PID控制的Simulink仿真
- 格式:ppt
- 大小:1.23 MB
- 文档页数:17
simulink仿真pid案例摘要:I.引言- 介绍Simulink软件和PID控制器II.PID控制器原理- PID控制器的基本原理和组成部分- PID控制器在工程中的应用III.Simulink仿真PID案例- 建立PID控制器模型- 设定参数并进行仿真- 分析仿真结果IV.结论- 总结Simulink仿真PID案例的重要性和应用价值正文:I.引言Simulink是一款由MathWorks公司开发的用于模拟和仿真的软件,它可以用于各种领域,如控制系统、信号处理、通信等。
PID控制器是控制系统中常用的一种控制器,它具有结构简单、可靠性高等特点,被广泛应用于工业控制中。
本文将通过一个具体的Simulink仿真PID案例,介绍如何使用Simulink进行PID控制器的仿真。
II.PID控制器原理PID控制器是一种比例-积分-微分(Proportional-Integral-Derivative)控制器,它通过计算控制误差的比例、积分和微分值,得到控制器的输出。
PID控制器由比例单元、积分单元和微分单元三部分组成,其中比例单元用于放大控制误差,积分单元用于消除系统的稳态误差,微分单元用于预测控制误差的变化趋势。
PID控制器在工程中有着广泛的应用,如温度控制、流量控制、位置控制等。
通过调整PID控制器的参数,可以实现对系统的稳定性和响应速度的调节。
III.Simulink仿真PID案例为了演示如何使用Simulink进行PID控制器的仿真,我们建立一个简单的PID控制器模型。
首先,打开Simulink软件,从工具栏中选择“新建模型”,创建一个新的模型。
接下来,从Simulink库中添加以下模块:一个输入模块(用于接收控制信号)、一个比例单元模块、一个积分单元模块和一个微分单元模块。
然后,将这四个模块按照PID控制器的结构连接起来,形成一个完整的PID控制器模型。
在建立好PID控制器模型后,我们需要设定一些参数,如比例系数、积分时间和微分时间等。
1模糊P1D用命令FUZZy翻开模糊控制工具箱。
AnfiSedit翻开自适应神经模糊控制器,它用给定的输入输出数据建个一个模糊推理系统,并用一个反向传播或者与最小二乘法结合的来完成隶属函数的调节。
SUrfVieW(newfis)可以翻开外表视图窗口8.1模糊PID串联型新建一个SimUIink模型同时拖入一个fuzzy1ogiccontro11er模块,双击输入已经保存的fis模糊控制器的名字。
由于这个控制模块只有一个输入端口,需要用到I I1UX模块。
模糊结合PID,当输出误差较大时,用模糊校正,当较小时,用PID校正。
8.2模糊自适应PID[1)PID参数模糊自整定的原那么PID调节器的控制规律为:u(k)=Kpe(k)+Ki∑e(i)+Kdec(k)其中:KP为比例系数;Ki为积分系数;Kd为微分系数;e(k)、ec(k)分别为偏差和偏差变化率.模糊自整定P1D参数的目的是使参数Kp、Ki、Kd随着e和ec的变化而自行调整,故应首先建立它们间的关系.根据实际经验,参数KP、Ki、Kd在不同的e和ec下的自调整要满足如下调整原那么:(1)当e较大时,为加快系统的响应速度,防止因开始时e的瞬间变大可能会引起的微分溢出,应取较大的Kp和较小的Kd,同时由于积分作用太强会使系统超调加大,因而要对积分作用加以限制,通常取较小的Ki值;(2)当e中等大小时,为减小系统的超调量,保证一定的响应速度,Kp应适当减小;同时Kd 和Ki的取值大小要适中;(3)当e较小时,为了减小稳态误差,Kp与Ki应取得大些,为了防止输出响应在设定值附近振荡,同时考虑系统的抗干扰性能,Kd值的选择根据IeC1值较大时,Kd取较小值,通常Kd为中等大小。
同时按照需要,将输入语言变量E和EC分为7个模糊子集,分别用语言值正大(PB)、正中(PM)、正小(PS)、零(Z)、负小(NS)、负中(NM)、负大(NB)来表示,它们的隶属函数为高斯型(gaussmf),输出语言变量Kp/、Ki,、Ker用语言值小正大(PB)、正中(PM)、正小(PS)、零(Z)、负小(NS)、负中(NM)、负大(NB)来表示隶属函数为三角型(trimf),方法二:图-1模糊自适应Simu1ink模型根据各模糊子集的隶属度赋值表和各参数模糊控制模型,应用模糊合成推理设计分数阶PID参数的模糊矩阵表,算出参数代入下式计算:Kp=KpO+(E,EOpjKi=KiO+(E,EC)I;Kd=KdO+(E,EC)d式中:KpO.KiO.KdO为P1D参数的初始设计值,由传统的PID控制器的参数整定方法设计。
基于Simulink的位置式和增量式PID仿真一、实验目的:1、用Matlab的仿真工具Simulink分别做出数字PID控制器的两种算法(位置式和增量式)进行仿真;2、被控对象为一阶惯性环节 D(s) = 1 / (5s+1);3、采样周期 T = 1 s;4、仿真结果:确定PID相关参数,使得系统的输出能够很快的跟随给定值的变化,给出例证,输入输出波形,程序清单及必要的分析。
二、实验学时:4三、实验原理:(1)列出算法表达式:位置式PID控制算法表达式为:(2)列出算法传递函数:(3)建立simulink模型:(4)准备工作:双击step,将sample time设置为1以符合采样周期 T = 1 s 的要求;选定仿真时间为500。
第一步是先获取开环系统的单位阶跃响应,在Simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’Kp’的值置为1,调试之后获取响应值。
再连上反馈线,再分别接上微分器、积分器,仿真,调试仿真值。
2、增量式PID:(1)列出算法表达式:增量式PID控制算法表达式为:(2)列出算法传递函数:(3)建立simulink模型:(4)准备工作:双击step,将sample time设置为1以符合采样周期 T = 1 s 的要求;选定仿真时间为500。
第一步是先获取开环系统的单位阶跃响应,在Simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’Kp’的值置为1,调试之后获取响应值。
再连上反馈线,再分别接上微分器、积分器,仿真,调试仿真值。
四、实验内容:1、位置式:(1)P控制整定仿真运行完毕,双击“scope”得到下图将Kp的值置为0.5,并连上反馈连线。
仿真运行完毕,双击“scope”得到下图效果不理想,再将Kp的值置为0.2,并连上反馈连线。
P控制时系统的单位阶跃响应图如下:(2)PI控制整定(比例放大系数仍为Kp=0.2)经多次输入Ki的值,发现Ki=1时,系统的输出最理想,选定仿真时间,仿真运行,运行元毕后. 双击" Scope " 得到以下结果(3)PID控制整定经多次输入调试,Kd的值置为0.5时,系统能最快地趋向稳定。
课程设计题目:专家PID控制系统仿真专家PID控制系统仿真摘要简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。
基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。
论文主要研究专家PID控制器的设计及应用,完成了以下工作:(1)介绍了专家PID控制和一般PID控制的原理。
(2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(3)结果分析,总结。
仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,MATLAB,simulink仿真Expert PID control system simulationAbstractThe advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get.This paper mainly studies the design and application of the expert PID controller:(1) the principle of PID control and PID control is introduced in this paper.(2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller.(3) result analysis, summary.The simulation results show that the control accuracy of the expert PID control is better than that of the control.Key words:Expert PID , MA TLAB, expert system, Simulink, simulation目录摘要 (I)Abstract ..................................................................................................................................... I II 第一章引言 . (2)1.1 研究目的和意义 (2)1.2国内外研究现状和发展趋势 (3)第二章PID控制器综述 (3)2.1常规PID控制器概述 (3)2.2专家PID控制器 (4)第三章专家PID控制在MATLAB上的实现 (5)3.1简介 (5)3.2设计专家PID 控制器的实现方法 (5)3.3.专家PID控制器的S函数的M文件实现 (7)3.4专家PID控制器的simulink设计 (8)3.5专家PID控制和传统PID比较 (13)第四章结论 (14)4.1专家PID控制系统的优缺点及解决方案 (14)4.2最终陈述 (14)第一章引言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
下面用一个简单的例子作介绍:(本例不是特别针对实现什么功能,只是为了介绍方便)第一部分创建一个模糊逻辑(.fis文件)第一步:打开模糊推理系统编辑器步骤:在Commond Window 键入fuzzy回车打开如下窗口,既模糊推理系统编辑器第二步:使用模糊推理系统编辑器本例用到两个输入,两个输出,但默认是一个输人,一个输出步骤:1、添加一个输入添加一个输出得如下图2、选择Input、output(选中为红框),在Name框里修改各输入的名称并将And method 改为prod,将Or method 改为probor提示:在命名时’_’在显示时为下标,可从上图看出。
第三步:使用隶属函数编辑器该编辑器提供一个友好的人机图形交互环境,用来设计和修改模糊推理系中各语言变量对应的隶属度函数的相关参数,如隶属度函数的形状、范围、论域大小等,系统提供的隶属度函数有三角、梯形、高斯形、钟形等,也可用户自行定义。
步骤:1、双击任何一个输入量(In_x、In_y)或输出量打开隶属度函数编辑器。
2、在左下处Range和Display Range处添加取值范围,本例中In_x和In_y的取值范围均为[0 10], Out_x和Out_y的取值范围均为[0 1]3、默认每个输入输出参数中都只有3个隶属度函数,本例中每个输入输出参数都需要用到五个,其余几个需要自己添加:选中其中一个输入输出参数点击Edit菜单,选Add MFS…打开下列对话框将MF type设置为trimf(三角形隶属度函数曲线,当然你也需要选择其他类型) 将Number of MFs设置为2点击OK按钮同样给其他三个加入隶属度函数4、选中任何一个隶属度函数(选中为红色),在Name中键入名称,在Type 中选择形状,在Params中键入范围,然后回车如下图:5、关闭隶属函数编辑器第四步:使用规则编辑器通过隶规则编辑器来设计和修改“IF...THEN”形式的模糊控制规则。
实验二PID调节器实验内容:SIMULINK建模仿真学生信息:自动化提交日期:2023年5月28日报告内容:PID调节器一、实验目的1.掌握仿真系统参数设置及子系统封装技术;2.分析PID调节器各参数对系统性能的影响。
二、实验设备1.计算机1台2.MATLAB 7.X软件1套。
三、实验原理说明1.建立新的simulink模块编辑界面,画出如图1所示的模块图。
对应的增益参数分别设为P和I,左击选中全部框图,右击菜单选择“creat subsystem”,变为图2。
图1:图2:2.右击图2中间的框图“Subsystem”,在右击的菜单中选择“Mask Subsystem”,出现下图。
先直接输入disp('PI调节器'),给待封装的子系统命名。
3.选择“Parameters”进行参数设置,点击按钮,添加参数,此参数必须与上文设置的参数对应,否则无效,如下图所示。
4.点击OK,完成子系统的封装。
双击PI调节器模块,出现参数设定对话框如下,可以进行参数调节。
四、实验步骤1.从continue模块集中拉出Derivative、Integrator以及从Math Operations模块集中拉出Gain模块,设计PID调节器,对PID调节器进行封装;2.建立Simulink原理图如下:3.双击PID调节器模块,调整调节器的各参数。
五、实验要求分析调节器各参数对系统性能的影响,撰写实验报告:1.P调节将PID调节器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例调节。
调整比例增益(P=0.5,2,5),观察响应曲线的变化。
图1 P=0.5时的阶跃信号及其响应图2 P=2时的阶跃信号及其响应图3 P=5时的阶跃信号及其响应P增大,系统在稳定时的静差减少。
2.PD调节调节器的功能改为比例微分调节,调整参数(P=2,D=0.1,0.5,2,5),观测系统的响应曲线。
图4 P=2,D=0.1时的阶跃信号及其响应图5 P=2,D=0.5时的阶跃信号及其响应图6 P=2,D=2时的阶跃信号及其响应图7 P=2,D=5时的阶跃信号及其响应D增大,系统将会快速收敛,同时系统静差会增大。
基于matlabsimulink的pid控制器设计1.引言1.1 概述概述部分:PID控制器是一种常用的控制算法,它通过不断地调整系统的输出来使其尽量接近所期望的目标值。
在工业控制领域,PID控制器被广泛应用于各种工艺过程和自动化系统中。
本文将以MATLAB/Simulink为工具,探讨基于PID控制器的设计方法。
PID控制器以其简单易实现、稳定性好的特点,成为许多控制系统的首选。
在文章的正文部分,我们将对PID控制器的基本原理进行详细介绍,并结合MATLAB/Simulink的应用,展示如何使用这一工具来设计和实现PID控制器。
在控制系统设计中,PID控制器通过测量系统的误差,即期望输出值与实际输出值之间的差异,并根据三个控制参数:比例项(Proportional)、积分项(Integral)和微分项(Derivative)来调整系统的输出。
比例项控制系统的响应速度,积分项消除系统的稳态误差,微分项抑制系统的震荡。
MATLAB/Simulink作为一款功能强大的仿真软件,提供了丰富的控制系统设计工具。
它不仅可以帮助我们直观地理解PID控制器的工作原理,还可以实时地模拟和分析系统的响应。
通过使用MATLAB/Simulink,我们可以轻松地进行PID控制器参数调整、系统性能评估和控制算法的优化。
总之,本文旨在介绍基于MATLAB/Simulink的PID控制器设计方法,通过理论介绍和实例演示,帮助读者深入理解PID控制器的原理和应用,并为读者在实际工程项目中设计和实施PID控制器提供参考。
在结论部分,我们将总结所得结论,并对未来进一步研究的方向进行展望。
文章结构部分的内容可以描述文章的整体架构和各个部分的内容大纲。
以下是对文章1.2部分的内容补充:1.2 文章结构本文主要由以下几个部分构成:第一部分是引言部分,包括概述、文章结构和目的等内容。
在概述中,将简要介绍PID控制器在自动控制领域的重要性和应用背景。
实验四:基于Simulink 的控制系统仿真实验目的1. 掌握MATLAB 软件的Simulink 平台的基本操作; 2. 能够利用Simulink 平台研究PID 控制器对系统的影响;实验原理PID (比例-积分-微分)控制器是目前在实际工程中应用最为广泛的一种控制策略。
PID 算法简单实用,不要求受控对象的精确数学模型。
1.模拟PID 控制器典型的PID 控制结构如图1所示。
`图1 典型PID 控制结构 连续系统PID 控制器的表达式为()()()()tp I Dde t x t K e t K e d K dt ττ=++⎰ (1)式中,P K ,IK 和DK 分别为比例系数,积分系数和微分系数,分别是这些运算的加权系数。
对式(7-21)进行拉普拉斯变换,整理后得到连续PID 控制器的传递函数为1()(1)I C P D P D I K G s K K s K T s s T s =++=++ (2)显然P K ,IK 和DK 这3个参数一旦确定(注意/,/I P I D D PT K K T K K ==),PID 控制器的性能也就确定下来。
为了避免微分运算,通常采用近似的PID 控制器,气传递函数为1()(1)0.11D C P I D T s G s K T s T s =+++ (3)实验过程PID 控制器的P K ,I K 和D K 这3三个参数的大小决定了PID 控制器的比例,积分和微分控制作用的强弱。
下面请通过一个直流电动机调速系统,利用MA TLAB 软件中的Simulink 平台,使用期望特性法来确定这3个参数的过程。
并且分析这3个参数分别是如何影响控制系统性能的。
【问题】某直流电动机速度控制系统如图2所示,采用PID 控制方案,使用期望特性法来确定P K ,IK 和DK 这3三个参数。
期望系统对应的闭环特征根为:-300,-300,-30+j30和-30-j30。
请建立该系统的Simulink 模型,观察其单位阶跃响应曲线,并且分析这3个参数分别对控制性能的影响。
实验七 SIMULINK 仿真——单回路控制系统及PID 控制器参数整定一、实验目的及要求:1.熟悉SIMULINK 工作环境及特点;2.熟悉控制线性系统仿真常用基本模块的用法;3.掌握SIMULINK 的建模与仿真方法。
二、实验内容:用SIMULINK 建立被控对象的传递函数为11010)(23+++=s s s x G ,系统输入为单位阶跃,采用PID 控制器进行闭环调节。
①练习模块、连线的操作,并将仿真时间定为300 秒,其余用缺省值;②试用稳定边界法(过程控制P5工程整定法之一)设置出合适的PID 参数,得出满意的响应曲线。
③设计M 文件在一个窗口中绘制出系统输入和输出的曲线,并加图解。
三、实验报告要求:①阐述用SIMULINK 进行控制系统仿真的一般过程;②说明用工程整定法——稳定边界法整定PID 参数的过程。
M文件denz=[10];numz=[1 1 10 1];sysz=tf(denz,numz)%传递函数denk=[0 0.539];numk=[0 1];deni=[0 2];numi=[1 0];dend=[0.25 0];numd=[0 1];sysk=tf(denk,numk)%p调节器sysi=tf(deni,numi)%I调节器sysd=tf(dend,numd)%D调节器[denki,numki]=parallel(denk,numk,deni,numi);%P调节器与I调节器相并联[denpid,numpid]=parallel(dend,numd,denki,numki);%PI调节器与D调节器相并联组成PID调节器syspid=tf(denpid,numpid)[denkh,numkh]=series(denpid,numpid,denz,numz);%PID与传递函数串联组成开环控制系统syskh=tf(denkh,numkh)[denbh,numbh]=feedback(denkh,numkh,1,1,-1);%组成单位负反馈闭环系统sysbh=tf(denbh,numbh)t=0:0.1:300;%加入0到300的仿真时间,步进值为0.1subplot(2,1,1)plot(t,1,'b')%显示单位阶跃函数subplot(2,1,2)step(sysbh,t)%显示闭环系统对于单位阶跃函数的响应函数曲线。
simulink仿真pid案例(实用版)目录一、Simulink 简介二、PID 控制器原理三、Simulink 中 PID 控制器的搭建四、Simulink 中 PID 控制器的仿真步骤五、总结正文一、Simulink 简介Simulink 是 MATLAB 中的一个仿真环境,可以用来模拟和分析动态系统。
通过 Simulink,用户可以构建、模拟和测试控制系统,以及进行模型验证和优化。
在 Simulink 中,用户可以通过搭建图形化的模块来描述系统,然后进行仿真和分析。
二、PID 控制器原理PID 控制器是一种常用的闭环控制器,用于控制系统的稳定性和精度。
PID 控制器包括三个部分:比例(P)、积分(I)和微分(D)控制器。
比例控制器根据系统误差的大小来调整控制量;积分控制器根据系统误差的积分来调整控制量,以消除稳态误差;微分控制器根据系统误差的变化速率来调整控制量,以改善系统的动态性能。
三、Simulink 中 PID 控制器的搭建在 Simulink 中,用户可以通过搭建模块来实现 PID 控制器。
首先,需要创建一个 PID 控制器模块,这可以通过 Simulink 中的“Continuous”或“Discrete”子库中的“PID”模块来完成。
然后,需要将 PID 控制器模块与其他模块(如输入、输出和被控对象模块)连接起来,以形成一个完整的控制系统模型。
四、Simulink 中 PID 控制器的仿真步骤在 Simulink 中,进行 PID 控制器仿真的步骤如下:1.打开 Simulink,创建一个新的模型。
2.在 Simulink 库中选择“Continuous”或“Discrete”子库,然后将“PID”模块拖拽到仿真界面中。
3.创建被控对象模块,例如使用“Transfer Function”模块来描述一个二阶线性时不变系统。
4.将被控对象模块与 PID 控制器模块相连接,同时设置好各个模块的参数。