确掌握水流参数、水流动力学等知识,通过计算模型,模拟洪水对桥梁的影响,分析洪水冲击力和水流水位等参数,为桥梁工程的设计与施工提供科学依据。
总结起来,水文学在桥梁工程中的应用是十分重要的。
通过水文过程分析,可以了解洪水过程的基本特征;通过水文参数的确定,可以保证设计过程中的洪水流量的准确性;通过水工计算,可以制定合理的桥梁设计与施工方案。
水文学的应用,为桥梁工程的安全可靠性提供了有力的支持和保障。
因此,在桥梁工程中,我们应充分认识到水文学的重要性,合理运用水文学的理论与方法,为桥梁工程的设计与施工贡献自己的一份力量。
水利常用专业计算公式一、枢纽建筑物计算1、进水闸进水流量计算:Q=B0δεm(2gH03)1/2式中:m —堰流流量系数ε—堰流侧收缩系数2、明渠恒定均匀流的基本公式如下:流速公式:u=RiC流量公式Q=Au=A RiC流量模数K=A RC式中:C—谢才系数,对于平方摩阻区宜按曼宁公式确定,即C =6/1n 1RR —水力半径(m );i —渠道纵坡;A —过水断面面积(m 2);n —曼宁粗糙系数,其值按SL 18确定。
3、水电站引水渠道中的水流为缓流。
水面线以a1型壅水曲线和b1型落水曲线最为常见。
求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。
逐段试算法的基本公式为△x=f21112222i -i 2g v a h 2g v a h ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ 式中:△x ——流段长度(m );g ——重力加速度(m/s ²);h 1、h 2——分别为流段上游和下游断面的水深(m );v 1、v 2——分别为流段上游和下游断面的平均流速(m/s );a 1、a 2——分别为流段上游和下游断面的动能修正系数;f i ——流段的平均水里坡降,一般可采用⎪⎭⎫ ⎝⎛+=-2f 1f -f i i 21i 或⎪⎪⎭⎫ ⎝⎛+=∆=3/4222224/312121f f v n R v n 21x h i R 式中:h f ——△x 段的水头损失(m ); n 1、n 2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n 2=n ; R 1、R 2——分别为上、下游断面的水力半径(m );A 1、A 2——分别为上、下游断面的过水断面面积(㎡);4、各项水头损失的计算如下:(1)沿程水头损失的计算公式为⎪⎪⎭⎫ ⎝⎛+∆=3/4222223/412121f v n v n 2x h R R (2)渐变段的水头损失,当断面渐缩变化时,水头损失计算公式为:L f 2122c f c i g 2v g 2v f h h h -+⎪⎪⎭⎫ ⎝⎛-=+=ω 5、前池虹吸式进水口的设计公式(1)吼道断面的宽高比:b 0/h 0=1.5—2.5;(2)吼道中心半径与吼道高之比:r 0/h 0=1.5—2.5;(3)进口断面面积与吼道断面面积之比:A 1/A 0=2—2.5;(4)吼道断面面积与压力管道面积之比:A 0/A M =1—1.65;(5)吼道断面底部高程(b 点)在前池正常水位以上的超高值:△z=0.1m —0.2m ;(6)进口断面河吼道断面间的水平距离与其高度之比:l/P=0.7—0.9;6、最大负压值出现在吼道断面定点a 处,a 点的最大负压值按下式确定:γανp *w 20a h g 2h h -+++Z +∆Z =∑、B式中:Z —前池内正常水位与最低水位之间的高差(m );h 0—吼道断面高度(m );∑w h —从进水口断面至吼道断面间的水头损失(m ); γ/p *—因法向加速度所产生的附加压强水头(m )。
水利常用专业计算公式一、枢纽建筑物计算1、进水闸进水流量计算:Q=B0δεm2gH31/2式中:m —堰流流量系数ε—堰流侧收缩系数2、明渠恒定均匀流的基本公式如下:流速公式:u=RiC流量公式Q=Au=A RiC流量模数K=A RC式中:C—谢才系数,对于平方摩阻区宜按曼宁公式确定,即C =6/1n 1RR —水力半径m ;i —渠道纵坡;A —过水断面面积m 2;n —曼宁粗糙系数,其值按SL 18确定;3、水电站引水渠道中的水流为缓流;水面线以a1型壅水曲线和b1型落水曲线最为常见;求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用;逐段试算法的基本公式为△x=f21112222i -i 2g v a h 2g v a h ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ 式中:△x ——流段长度m ;g ——重力加速度m/s2;h 1、h 2——分别为流段上游和下游断面的水深m ;v1、v2——分别为流段上游和下游断面的平均流速m/s;a1、a2——分别为流段上游和下游断面的动能修正系数;f i——流段的平均水里坡降,一般可采用⎪⎭⎫⎝⎛+=-2f1f-f ii21i或⎪⎪⎭⎫⎝⎛+=∆=3/4222224/312121ffvnRvn21xhiR式中:hf——△x段的水头损失m;n1、n2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n2=n;R1、R2——分别为上、下游断面的水力半径m;A1、A2——分别为上、下游断面的过水断面面积㎡;4、各项水头损失的计算如下:1沿程水头损失的计算公式为2渐变段的水头损失,当断面渐缩变化时,水头损失计算公式为:5、前池虹吸式进水口的设计公式1吼道断面的宽高比:b0/h=—;2吼道中心半径与吼道高之比:r0/h=—;3进口断面面积与吼道断面面积之比:A1/A=2—;4吼道断面面积与压力管道面积之比:A0/AM=1—;5吼道断面底部高程b点在前池正常水位以上的超高值:△z=—;6进口断面河吼道断面间的水平距离与其高度之比:l/P=—;6、最大负压值出现在吼道断面定点a处,a点的最大负压值按下式确定:式中:Z—前池内正常水位与最低水位之间的高差m;—吼道断面高度m;h∑w h—从进水口断面至吼道断面间的水头损失m;p*—因法向加速度所产生的附加压强水头m;γ/附加压强水头按下式计算:式中:0γ—吼道断面中心半径m计算结果,须满足下列条件:式中: h a —计算断面处的大气压强水柱高m ; H v —水的气化压强水柱高m最小淹没深度S,可按下式估算:式中:0γF —吼道断面的水流弗劳德数,000gh /V F =γ; 虹吸的发动与断流宜选用以下的几种装置和方法来实现:1用真空泵抽气发动,可根据设计条件和工况做设备选型;2自发动;3水力真空装置;4水箱抽气装置;值时,真空破坏时的瞬间最大进气量断流装置常采用真空破坏阀;在已知hB、a可按下式估算:式中: —真空破坏阀系统的流量系数;a ω—真空破坏阀的断面面积㎡;a ρρ、—分别为水河空气的密度;7、水库蓄水容积1、总库容估算公式1根据库区尺寸初佑: V=BLH/KV —水库总库容,104·m 3万立米;B —坝址处的河谷宽度相当于坝顶的部仪,m;L—蓄水后库区延伸长度回水长度,km公里;H—最大坝前水深,m;K—按库尾蓄水断面与坝址蓄水断面之比采用的系数: l:lO时,K=32;1:5时,K=27 2根据淹没面积初估: V=HA/KV—水库总库容,104·m3万立米;A—库区最大水面面积淹没面积,亩;K—按以下原则采用的系数:库底平坦 K=25~30, 库底坡度陡 K=30~382、有效库容估算公式: V=ChoFV—水库有效库容,104·m3万立米;ho—多年平均径流深查水文手册,mm毫米; F—水库集雨面积流域面积,km2平方公里; C—按以下原则采用的系数:水库为不完全年调节 C=~水库为完全年调节 C=~1水库为不完全多年调节 C=l~水库为完全多年调节 C=~3、水库灌溉放水流量估算公式: Q=CAQ—最大灌溉放水流量,m3/s;A—水库负担的灌溉面积,104·m3万立米;C—按以下原则采用的系数:灌区内小型水利设施很少 C=~灌区内有一些孤立的小型水利设施 C=~灌区小型水利设施互相串连 C=~4、均质土坝坝坡初估公式m上=H/20+2,m下=H/20+m上、m下—均质土坝上、下游坝坡的边坡系数; H—设计坝高,m;5、堆石坝坝坡初估公式m上=H/30+,m下=~m上、m下—堆石坝上、下游坝坡的边坡系数; H—设计坝高,m;6、水库调洪演算水量平衡方程式:式中:△t——调洪时段,sQ 1、Q2——时段初、末进库流量m3/sQ 1′、Q2′——时段初、末出库流量m3/sV 1、V2——时段初、末水库库容7、枢纽建筑物计算1、进水闸进水流量计算:Q=B0δεm2gH31/2式中:m —堰流流量系数ε—堰流侧收缩系数依据Q=s,在正常引水时进水闸净宽为;8、岩基上的当水墙、堰、闸等重力式建筑物,岩基底面的抗滑稳定安全系数,应按下列抗剪断强度公式计算K1=PAWf∑+∑c1式中:K1—按抗剪强度计算的抗滑稳定安全系数;f—混凝土与岩基接触面的抗剪断摩擦系数;1c—混凝土与岩基接触面的抗剪断粘聚力MPa;A—建筑物与岩基接触面的面积m2;∑—作用在结构物上的全部荷载对计算滑动面的法向分量包括扬压力kN;W∑P —作用在结构物上的全部荷载对计算滑动面的切向分量包括扬压力kN;对中、小型工程,若无条件进行抗剪试验取得c值时,也可按下列抗剪强度公式计算岩基底面的抗滑稳定安全系数K2=PWf∑∑2式中:k2—按抗剪强度计算的抗滑稳定安全系数;f2—混凝土与基岩接触面的抗剪摩擦系数;9、堰流过水流量计算:Q=B0δεm2gH31/2式中:m —堰流流量系数ε—堰流侧收缩系数δ—堰流淹没系数10、挖深式消力池校核长度计算:Lsj=Ls+βLj 式中:Lsj —消力池长度mLs —消力池斜坡段投影长度mβ —水跃长度校正系数Lj —水跃长度m1、挖深式消力池深度按下式校核:d=hc hs△Z Ls+β Lj式中:d —消力池深度 mhc—水跃跃后水深 mh—出池河床水深 ms△Z—出池落差 m=Ksq△H1/21/2 2、、护坦式海漫长度计算:Lp—海漫长度 m式中:LpKs —海漫长度计算系数q —消力池末端单宽流量m3/s△H —下泄时上下游水位差m3、稳定河宽阿尔图宁公式:B=式中:B —稳定河宽mA —河宽系数取m2Q —造床流量m3/sJ —河床比降=f ΣG/ΣH 11、建筑物基底抗滑稳定校核:Kc式中:K—抗滑稳定安全系数cf —基础底面与地基之间摩擦系数ΣG—作用于堰体、闸室上的全部竖向荷载ΣH—作用于堰体、闸室上的全部水平荷载2、建筑物基底应力计算:Pmin max=ΣG/Am+ΣM/W式中:Pminmax—闸室基底压力的最大值和最小值KN/m2Am—闸室基础底面面积ΣM—作用在闸室上的全部水平向和水平荷载对基础底面垂直水流方向的形心轴的力矩KN·mW —闸室基础底面对该底面垂直水流方向的形心轴的截面矩m312、水文计算公式1、水文比拟法:Q设= F设/ F参·Q参式中Q设——设计站多年平均流量,m3/s;Q参——参证站多年平均流量, m3/s;F设——设计站流域面积,km2;F参——参证站流域面积,km2;2、水文等值线图法:Q=1000F·R/3600×365×24式中R——多年平均径流深;F——设计站流域面积,km2;3、水文洪水水科院推理公式:Q=⎪⎭⎫ ⎝⎛-μτn S ·F 式中:Q ——洪峰流量,m 3/s ;S ——雨力,mm/h ;μ——损失参数,mm/h ;n ——暴雨递减指数;F ——汇流面积, km 2;τ——汇流时间,h,τ=4131Q mJ L ;其中:m ——汇流参数;J——主河槽比降;L——主河道长度,km;13、河道稳定性计算1、纵向稳定系数=d/hJ按下式计算:Φh式中:d—床砂平均粒径m;h—平滩水深m;J—纵坡,为‰;研究表明,Φh 值越大,水流作用越弱,底沙不易运动,河床越稳定;反之,则Φh值越小,水流作用越强,底沙容易运动,河床越不稳定;2、横向稳定系数计算公式按下式计算:Φb =2.05.0J BQ•式中:Q—造床流量,采用相当于频率为50%的平滩流量作为造床流量;B—相当于造床流量下平滩河宽m,为52m;J—纵坡;研究表明,Φb 值越大,河身相对较窄,比降较少,水流平缓归顺,河岸越稳定;Φb值越小,河身相对较宽,河岸越不稳定;3、河道相关系计算公式用宽深比公式计算,即:ξ=h式中:ξ—断面河相系数,可根据同一河流上的模范河段的实际资料确定;B—相当于造床流量下平滩河宽m;h—平滩水深m;稳定河宽采用阿尔图宁经验公式和河道水流阻力连续方程式两种办法计算;①阿尔图宁经验公式:B=A·计算:式中:B──稳定河段的水面宽度;A──稳定河道系数,由于工程区河床横向较不稳定;Q──采用相当于频率为50%的平滩流量作为造床流量m3/s;②河道水流阻力连续方程式:B=1162135Jζ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡••nQ其中:ζ——断面河相系数;n——根据河道特征,选取河床综合糙率;B──稳定河段的水面宽度;4、洪水水面线计算公式水面线按下列公式计算:Z 1+g221Vα=Z2+g222Vα+ hf+hj式中:Z1、Z2──上、下游断面水位高程m;X∆──两断面水平距离m;Q──设计洪峰流量;α1、α2──上、下断面的动量修正系数;V1、V2──上、下断面的平均水流流速,m/s;h f ──上、下断面间的沿程水头损失,用公式Q2×2XK∆计算,2K=22221KK+,即将流量模数的平方取算术平均值,K =n 3 2RA•;hj──上、下断面间的局部水头损失,按下列情况计算:1河槽断面收缩 hj =×gVgV222122-2河槽断面扩大 hj =×gVgV222221-5、 弯道段计算公式h j =ξgV g V 222122- 式中:ξ=⎪⎪⎭⎫ ⎝⎛+r b R C L 43162.192 R ──为水力半径m ;b ──为河宽,对梯形断面应为水面宽m ;r ──为河弯轴线的弯曲半径m ;L──为河弯轴线的长度m;C──为谢才系数;ξ──断面河相系数;6、堤顶高程计算公式堤顶高程按设计洪水位加堤顶超高确定,堤顶超高采用下式计算:Y=R+e+A式中:Y——堤顶超高m;R——设计波浪爬高m;e——设计风壅水面高度m; A——安全加高m;7、设计波浪爬高计算公式设计波浪爬高采用公式Rp = Kβ·K△·Kv·Kp·R·H计算;K△——斜坡糙率渗透性系数,混凝土护面取;K——斜向波折减系数,;β——经验系数;Kv——P=2%爬高累计频率换算系数;KPR——无风情况下的爬高值;8、风浪要素选用莆田试验站公式计算:其中:T——平均波周期,s;L ——堤前波浪的波长,m ; H ——堤前波浪的平均波高,m ;V ——计算风速,采用历年汛期最大风速平均值的倍;14、设计风壅水面计算公式设计风壅水面高度采用公式e= cos 22gdF KV 计算: K ——综合摩阻系数;d——水域的平均水深, m;F——由计算点逆风向量到对岸的距离,m;β——风向与垂直于堤轴线的法线的夹角;15、冲刷深度公式计算①水流平行于岸坡产生的冲刷深度可按下式计算:h B =hp·vcp/V充n-1+hp式中:hB——局部冲刷深度m,从水面算起;hp——冲刷处的水深m,以近似设计水位最大深度代替;vcp——平均流速m/s;v充——砂砾石段河床面上允许不冲流速m/s;n——与防护岸坡在平面上的形状有关,一般取1/4;②水流斜冲防护岸坡产生的冲刷深度可按下式计算:△hp =23tga/2·Vj2/1+m2·g-30d式中:△hp——从河底算起的局部冲刷深度m;a——水流与岸坡交角度;m——护坡迎水面边坡系数;d——坡脚处土壤计算粒径,取大于15%按重量计的筛孔直径m;Vj——水流局部冲刷流速m3/s,按滩地河床段计算:g——重力加速度,取;V j =Q/B1H1·2η/1+η式中:B——河滩宽度,从河槽边缘至坡脚距离,m;1Q——通过河滩部分的设计流量m3/s;——河滩水深m;H1η——水流流速不均匀系数,查表得;16、混凝土护坡斜坡计算公式①混凝土护坡斜坡式土堤满足混凝土板整体稳定所需的最小厚度由下式确定:当砼板作为堤防护面时,满足砼板整体稳定所需的护面板厚度度t 按下式确定: t =η·H BmL r r r b •- 式中:t ——混凝土面板厚度m ;η——系数,对开缝板可取0. 075;对上部为开缝板,下部为闭缝板可取;H——计算波高,取H;1%——混凝土的重度25kN/m3;rbr——水的重度10kN/m3;L——波长m;B——沿斜坡方向的护面板长度,m;m——斜坡坡率;②浆砌石护坡斜坡式土堤该公式适用于m=的条件,在此仅作为参考数值;式中:t ——浆砌石厚度mQ ——主要护面层的护面块石个体质量t ;其中: Q=m r r K H r b D b 331⎪⎭⎫ ⎝⎛-;K——稳定系数;D——浆砌石重度,26kN/m3;rbr——水重度,10kN/m3;n——护面块石的层数;c——系数;,;H──设计波高,取H5%17、堤防稳定计算公式①施工期抗滑稳定安全系数可按下式计算:②水位降落期抗滑稳定安全系数可按下式计算:式中:b——条块宽度m;W——条块重力kN,W=Wl +W2+ρwZb;Wl——在堤坡外水位以上的条块重力kN;W2——在堤坡外水位以下的条块重力kN;Z——在堤坡外水位高出条块底面中点的距离m;ui——水位降落前堤身的孔隙压力kPa;B——条块的重力线与通过此条块底面中点的半径之间的夹角°;γw——水的重度kN/m3;C u ,φu,Ccu,φcu,土的抗剪强度指标kN/m3;③桥梁过流能力计算现状桥梁的过流量按无坎宽顶堰计算:Q =σsm′b′2g式中:Q——桥过流量m3/s;m′——包括侧收缩影响的流量系数;H——桥前水深,根据公路桥涵设计通用规范JTGD60-2004、公路水文勘测设计规o范JTG C30-2002,要求拱平顶至最高水位预留净空m;b′——桥宽m;σ——淹没系数;s18、泵站扬程计算公式①管径确定按公式:D=计算管径由于管道内流速的大小直接影响工程造价和日常运转费用,按经验管内流速范围一般在—之间,取V=s的经济流速作为设计流速;②扬程确定扬程由净扬程和损失扬程两部分组成,损失扬程由沿程损失和局部损失两部分组成;沿程损失按下式计算: v=C式中:C——谢才系数。
水利专业常用计算公式一、枢纽建筑物计算1、进水闸进水流量计算:Q=B 0δεm(2gH 03)1/2式中:m —堰流流量系数ε—堰流侧收缩系数2、 明渠恒定均匀流的基本公式如下:流速公式:u =RiC 流量公式 Q =Au =A RiC 流量模数K =A RC 式中:C —谢才系数,对于平方摩阻区宜按曼宁公式确定,即C =6/1n 1RR —水力半径(m );i —渠道纵坡;A-过水断面面积(m 2);n —曼宁粗糙系数,其值按SL 18确定。
3、水电站引水渠道中的水流为缓流。
水面线以a1型壅水曲线和b1型落水曲线最为常见。
求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。
逐段试算法的基本公式为△x=f21112222i -i 2g v a h 2g v a h ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ 式中:△x-—流段长度(m);g ——重力加速度(m/s ²);h 1、h 2——分别为流段上游和下游断面的水深(m );v 1、v 2——分别为流段上游和下游断面的平均流速(m/s );a 1、a 2—-分别为流段上游和下游断面的动能修正系数;——流段的平均水里坡降,一般可采用⎪⎭⎫ ⎝⎛+=-2f 1f -f i i 21i 或⎪⎪⎭⎫ ⎝⎛+=∆=3/4222224/312121f f v n R v n 21x h i R 式中:h f -—△x 段的水头损失(m);n 1、n 2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n 2=n ;R 1、R 2——分别为上、下游断面的水力半径(m);A 1、A 2——分别为上、下游断面的过水断面面积(㎡);4、各项水头损失的计算如下:(1)沿程水头损失的计算公式为⎪⎪⎭⎫ ⎝⎛+∆=3/4222223/412121f v n v n 2x h R R (2)渐变段的水头损失,当断面渐缩变化时,水头损失计算公式为:L f 2122c f c i g 2v g 2v f h h h -+⎪⎪⎭⎫ ⎝⎛-=+=ω 5、前池虹吸式进水口的设计公式(1)吼道断面的宽高比:b 0/h 0=1.5—2。
既有桥涵水文检算方法1. 桥涵水文检算的一般规定进行水文检算的目的就是确定桥涵的抗洪能力。
当洪水到达桥下以后,桥下的净空高度是否满足要求,洪水对桥墩台冲刷以后,墩台基础的埋置深度是否满足最小埋深的要求,对于有铺砌的桥涵,铺砌是否被冲毁。
换句话说:桥涵水文检算就是检算桥涵的轮廓尺寸(包括桥涵的大小—孔径;桥涵的高矮—桥高、河滩路肩标高;桥涵的深浅—基底埋深与桥涵铺砌)等,是否能经受洪水的考验,因此《铁路桥梁检定规范》对既有桥涵设备作了如下的规定: 1.1检定洪水频率标准为确定既有桥涵的排洪能力,就要通过水力水文计算,推求具有一定频率的检定流量,《铁路桥梁检定规范》规定的检定洪水频率标准如表1.1.1。
表1.1.1 检定洪水频率标准注:若观测到的洪水(包括调查洪水)频率小于表1.1.1所列的标准时,应按观测洪水频率检算,但当观测洪水小于下列频率时,应按下列频率检算:Ⅰ、Ⅱ级铁路的路基、特大桥和大中桥为1/300,小桥和涵洞为1/100;Ⅲ及铁路的路基,桥涵为1/100。
1.2 桥涵净空高度《铁路桥梁检定规范》规定:不通航亦无流筏的桥梁,在通过检定频率洪水时,桥下净空高度应满足下式要求:d j l h H H ≥- 式中:l H —梁底高程(m );d h —桥下净空要求高度(m )按表1.2.1采用; j H —桥下检定水位(包括壅水等水位增高)(m );h h H j j ∆+=j h —相应检定频率流量的桥下水位(不包括壅水等水位增高)(m ); h ∆—桥下水位增高值(m ),见表1.2.1表注。
表1.2.1 桥下净空高度d h注:1 表中所列“检算水位”或“校验水位”是指检定频率洪水的相应水位,h ∆是指根据河流具体情况,考虑桥下壅水、浪高、局部股流涌高、河床淤积等影响的高度。
2 洪水期无大漂流物通过的河流,实体无铰拱(拱圈或拱肋)的拱脚,允许被“检定水位加h ∆”后的水位淹没,但此淹没高不应大于矢高的3/4,且距拱顶的净高不应小于0.75m 。
桥涵水文1.地面径流:降落到地面上的水,除掉损失一部分外,在重力作用下沿着一定的方向和路径流动。
2.河川径流:受重力作用沿河床流动的水流。
3.水系:脉络相同的大小河流所构成的系统。
4.河流的基本特征:河流断面、河流长度及河流比降。
5.流域的特征:⑴几何特征:主要是流域面积和流域形状 ⑵自然地理特征:主要是指流域的地理位置和地形6.径流量:指一定时间内通过河流出口断面的径流总面积。
、7.山区河流和平原河流的特点?山区河流的特点:流域内坡面陡峻,岩石裸露,汇流时间段,降雨强度大,以致混水暴涨暴落,水位流量和变幅大,但混水持续时间短:河流比降大,流速大,水流流态紊乱,存在回流、漩涡、跌水和水跃。
平原河流的特点:多为发育完全的形态,具有广阔的河滩,混水时淹没河滩,中、枯水时裸露在水面上;在靠近河槽地形处形成地势较高的自然堤,在远离河槽的滩地上则形成洼地、湖泊、而且河滩具有明显的横降比;平原河流的河槽土质松软;河床处于不断发展中;平原河流面积较大;流域平均坡度较平坦,汇流时间长,河床开阔,调蓄作用大;混水涨落较山区缓慢,持续时间长;水面与河床比降都小;流速较小,水流较为平顺。
8.径流形成的过程:⑴降雨过程 ⑵流域蓄渗过程 ⑶坡面漫流过程 ⑷河槽集流过程9.影响径流的主要因素:气候因素;下垫面因素;人类活动因素10.河流的水量补给分为:雨源、雨雪源和冰雪源11.我国陆地高程基准面:黄海平均海平面12.常用的水尺有:直立式水尺、倾斜式水尺、矮桩式水尺13.流量计算:五点法(内插法)14.水文资料的来源:水文站观测资料、浑水调查资料、文献考证资料15.形态断面——计算流量所依据的河流横断面,又称水文断面16.谢才—满宁公式:21321i R n v = 2132i mR v = (计算水文断面的平均流速) 式中:v ——断面平均流速m/s ,对于复式断面,河槽与河滩的断面平均流速应分别计算; n ——粗糙系数(粗率)m ——n 的倒数,m=n1; R ——水力半径(m); R=x A (A ——过水面积;x ——湿周) i ——洪水比降,以小数计。
2、水文计算 基本资料:桥位于此稳定河段,设计流量31%5500/SQQms,设计水位457.00SHm,河槽流速3.11/scvm,河槽流量3CQ=4722m/s,河槽宽度
cB159.98m,河槽平均水深ch9.49m,天然桥下平均流速03.00/Mvms,断面平均流速=2.61m/s,水面宽度B=180m,河岸凹凸岸曲率半径的平均值R=430m,桥下河槽最大水深12.39mchm。
2.1桥孔长度 根据我国公路桥梁最小桥孔净长度Lj公式计算。 该桥在稳定河段,查表知K=0.84,n=0.90。有明显的河槽宽度Bc,则有: n0.90jsccL=K (Q/Q)B=0.84(55004722)159.98=154.16m
换算成平面半径R=1500的圆曲线上最小桥孔净长度为154.23m。
2.2桥孔布置图 根据河床断面形态,将左岸桥台桩号布置在K52+325.00。取4孔40m预应力混凝土T形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m,墩径取1.4m;各墩位置和桩号如图1所示;右桥台桩号为K52+485.00;该桥孔布置方案的桥孔净长度为155.80m大于桥孔净长度154.23m,故此桥孔布置方案是合理的。
2.3桥面最低高程 河槽弗汝德系数Fr= 223.119.809.49=0.104ccvgh<1.0。即,设计流量为缓流。桥前出现壅水而不出现桥墩迎水面的急流冲击高度。 2.3.1桥前壅水高度Z和桥下壅水高度Zq 冲刷前桥下流速'm=55003.72/1609.4931.49.49QsmsAj 天然桥下平均流速vom=3.00m/s 自然淤积孔隙率n为0.4,则天然空隙比e取0.67,查表知d50=3mm 冲刷前桥下流速:m=0.250.2550'3.723.29'3.7210.5(1)10.53(1)3.11mmcvvdvm/s
系数Kn=mom22==6.433.29-1-13.00 Ky=0.50.50.533.290.10.19.8mvg 桥前最大壅水高度:Z=22226.430.53()(3.293.00)0.32229.8momKnKyvvgm 桥下壅水高度取洪水和河床条件为一般情况,则:Zq=12Z=0.16m 2.3.2浪高h2
计算风速为21.53m/s,浪程内平均水深取河床平均水深8.60m,汛期顺风向到达
桥位断面形成的最大水面风距为1450m。浪高计算如下:229.800.0211421.53wgv
247.3009wvg
229.8145030.6553321.53wgDv 229.808.600.181817821.53wghv
2h
=0.450.7220.7220.00180.13th0.7th0.13th0.7=wwwwgDvghvghvgv 0.39m。
因2h/h=0.39/8.60=0.047<0.1,应取KF=2.42,则波浪高度:h2=KF2h=2.42×0.39=0.94m 按《公路工程水文勘测设计规范》,静水面以上浪高取2/3的波浪高度计0.66h2;
另外,波浪在墩前被阻挡时,墩前波浪高度将雍高,近似取雍高值为0.2h2,这样,静水面以上的波浪高度为波浪全高的0.86倍,即0.86h2=0.86×0.94=0.81m。 2.3.3波浪坡面爬高和河岸凹岸超高
桥头路堤和导流堤顶面高程应计入波浪坡面爬高,按式he=KKvR02h计算。 桥位在河湾内,桥面最低高程应计入两岸超高的一半,即0.5hw。
hw= 222.611800.299.80430.00vBgRm 凹岸对水流中线的超高为 0.5hw = 0.15 m
按设计洪水通过要求的桥面最低高程 Hmin=Hs+0jhhh= Hs+0.5Z +0.86h2+0.5hw+jh+Dh =457.00+0.16+0.81+0.15+0.5+2.70=461.32m
按Ⅵ-(1)级航道航道通航标准,要求的桥面最低高程 Ⅵ-(1)级航道最高通航水位的重现期为5年,对应最高通航水位,由p=1/5的流量即Q20%,计算相应的水位H20%求得H20%=455.00;通航净空高度为6.00m;通航净宽为30m。 Hmin=Htn+HM+Dh=455.00+6.00+2.70=463.70m 以上计算结果表明,通航要求控制桥面高程,桥面最低高程确定为463.70m。 2.4此冲刷为非粘性土河床冲刷,桥下断面一般冲刷后水深
hp
按一般冲刷64-2简化公式计算
hp= 0.660.90221.0411cmcBQAhQB
0.660.905500159.981.041.3312.3919.85472210.02700.97159.98m 按一般冲刷64-1公式计算 3/521/6mc
p
jc
hAQ
hLEdh
3/51/61.33550012.3919.240.97154.160.4639.49m
2.5桥墩局部冲刷深度hb 桥墩为双柱墩,墩柱直径1.40m,查墩形系数表K=1.0,0.242.2
0.0023
0.3750.49Kdd计算墩宽B1=1.40m。
65-2公式 行近水流19.85phm;= 1/62/31/62/30.46319.854.05/pEdhms 起动流速0.50.500.280.70.2830.70.54dm/s, 起冲流速0.550.55'00.120.50.1230.50.24dm/s, 0,为动床冲刷。0.54'
0.600.150.600.150
104.050.241.00.491.4019.852.700.54nbphKKBhm
65-2修正公式
行近水流19.85phm;4.05/ms
起动流速0.140.5700.7210296.0510pphhddd =0.140.570.7219.851019.85290.0036.05101.02/0.0030.003ms 起冲流速0.0530.053'00130.6450.6451.020.69/1.40dmsB K
=1.0,B1=1.40m;9.352.23lg9.352.23lg0.00301.020.00584.05dn
hb的回归值 K=0.46
'0.600.150.06801'000.46npbHhKBhd
0.00790.600.150.0684.050.690.461.01.4019.850.0031.331.020.69m
hb的上限值 K=0.60
'0.600.150.06801'000.60npbShKBhd
0.00790.600.150.0684.050.690.601.01.2019.850.0031.741.020.69m
根据输沙平衡原理,当流速大于0很多时,将出现冲刷坑内输沙平衡,冲刷不再增加。 例中,4.05/ms大约为0=0.54m/s的8倍,冲刷深度还以0.54次方的指数函数增大,与实桥资料分布趋势不同。 取bSh值较为适宜。
2.6桥墩的最低冲刷线高程 minspbH=H-H-H=457.00-19.85-1.74=435.41m 2.7桥台冲刷 根据地形图桥位断面左右岸均有河滩,阻挡河滩水流长度各为LD=10m,阻水较多冲刷较深。按交通部科技攻关公式计算: 桥台形式采用带竖直前墙和上下游锥坡,两岸河滩受阻水流弗汝徳系数:220.99
0.0679.801.49Frgh
两岸分别阻水面积:214.9zDALhm 桥台冲刷深度:0.200.501.95szAhFrACC0.200.50
1.950.06714.91.00.903.95m